1
|
Kim HT, Lee SH, Lee JK, Chung SW. Influence of Vitamin D Deficiency on the Expression of Genes and Proteins in Patients With Medium Rotator Cuff Tears. Am J Sports Med 2023; 51:2650-2658. [PMID: 37449678 DOI: 10.1177/03635465231184392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Whether vitamin D deficiency is related to rotator cuff muscle and tendon physiology is controversial. PURPOSE To assess the relationship between vitamin D deficiency and various gene expression patterns in patients with rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS During arthroscopic surgery, samples from the supraspinatus muscle, deltoid muscle, and supraspinatus tendon were acquired from 12 patients with vitamin D deficiency (serum 25-hydroxyvitamin D concentration <20 ng/dL) and 12 patients with sufficient vitamin D levels (control group, serum 25-hydroxyvitamin D concentration ≥30 ng/dL) who were matched for age, sex, and tear size. Alterations in the expression of genes and proteins associated with myogenesis, muscle atrophy, adipogenesis, inflammation, and apoptosis, as well as in vitamin D receptor expression, were assessed using quantitative reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry and were compared between the 2 groups. RESULTS Vitamin D receptor gene expression in the deltoid muscle was significantly lower in the vitamin D deficiency group than in the control group (P = .043). Additionally, in the deltoid muscle, myoDgene expression levels were lower and atrogin levels were higher in the vitamin D deficiency group than in the control group (P = .034 and P = .011, respectively). However, in the supraspinatus muscle, no differences were observed between groups in the expression of myogenesis- or atrophy-related genes (all P > .05). The expression of inflammation-related genes (interleukin (IL)-1β and IL-6) was significantly higher in the vitamin D deficiency group, in both the deltoid and supraspinatus muscles (all P < .05). The supraspinatus tendon tissue did not show any significant differences in any gene expression evaluated (all P > .05). A correlation between gene and protein expression was observed for atrogin and IL-1β in the deltoid muscle (P = .019 and P = .037, respectively) and for IL-6 in the supraspinatus muscle (P = .044). CONCLUSION Vitamin D deficiency was not associated with the expression of myogenesis-related or muscle atrophy-related genes in the supraspinatus muscle of patients with rotator cuff tears, unlike in the deltoid muscle; rather, vitamin D deficiency was associated with increased proinflammatory cytokine expression. CLINICAL RELEVANCE In patients with rotator cuff tears, vitamin D deficiency was observed to be associated with increased levels of proinflammatory cytokines in the rotator cuff muscles, without significant changes in gene expression related to myogenesis or muscle atrophy.
Collapse
Affiliation(s)
- Hyun Tae Kim
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Jeong Kun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Liu J, Song Y, Wang Y, Hong H. Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease. Expert Opin Ther Targets 2023; 27:1145-1157. [PMID: 37861098 DOI: 10.1080/14728222.2023.2274099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, but underlying mechanisms are not fully understood. In recent years, a growing body of evidence has emphasized the therapeutic role of vitamin D in NAFLD, but the specific mechanism remains to be investigated. AREAS COVERED This review summarized the roles of vitamin D/VDR (vitamin D receptor) pathway in different types of liver cells (such as hepatocytes, hepatic stellate cells, liver macrophages, T lymphocytes, and other hepatic immune cells) in case of NAFLD. Meanwhile, the effects of pathways in the gut-liver axis, adipose tissue-liver axis, and skeletal muscle-liver axis on the development of NAFLD were further reviewed. Relevant literature was searched on PubMed for the writing of this review. EXPERT OPINION The precise regulation of regional vitamin D/VDR signaling pathway based on cell-specific or tissue-specific function will help clarify the potential mechanism of vitamin D in NAFLD, which may provide new therapeutic targets to improve the safety and efficacy of vitamin D based drugs.
Collapse
Affiliation(s)
- Jingqi Liu
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Ye Wang
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huashan Hong
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Burkhardt R. Vitamin D: review of physiology and clinical uses. Minerva Endocrinol (Torino) 2023; 48:88-105. [PMID: 36920117 DOI: 10.23736/s2724-6507.22.03652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Interest in vitamin D has increased within the scientific community due to the impact of osteoporosis in the aging population. Vitamin D receptors are present in many tissues and low vitamin D status has been associated with many diseases in observational studies. There was hope that enhanced vitamin D provision might help prevent and treat some widespread disorders. Some of these hopes have been refuted by the results of recent large and well-conducted randomized trials. This review provides an overview of the basic physiology of vitamin D and an update on the evidence base for its clinical applications.
Collapse
|
4
|
Acevedo LM, Vidal Á, Aguilera-Tejero E, Rivero JLL. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis. Am J Physiol Cell Physiol 2023; 324:C14-C28. [PMID: 36409180 DOI: 10.1152/ajpcell.00306.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Skeletal muscle, the main metabolic engine in the body of vertebrates, is endowed with great plasticity. The association between skeletal muscle plasticity and two highly prevalent health problems: renal dysfunction and obesity, which share etiologic links as well as many comorbidities, is a subject of great relevance. It is important to know how these alterations impact on the structure and function of skeletal muscle because the changes in muscle phenotype have a major influence on the quality of life of the patients. This literature review aims to discuss the influence of a nontraditional axis involving kidney, bone, and muscle on skeletal muscle plasticity. In this axis, the kidneys play a role as the main site for vitamin D activation. Renal disease leads to a direct decrease in 1,25(OH)2-vitamin D, secondary to reduction in renal functional mass, and has an indirect effect, through phosphate retention, that contributes to stimulate fibroblast growth factor 23 (FGF23) secretion by bone cells. FGF23 downregulates the renal synthesis of 1,25(OH)2-vitamin D and upregulates its metabolism. Skeletal production of FGF23 is also regulated by caloric intake: it is increased in obesity and decreased by caloric restriction, and these changes impact on 1,25(OH)2-vitamin D concentrations, which are decreased in obesity and increased after caloric restriction. Thus, both phosphate retention, that develops secondary to renal failure, and caloric intake influence 1,25(OH)2-vitamin D that in turn plays a key role in muscle anabolism.
Collapse
Affiliation(s)
- Luz M Acevedo
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ángela Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - José-Luis L Rivero
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain
| |
Collapse
|
5
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
6
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
7
|
Safari H, Hajian M, Nasr-Esfahani MH, Forouzanfar M, Drevet JR. Vitamin D and calcium, together and separately, play roles in female reproductive performance. Sci Rep 2022; 12:10470. [PMID: 35729248 PMCID: PMC9213472 DOI: 10.1038/s41598-022-14708-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin D (VD) deficiency reduces the chances of successful fertilization; however, it remains to be validated whether this effect is dependent or not on calcium. To address this question, we generated several situation using a mouse model in which VD content was either increased or decreased in a normo or hypocalcemia context. After the measurement of serum 25-hydroxyvitamin D2, calcium and phosphorus levels, an analysis was carried out in terms of oocytes maturation as well as reproductive performance. VD overdose, despite the fact that it resulted in an increased number of mature oocytes, reduced developmental competence and offspring survival. VD deficiency (VDD), on the contrary, reduced the number and percentage of mature oocytes, blastocyst rate, as well as fertility rate and offspring survival. Hypo-calcemia when VD levels were normal, had a similar effect than VDD. The effects of VDD were reversed by a diet that corrected calcium level. Therefore, both VD overdose (in a context of normal calcium level) VD deficiency as well as hypo-calcemia have an effect on female reproductive function. In conclusion, although closely related, VD and calcium act in part independently of each other in defining the “optimum” for female reproductive performance.
Collapse
Affiliation(s)
- Hengameh Safari
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Joël R Drevet
- GReD Institute, Faculté de Médecine, Université Clermont Auvergne-INSERM-CNRS, Clermont-Ferrand, France
| |
Collapse
|
8
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
9
|
Muscle-Related Effect of Whey Protein and Vitamin D 3 Supplementation Provided before or after Bedtime in Males Undergoing Resistance Training. Nutrients 2022; 14:nu14112289. [PMID: 35684089 PMCID: PMC9183069 DOI: 10.3390/nu14112289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
There is increasing evidence that dietary protein intake with leucine and vitamin D is an important factor in muscle protein synthesis. This study investigated the combined effects of consuming whey protein and vitamin D3 in the evening before bedtime or in the morning after sleeping on muscle mass and strength. Healthy, untrained males (N = 42; Age = 18-24 year) were randomly assigned into three groups: before bedtime, after sleeping, and control. Subjects underwent a 6-week resistance training program in combination with supplements that provided 25 g whey protein and 4000 IU vitamin D3 for the before bedtime and after sleeping groups and a 5 g maltodextrin placebo for the control group. A significant increase in serum vitamin D was observed in both before bedtime and after sleeping groups. All groups experienced a significant gain in leg press. However, the control group did not experience significant improvements in muscle mass and associated blood hormones that were experienced by the before bedtime and after sleeping groups. No significant differences in assessed values were observed between the before bedtime and after sleeping groups. These findings suggest that the combination of whey protein and vitamin D supplements provided either before or after sleep resulted in beneficial increases in muscle mass in young males undergoing resistance training that exceeded the changes observed without these supplements.
Collapse
|
10
|
Crowley J, Withana M, Deplazes E. The interaction of steroids with phospholipid bilayers and membranes. Biophys Rev 2022; 14:163-179. [PMID: 35340606 PMCID: PMC8921366 DOI: 10.1007/s12551-021-00918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Steroids are critical for various physiological processes and used to treat inflammatory conditions. Steroids act by two distinct pathways. The genomic pathway is initiated by the steroid binding to nuclear receptors while the non-genomic pathway involves plasma membrane receptors. It has been proposed that steroids might also act in a more indirect mechanism by altering biophysical properties of membranes. Yet, little is known about the effect of steroids on membranes, and steroid-membrane interactions are complex and challenging to characterise. The focus of this review is to outline what is currently known about the interactions of steroids with phospholipid bilayers and illustrate the complexity of these systems using cortisone and progesterone as the main examples. The combined findings from current work demonstrate that the hydrophobicity and planarity of the steroid core does not provide a consensus for steroid-membrane interactions. Even small differences in the substituents on the steroid core can result in significant changes in steroid-membrane interactions. Furthermore, steroid-induced changes in phospholipid bilayer properties are often dependent on steroid concentration and lipid composition. This complexity means that currently there is insufficient information to establish a reliable structure-activity relationship to describe the effect of steroids on membrane properties. Future work should address the challenge of connecting the findings from studying the effect of steroids on phospholipid bilayers to cell membranes. Insights from steroid-membrane interactions will benefit our understanding of normal physiology and assist drug development.
Collapse
Affiliation(s)
- Jackson Crowley
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Minduli Withana
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
11
|
Iolascon G, Moretti A, Paoletta M, Liguori S, Di Munno O. Muscle Regeneration and Function in Sports: A Focus on Vitamin D. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57101015. [PMID: 34684052 PMCID: PMC8537590 DOI: 10.3390/medicina57101015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Muscle is one of the main targets for the biological effects of vitamin D. This hormone modulates several functions of skeletal muscles, from development to tissue repair after injury, through genomic and non-genomic mechanisms. Vitamin D deficiency and supplementation seem to significantly affect muscle strength in different populations, including athletes, although optimal serum 25(OH)D3 level for sport performance has not been defined so far. Additionally, vitamin D deficiency results in myopathy characterized by fast-twitch fiber atrophy, fatty infiltration, and fibrosis. However, less is known about regenerative effects of vitamin D supplementation after sport-related muscle injuries. Vitamin D receptor (VDR) is particularly expressed in the embryonic mesoderm during intrauterine life and in satellite cells at all stages of life for recovery of the skeletal muscle after injury. Vitamin D supplementation enhances muscle differentiation, growth, and regeneration by increasing the expression of myogenic factors in satellite cells. The objective of this narrative review is to describe the role of vitamin D in sport-related muscle injury and tissue regeneration.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
- Correspondence: ; Tel.: +39-0815665537
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Ombretta Di Munno
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56122 Pisa, Italy;
| |
Collapse
|
12
|
Bishop EL, Gudgeon N, Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones. Front Immunol 2021; 12:653605. [PMID: 33927722 PMCID: PMC8076900 DOI: 10.3389/fimmu.2021.653605] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Dynamic, coordinated changes in metabolic pathway activity underpin the protective and inflammatory activity of T cells, through provision of energy and biosynthetic precursors for effector functions, as well as direct effects of metabolic enzymes, intermediates and end-products on signaling pathways and transcriptional mechanisms. Consequently, it has become increasingly clear that the metabolic status of the tissue microenvironment directly influences T cell activity, with changes in nutrient and/or metabolite abundance leading to dysfunctional T cell metabolism and interlinked immune function. Emerging evidence now indicates that additional signals are integrated by T cells to determine their overall metabolic phenotype, including those arising from interaction with cytokines and hormones in their environment. The impact of these on T cell metabolism, the mechanisms involved and the pathological implications are discussed in this review article.
Collapse
Affiliation(s)
| | | | - Sarah Dimeloe
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Vidal A, Rios R, Pineda C, Lopez I, Raya AI, Aguilera-Tejero E, Rivero JLL. Increased 1,25(OH) 2-Vitamin D Concentrations after Energy Restriction Are Associated with Changes in Skeletal Muscle Phenotype. Nutrients 2021; 13:nu13020607. [PMID: 33673262 PMCID: PMC7918565 DOI: 10.3390/nu13020607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
The influence of energy restriction (ER) on muscle is controversial, and the mechanisms are not well understood. To study the effect of ER on skeletal muscle phenotype and the influence of vitamin D, rats (n = 34) were fed a control diet or an ER diet. Muscle mass, muscle somatic index (MSI), fiber-type composition, fiber size, and metabolic activity were studied in tibialis cranialis (TC) and soleus (SOL) muscles. Plasma vitamin D metabolites and renal expression of enzymes involved in vitamin D metabolism were measured. In the ER group, muscle weight was unchanged in TC and decreased by 12% in SOL, but MSI increased in both muscles (p < 0.0001) by 55% and 36%, respectively. Histomorphometric studies showed 14% increase in the percentage of type IIA fibers and 13% reduction in type IIX fibers in TC of ER rats. Decreased size of type I fibers and reduced oxidative activity was identified in SOL of ER rats. An increase in plasma 1,25(OH)2-vitamin D (169.7 ± 6.8 vs. 85.4 ± 11.5 pg/mL, p < 0.0001) with kidney up-regulation of CYP27b1 and down-regulation of CYP24a1 was observed in ER rats. Plasma vitamin D correlated with MSI in both muscles (p < 0.001), with the percentages of type IIA and type IIX fibers in TC and with the oxidative profile in SOL. In conclusion, ER preserves skeletal muscle mass, improves contractile phenotype in phasic muscles (TC), and reduces energy expenditure in antigravity muscles (SOL). These beneficial effects are closely related to the increases in vitamin D secondary to ER.
Collapse
Affiliation(s)
- Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Rafael Rios
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Lopez
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Correspondence: ; Tel.: +34-957-21-8714
| | - Jose-Luis L. Rivero
- Department of Comparative Anatomy, Pathological Anatomy, and Toxicology, University of Cordoba, 14071 Cordoba, Spain;
| |
Collapse
|