1
|
Chang W, Chen X, Yang Y, Deng Y, Dong L, Wu H. Geomagnetic activity affects animal myocardial ischemia/reperfusion injury: an experimental-simulated study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:731-742. [PMID: 38197985 DOI: 10.1007/s00484-024-02618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Numerous studies have shown that geomagnetic activity (GMA) contributes to the development and escalation of cardiovascular disease (CVD), as well as increased morbidity and mortality. However, the underlying molecular mechanisms and approaches for understanding GMA remain unclear. This study aimed to investigate the impact of GMA on oxidative stress and inflammatory responses. Myocardial ischemia/reperfusion injury (MI/RI) rat models were created under various geomagnetic field conditions. The range of cardiac function, markers of myocardial injury, inflammatory factors, and the TLR4/NF-κB signaling pathway were measured after the 24-h period. The findings showed that weak GMA significantly improved cardiac function in the MI/RI rat model and reduced the size of myocardial infarction and creatine kinase (CK) and lactic dehydrogenase (LDH) levels. Additionally, weak GMA enhanced superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content. Furthermore, weak GMA significantly reduced the levels of the myocardial inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Conversely, the effects observed under severe GMA conditions were opposite to those observed under weak GMA. Western blot and qPCR analysis demonstrated that weak GMA led to a significant downregulation of TLR4, TRAF6, NF-κB, TNF-α, and MCP-1 in the MI/RI rat models. In contrast to weak GMA, severe GMA increased TLR4, TRAF6, NF-κB, and TNF-α expression. This study suggested that weak GMA had a limiting effect on MI/RI rat models, whereas severe GMA exacerbated injury in MI/RI rats. These effects were associated with oxidative stress and inflammatory responses and might potentially involve the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weiyu Chang
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xinli Chen
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yuan Yang
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yanglin Deng
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Liang Dong
- Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216, China
| | - Hui Wu
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
2
|
Islam MS, Islam MM, Rahman MM, Islam K. 4G mobile phone radiation alters some immunogenic and vascular gene expressions, and gross and microscopic and biochemical parameters in the chick embryo model. Vet Med Sci 2023; 9:2648-2659. [PMID: 37725264 PMCID: PMC10650348 DOI: 10.1002/vms3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risks to human health have grown over the past 10 years due to the excessive use of mobile phones. OBJECTIVES The study was designed to determine the harmful effects of 4G mobile phone radiation on the expression of immunogenic and vascular genes and gross, microscopic and biochemical alterations in the development of chicken embryos. METHODS Sixty individuals in the exposure group were subjected to mobile phones with a specific absorption rate of 1.4 W/kg and a frequency of 2100 MHz positioned at a distance of 12 cm in the incubator for 60 min/night for 14 days. The histopathological examination involved hematoxylin and eosin staining, whereas cresyl violet staining was used to evaluate the condition and number of neurons in the brain. The biochemical parameters of amniotic fluid were analysed using the photometry method, and the expression of VEGF-A and immunity genes (AvBD9, IL6) was measured using the real-time PCR (qPCR) technique. RESULTS Compared to the control, the exposure group's body weight and length significantly decreased (p < 0.05). Subcutaneous bleeding was seen in the exposure group. Urea, creatinine, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase levels were all significantly higher than in the control group (p < 0.05). The exposed group showed pathological lesions in the liver and degenerated neurons with lightly stained nuclei in the cerebral cortex. Hyperchromatic neurons were significantly higher in the exposure group (58.8 ± 2.28) compared to the control (6.6 ± 0.44) (p < 0.05). 4G exposure reduced lymphocyte count in the caecal tonsil (86.8 ± 5.38) compared to the control (147.2 ± 9.06) (p < 0.05). Vascular gene mRNA expression was higher, but immune gene expression was lower in the exposed group. CONCLUSION Exposure to mobile phone radiation may result in gross, microscopic and biochemical changes, as well as alterations in gene expression that could hinder embryonic development.
Collapse
Affiliation(s)
- Md. Sadequl Islam
- Department of Anatomy and HistologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Mominul Islam
- Department of Pathology and ParasitologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Moshiur Rahman
- Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Khaleda Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
3
|
Yousif Al-Fatlawi AC. Evaluation of the effects of mobile phone electromagnetic radiation on some physiological parameters and histological structure in some laboratory male mice organs. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, the researcher has shown great interest in Electromagnetic radiation released from different devices such as TV, microwaves, medical apparatus, and satellites because of its effect on animals' growth and health. Exposure to "EMR" from mobiles phone can cause adverse effects on different cell functions. This study aimed to evaluate the effects of these radiations on histological and some blood parameters. The present study used 20 mice divided into two groups, the first one contains five animals as control, and the second experiment group contains 15 animals. EMR exposed from mobile for 12 h\day for one month. Histological examination of lungs, hearts and spleen showed a dramatic effect in these organs, such as necrosis, congestion, infiltrations, edema, splitting of muscle bundles and degenerations. This study shows that radiation from mobile phones contributes to histological changes in various visceral organs. Blood parameters showed a significant increase in platelets, bleeding and clotting time compared to the control group. The effect of EMR (Electromagnetic Radiation) on histology related to free radicals, increased lipid peroxidation in the cell membrane, and change in electrolyte concentration. An increase in platelets, bleeding and clotting time can also affect the rise in body temperature, ions and stimulations of stem cell divisions.
Keywords: electromagnetic radiations, mice, physiology, histology, mobile phone.
Collapse
|
4
|
Elamin AAE, Deniz OG, Kaplan S. The effects of Gum Arabic, curcumin (Curcuma longa) and Garcinia kola on the rat hippocampus after electromagnetic field exposure: A stereological and histological study. J Chem Neuroanat 2022; 120:102060. [PMID: 34915150 DOI: 10.1016/j.jchemneu.2021.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The present study was designed to focus on the potential effects of the electromagnetic field (EMF) emitted by mobile phones on hippocampal pyramidal neurons and to investigate the role of curcumin (Cur), Garcinia kola (GK) and Gum Arabic (GA) in reducing these adverse effects. Fifty-four 12-week-old male Wistar albino rats were used. These were randomly divided into nine groups of six rats each. The control, Cur, GK and GA groups were not exposed to EMF, while the sham group was kept in the EMF exposure system without being exposed to EMF. The EMF+Cur, EMF+GK, EMF+GA and EMF groups were exposed to 900 MHz EMF for one hour a day for 28 days. The number of the pyramidal neurons in the cornu ammonis (CA) of the hippocampus was estimated using the optical fractionator technique. Histopathological changes were evaluated under light and electron microscopes. The activities of the superoxide dismutase (SOD) and catalase (CAT) enzymes were also evaluated from serum samples. Significant levels of CAT and SOD activities were observed in the EMF group compared to the control group (p = 0.000; p = 0.001) respectively. Microscopic observations showed that dark-coloured nuclei with unclear neuron boundaries were frequently observed in the EMF group. Stereological data analysis revealed a significant decrease in the CA's total number of pyramidal neurons in the EMF group compared to the control and sham groups (p = 0.000; p = 0.000) respectively. Cur and GK were observed to provide significant protection in the EMF+Cur and EMF+GK groups compared to the EMF group (p = 0.000; p = 0.000) respectively. No significant difference was observed between the EMF+GA group and EMF group (p = 0.989). Exposure to 900 MHz EMF causes severe alterations in the number and structure of hippocampal pyramidal neurons. Cur and GK exhibit a protective effect against these deleterious effects, but GA showed no protective effect.
Collapse
Affiliation(s)
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
5
|
Hasan I, Rubayet Jahan M, Nabiul Islam M, Rafiqul Islam M. Effect of 2400 MHz mobile phone radiation exposure on the behavior and hippocampus morphology in Swiss mouse model. Saudi J Biol Sci 2022; 29:102-110. [PMID: 35002399 PMCID: PMC8716897 DOI: 10.1016/j.sjbs.2021.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mir Rubayet Jahan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
6
|
Islam MR, Hasan I, Monisha NZ, Afrin M. Gross and Histomorphological Study of the Ovary and Oviduct of Turkey Hen with Especial Emphasis on the Sperm-Host Gland. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i1.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Turkey bird is one of the popular poultry species which is reared primarily for meat production and considered as one of the major sources of animal protein. With such importance of this species, this study was designed to investigate the gross and histomorphology of the ovary and oviduct with especial emphasis on sperm-host glands of the turkey hen involving ten mature female turkeys (Meleagris gallopavo). The present study highlighted the distribution pattern of sperm-host glands (SHGs) in the oviduct of turkey hen that has a potential role in producing a fertile egg in poultry industries. The oviduct of turkey consists of the infundibulum, magnum, isthmus, uterus, and vagina which are sole distributors for making nutrition enriched egg. The tissue samples were collected from the ovary, different segments of the oviduct and especially uterovaginal junction (UVJ) and infundiomagnal junction of the oviduct. The ovaries and the oviducts were dissected and fixed in Bouins solution and processed for a light microscopic study. Histologically, the left ovary of turkey consisted of an outer cortex and inner medulla, with different stages of follicles. In all areas of the oviduct except the infundibulum and vagina, the tunica mucosa epithelium was lined with ciliated pseudo stratified columnar epithelium, and the lamina propria-submucosa contained branched tubular glands. Sperm-storage tubules were observed in the uterovaginal junction and infundibulo-magnum junction. These tubules were mostly branched, slightly coiled and extended into the lamina propria from the bases of the mucosal folds. These glands had proximal and distal parts; the proximal part was lined by pseudostratified columnar epithelium and distal part by non-ciliated simple columnar epithelium. The number of sperm host glands was more at uterovaginal junction than infundibulomagnal junction. The sperm-host glands might play a functional role in the storage and release of spermatozoa from the SHGs in response to oviposition or ovulation. The results would help poultry scientists and farmers in developing effective disease control and growth strategies.
Collapse
|
7
|
Georgiou CD, Margaritis LH. Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. Int J Mol Sci 2021; 22:10041. [PMID: 34576203 PMCID: PMC8470280 DOI: 10.3390/ijms221810041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.
Collapse
Affiliation(s)
- Christos D. Georgiou
- Department of Biology, Section of Genetics, Cell & Developmental Biology, University of Patras, 10679 Patras, Greece;
| | - Lukas H. Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 26504 Athens, Greece
| |
Collapse
|
8
|
Kim K, Lee YS, Kim N, Choi HD, Kang DJ, Kim HR, Lim KM. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int J Mol Sci 2020; 22:E170. [PMID: 33375304 PMCID: PMC7794711 DOI: 10.3390/ijms22010170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE- or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Pharmacy, Ewha Womans University, Seodaemungu, Seoul 03760, Korea;
| | - Young Seung Lee
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Yuseong-gu, Daejeon 34129, Korea; (Y.S.L.); (H.-D.C.)
| | - Nam Kim
- Department of Computer and Communication Engineering, Chungbuk National University, Seowon-gu, Cheongju 28644, Korea;
| | - Hyung-Do Choi
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Yuseong-gu, Daejeon 34129, Korea; (Y.S.L.); (H.-D.C.)
| | - Dong-Jun Kang
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea; (D.-J.K.); (H.R.K.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea; (D.-J.K.); (H.R.K.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seodaemungu, Seoul 03760, Korea;
| |
Collapse
|
9
|
Study the relationship of endothelial damage / dysfunction due to occupational exposure to low dose ionizing radiation versus high dose exposure during radiotherapy. Cancer Treat Res Commun 2020; 25:100215. [PMID: 33091734 DOI: 10.1016/j.ctarc.2020.100215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular injuries caused by irradiation include acute vasculitis with neutrophil invasion, endothelial cell (EC) swelling, capillary loss, and activation of coagulator mechanisms, along with local ischemia and fibrosis. The circulating endothelial cells (CECs), increase dramatically in diseases with vascular damage. AIM The aim of this study is to provide data on the endothelial dysfunction due to occupational exposure to low dose ionizing radiation versus high dose exposure during radiotherapy (RT). PATIENTS AND METHODS This study included 100 subjects divided into three main groups: Group I: High dose exposure group: 50 breast cancer patients treated with post-operative radiotherapy. Group II: Low dose exposure group: 25 hospital radiation workers. Group III: 25 healthy volunteers' age and sex matched as control group who had never worked in radiation-related jobs. TM levels measured by enzyme linked immunosorbent assay (ELISA). Circulating endothelial cells (CEC) enumerated in peripheral blood by flow cytometric analysis of their signature receptor CD146. RESULTS % CD146+ cells and plasma TM were significantly increased in radiation workers and after exposure to radiotherapy treatment in breast cancer patients. When comparing patients group with radiation workers group, we found significant elevation in plasma TM in radiation workers while insignificant difference was found in % CD146+ cells. CONCLUSION CECs and plasma TM both are increased in radiation workers and patients treated with radiotherapy. They may constitute valuable markers of endothelial injury. Workers exposed to low doses of ionizing radiation may develop significant endothelial dysfunction predisposes them to cardiovascular complications namely thrombosis, mostly due to oxidative stress among other causes.
Collapse
|
10
|
Er H, Basaranlar G, Ozen S, Demir N, Kantar D, Yargicoglu P, Derin N. The effects of acute and chronic exposure to 900 MHz radiofrequency radiation on auditory brainstem response in adult rats. Electromagn Biol Med 2020; 39:374-386. [PMID: 32865045 DOI: 10.1080/15368378.2020.1813159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the effects of short and long-term RFR exposure on ABR by evaluating lipid peroxidation and antioxidant status in adult rats. Sixty male albino Wistar rats were randomly divided into four groups. S1:1 week sham, S10:10 weeks sham, E1:1 week RFR, E10:10 weeks RFR. Experimental group rats were exposed to RFR 2 h/day, 5 days/week during the test period. Sham rats were kept in the same conditions without RFR. After the experiment, ABRs were recorded from the mastoids of rats using tone burst acoustic stimuli. Biochemical investigations in rat brain and ultrastructural analysis in temporal cortex were performed. ABR wave I latency prolonged in E1-group and shortened in E10-group compared to their shams. TBARS level increased in E1-group, decreased in E10-group, on the contrary, SOD and CAT activities and GSH level decreased in E1-group, increased in E10-group compared to their sham groups. Edema was present in the neuron and astrocyte cytoplasms and astrocyte end-feet in both E1 and E10 groups. Our results suggest that 900 MHz RFR may have negative effects on the auditory system in acute exposure and no adverse effects in chronic exposure without weekends.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey.,Electron Microscopy Image Analyzing Unit, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Goksun Basaranlar
- Department of Biophysics, Institute of Health Sciences, Akdeniz University , Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University , Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| |
Collapse
|
11
|
Asl JF, Goudarzi M, Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep 2020; 72:857-866. [PMID: 32128712 DOI: 10.1007/s43440-020-00063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rosmarinus officinalis L. is an aromatic perennial herb from which rosmarinic acid (RA) can be extracted. This research was conducted to assess the effectiveness of RA against radio frequency (RF) radiation-induced oxidative stress due to 915 MHz (mobile phone) and 2450 MHz (Wi-Fi) frequencies in rats. METHODS The animals were separated into six groups, including group 1 receiving normal saline (NS), group 2 (NS/Wi-Fi) and group 4 (NS/mobile), which received NS plus 60 min/day of exposure to the electromagnetic radiation (EMR) for 1 month, group 3 (RA/Wi-Fi) and group 5 (RA/mobile) received RA (20 mg/kg/day, po) plus 60 min/day of EMR, and group 6 (RA) received only RA. RESULTS There was a significant elevation of protein carbonylation (PC), nitric oxide (NO) and malondialdehyde (MDA) and significant reduction in glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) in the RF radiation-exposed rats' brain compared to the control group. RA reduced the levels of NO, PC and MDA and it also elevated the TAC, GPx, SOD, CAT and GSH levels in the rats' brains in the RA/Wi-Fi and RA/mobile groups compared to the NS/Wi-Fi and NS/mobile groups, respectively. CONCLUSION It can be concluded that RA can be considered a useful candidate for protecting brain tissues against RF radiation-induced oxidative stress at 915 and 2450 MHz frequencies through ameliorative effects on the antioxidant enzyme activities and oxidative stress indices.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiologic Technology, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Shoghi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Stein Y, Udasin IG. Electromagnetic hypersensitivity (EHS, microwave syndrome) - Review of mechanisms. ENVIRONMENTAL RESEARCH 2020; 186:109445. [PMID: 32289567 DOI: 10.1016/j.envres.2020.109445] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Electromagnetic hypersensitivity (EHS), known in the past as "Microwave syndrome", is a clinical syndrome characterized by the presence of a wide spectrum of non-specific multiple organ symptoms, typically including central nervous system symptoms, that occur following the patient's acute or chronic exposure to electromagnetic fields in the environment or in occupational settings. Numerous studies have shown biological effects at the cellular level of electromagnetic fields (EMF) at magnetic (ELF) and radio-frequency (RF) frequencies in extremely low intensities. Many of the mechanisms described for Multiple Chemical Sensitivity (MCS) apply with modification to EHS. Repeated exposures result in sensitization and consequent enhancement of response. Many hypersensitive patients appear to have impaired detoxification systems that become overloaded by excessive oxidative stress. EMF can induce changes in calcium signaling cascades, significant activation of free radical processes and overproduction of reactive oxygen species (ROS) in living cells as well as altered neurological and cognitive functions and disruption of the blood-brain barrier. Magnetite crystals absorbed from combustion air pollution could have an important role in brain effects of EMF. Autonomic nervous system effects of EMF could also be expressed as symptoms in the cardiovascular system. Other common effects of EMF include effects on skin, microvasculature, immune and hematologic systems. It is concluded that the mechanisms underlying the symptoms of EHS are biologically plausible and that many organic physiologic responses occur following EMF exposure. Patients can have neurologic, neuro-hormonal and neuro-psychiatric symptoms following exposure to EMF as a consequence of neural damage and over-sensitized neural responses. More relevant diagnostic tests for EHS should be developed. Exposure limits should be lowered to safeguard against biologic effects of EMF. Spread of local and global wireless networks should be decreased, and safer wired networks should be used instead of wireless, to protect susceptible members of the public. Public places should be made accessible for electrohypersensitive individuals.
Collapse
Affiliation(s)
- Yael Stein
- Pain Clinic, Department of Anesthesiology and Critical Care Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; Electromagnetic Radiation Clinic, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Iris G Udasin
- EOHSI Clinical Center, Rutgers University- School of Public Health, NJ, USA
| |
Collapse
|
13
|
Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem 2020; 122:151467. [PMID: 31784235 DOI: 10.1016/j.acthis.2019.151467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Long-term use of cell phones emitting electromagnetic fields (EMFs) have raised concerns regarding public health in recent year. We aimed to investigate the possible effects of 900 MHz EMF exposure (60 min/day for 28 days) on the rat testis. Another objective was to determine whether the deleterious effect of EMF radiation would be reduced by the administration of thymoquinone (TQ) (10 mg/kg/day). Twenty-four male adult Wistar albino rats were randomly selected, then assigned into four groups as followControl, EMF, TQ and EMF + TQ. Testicular samples were analyzed using histological, stereological, biochemical and immunohistochemical techniques. Total numbers of primary spermatocytes and spermatids as well as Leydig cells were significantly decreased in the EMF group compared to the Control group (p < 0.05). In the EMF + TQ group, the total number of primary spermatocytes was significantly increased compared to the EMF group (p < 0.05). Superoxide dismutase (SOD) activity was significantly increased in the EMF group compared to the Control group (p < 0.05). Also, serum testosterone levels and wet weight of testes were significantly decreased in the EMF group compared to the Control group (p < 0.05). Our findings suggested that exposure to a 900 MHz EMF had adverse effects on rat testicular tissue and that the administration of TQ partially mitigated testicular oxidative damages caused by EMF radiation.
Collapse
|
14
|
Houston BJ, Nixon B, McEwan KE, Martin JH, King BV, Aitken RJ, De Iuliis GN. Whole-body exposures to radiofrequency-electromagnetic energy can cause DNA damage in mouse spermatozoa via an oxidative mechanism. Sci Rep 2019; 9:17478. [PMID: 31767903 PMCID: PMC6877509 DOI: 10.1038/s41598-019-53983-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Artificially generated radiofrequency-electromagnetic energy (RF-EME) is now ubiquitous in our environment owing to the utilization of mobile phone and Wi-Fi based communication devices. While several studies have revealed that RF-EME is capable of eliciting biological stress, particularly in the context of the male reproductive system, the mechanistic basis of this biophysical interaction remains largely unresolved. To extend these studies, here we exposed unrestrained male mice to RF-EME generated via a dedicated waveguide (905 MHz, 2.2 W/kg) for 12 h per day for a period of 1, 3 or 5 weeks. The testes of exposed mice exhibited no evidence of gross histological change or elevated stress, irrespective of the RF-EME exposure regimen. By contrast, 5 weeks of RF-EME exposure adversely impacted the vitality and motility profiles of mature epididymal spermatozoa. These spermatozoa also experienced increased mitochondrial generation of reactive oxygen species after 1 week of exposure, with elevated DNA oxidation and fragmentation across all exposure periods. Notwithstanding these lesions, RF-EME exposure did not impair the fertilization competence of spermatozoa nor their ability to support early embryonic development. This study supports the utility of male germ cells as sensitive tools with which to assess the biological impacts of whole-body RF-EME exposure.
Collapse
Affiliation(s)
- Brendan J Houston
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Kristen E McEwan
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Bruce V King
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
15
|
Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30693-30710. [PMID: 31463749 DOI: 10.1007/s11356-019-06278-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, PO Box 11172, Ras Al Khaimah, UAE.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions-Jeddah, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P. O. Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia
| | - Satheesha B Nayak
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, 576104, India
| | - P Gopalakrishna Bhat
- Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
16
|
Luna J, Leleu JP, Preux PM, Corcia P, Couratier P, Marin B, Boumediene F. Residential exposure to ultra high frequency electromagnetic fields emitted by Global System for Mobile (GSM) antennas and amyotrophic lateral sclerosis incidence: A geo-epidemiological population-based study. ENVIRONMENTAL RESEARCH 2019; 176:108525. [PMID: 31226626 DOI: 10.1016/j.envres.2019.108525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown etiology. Mobile communication antennas have increased over the last few decades. Consequently, there has been a steady increase in environmental exposure to ultra high frequency electromagnetic fields (UHF-EMFs) emitted by Global System for Mobile (GSM) communication antennas, which raises concerns about possible health risks in the general population. We aimed to evaluate the relationship between residential exposure to UHF-EMFs generated by GSM antennas and the risk of ALS in general population. A geo-epidemiological population-based study was performed in Limousin (France). ALS incident cases were identified through a register (FRALim, 2000-2012 period). A model to estimate UHF-EMF exposure was developed based on the distance and the power of GSM antennas. Exposure to multiple emissions from multiple directions was considered. A non-cumulative and a cumulative model were established. A geographic information system integrated the raster model of exposure, and the residential distribution of observed and expected cases. A generalized linear model was performed to test the association. Overall, 312 ALS cases were included. We estimated exposures below 1.72 V/m in urban areas and below 1.23 V/m in rural areas for 90% of the population. A gradient effect between UHF-EMF exposure and ALS incidence was apparent with a statistically significant trend. A significant increased risk of ALS was observed between the non-exposure category and the highest exposure category, with a relative risk of 1.78 (95% CI: 1.28-2.48) in the non-cumulative model and 1.83 (95% CI: 1.32-2.54) in the cumulative model. Our results suggest a possible association between residential UHF-EMF exposure and ALS. Ecological studies are a means of generating hypotheses. Further studies are needed to clarify the potential role of EMFs on neurodegeneration.
Collapse
Affiliation(s)
- Jaime Luna
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; Univ. Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France.
| | - Jean-Philippe Leleu
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; Univ. Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France
| | - Pierre-Marie Preux
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; Univ. Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France; CHU Limoges, Centre d'Epidémiologie de Biostatistique et de Méthodologie de la Recherche, Limoges, France
| | - Philippe Corcia
- Centre de compétence SLA-fédération Tours-Limoges, CHU de Tours, 37044 Tours cedex 9, France
| | - Philippe Couratier
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; CHU Limoges, Service de Neurologie, Centre expert ALS, Limoges, France
| | - Benoit Marin
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; Univ. Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France; CHU Limoges, Centre d'Epidémiologie de Biostatistique et de Méthodologie de la Recherche, Limoges, France
| | - Farid Boumediene
- INSERM, U1094, Tropical Neuroepidemiology, Limoges, France; Univ. Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France.
| |
Collapse
|
17
|
von Niederhäusern N, Ducray A, Zielinski J, Murbach M, Mevissen M. Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol In Vitro 2019; 61:104609. [PMID: 31351122 DOI: 10.1016/j.tiv.2019.104609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
Abstract
Exposure to radiofrequency electromagnetic fields (RF-EMF) has dramatically increased in the last decades with expanding use of mobile phones worldwide. The aim of this study was to evaluate effects of RF-EMF on neuronal differentiation and underlying signaling pathways involved in neuronal differentiation, neurodegeneration, and mitochondrial function. Differentiation of SH-SY5Y cells was performed using all-trans retinoic acid or staurosporine to obtain cholinergic and dopaminergic neurons. Exposure of SH-SY5Y cells at 935 MHz, 4 W/kg for 24 h did not alter the neuronal phenotypes quantitatively. Markers of the signaling pathways investigated, namely the mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (Erk) 1 and 2 (p-Erk1/2) and protein kinase B (Akt), glycogen synthase kinase 3 β (GSK3β) and Wnt/β-catenin were not significantly affected by RF-EMF compared to sham. RF-EMF-impaired mitochondrial respiration in cells under glucose deprivation, but glutathione levels and mitochondrial fission and fusion markers were not altered. These findings indicate that RF-EMF might lead to an impairment of mitochondrial function that is only manifest at maximal respiration and additional stressors such as glucose deprivation. Further research is needed to investigate the effects of RF-EMF on mitochondrial function in detail because mitochondrial impairment is closely related to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole von Niederhäusern
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Angélique Ducray
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Jana Zielinski
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Manuel Murbach
- IT'IS Foundation, Zeughausstrasse 43, 8004 Zurich, Switzerland.
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| |
Collapse
|
18
|
Marzook EA, Abd El Moneim AE, Elhadary AA. Protective role of sesame oil against mobile base station-induced oxidative stress. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ebtisam A. Marzook
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Ahmed E. Abd El Moneim
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Abdelmonsef A. Elhadary
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Yahyazadeh A, Altunkaynak BZ. Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotech Histochem 2019; 94:298-307. [DOI: 10.1080/10520295.2019.1566568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- A. Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - B. Z. Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, Okan University, Istanbul, Turkey
| |
Collapse
|
20
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
21
|
Diab KA. The Impact of the Low Frequency of the Electromagnetic Field on Human. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:135-149. [PMID: 31376139 DOI: 10.1007/5584_2019_420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, there has been attention and controversial debate topic about the effect of low-frequency electromagnetic fields (EMFs) on human beings. The catalyst for public awareness initiated from the first epidemiological study in 1979 that reported an association between residential EMFs exposure and the incidence of childhood leukemia. For over 40 years, many epidemiological and laboratory investigations were conducted to identify the possible biological effects of low-frequency EMF. Several studies conducted at frequencies 50/60 Hz, which related to generating of electricity from electrical appliances. Experimental studies on low-frequency EMF have provided conflicting data under specific "in vivo" and "in vitro" environments. Some original papers have reported the damaging effect on DNA molecule in EMF-exposed cells. Other studies have suggested no such damage in EMF-exposed cells. Also, the conclusions from other studies were inconclusive. These conflicting findings may attribute to the differences in the apparatus used to generate electromagnetic fields, experimental design, exposure time, genetic endpoints, and biological materials such as cell lines and animal species, strain, and age. As DNA damage is frequently a prerequisite for cancer disease, this review provided an experimental body of evidence on the effect of EMF on genetic material.
Collapse
Affiliation(s)
- Kawthar A Diab
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Cairo, Egypt.
| |
Collapse
|
22
|
Sudan M, Birks LE, Aurrekoetxea JJ, Ferrero A, Gallastegi M, Guxens M, Ha M, Lim H, Olsen J, González-Safont L, Vrijheid M, Kheifets L. Maternal cell phone use during pregnancy and child cognition at age 5 years in 3 birth cohorts. ENVIRONMENT INTERNATIONAL 2018; 120:155-162. [PMID: 30096609 DOI: 10.1016/j.envint.2018.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND There have been few studies of children's cognitive development in relation to mothers' cell phone use, and most were limited to outcomes at age 3 years or younger. We examined the relationship between maternal cell phone use during pregnancy and cognitive performance in 5-year old children. METHODS This study included data from 3 birth cohorts: the Danish National Birth Cohort (DNBC) (n = 1209), Spanish Environment and Childhood Project (INMA) (n = 1383), and Korean Mothers and Children's Environment Health Study (MOCEH) (n = 497). All cohorts collected information about maternal cell phone use during pregnancy and cognitive performance in children at age 5. We performed linear regression to compute mean differences (MD) and 95% confidence intervals (CI) in children's general, verbal, and non-verbal cognition scores comparing frequency of maternal prenatal cell phone use with adjustments for numerous potential confounding factors. Models were computed separately for each cohort and using pooled data in meta-analysis. RESULTS No associations were detected between frequency of prenatal cell phone use and children's cognition scores. Scores tended to be lower in the highest frequency of use category; MD (95% CI) in general cognition scores were 0.78 (-0.76, 2.33) for none, 0.11 (-0.81, 1.03) for medium, and -0.41 (-1.54, 0.73) for high compared to low frequency of use. This pattern was seen across all cognitive dimensions, but the results were imprecise overall. CONCLUSION We observed patterns of lower mean cognition scores among children in relation to high frequency maternal prenatal cell phone use. The causal nature and mechanism of this relationship remain unknown.
Collapse
Affiliation(s)
- Madhuri Sudan
- Department of Epidemiology, School of Public Health, University of California, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Danish Epidemiology Science Centre, Department of Public Health, Aarhus University, 8000 Aarhus, Denmark; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA.
| | - Laura Ellen Birks
- ISGlobal Barcelona Institute for Global Health, Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, Carrer Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Madrid, Spain
| | - Juan J Aurrekoetxea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Madrid, Spain; BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| | - Amparo Ferrero
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avinguda Catalunya, 21, 46020 València, Spain
| | - Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain
| | - Mònica Guxens
- ISGlobal Barcelona Institute for Global Health, Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, Carrer Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Wytemaweg 80, 3015, CN, Rotterdam, the Netherlands
| | - Mina Ha
- Department of Preventive Medicine, Dankook University, College of Medicine, 119 Dandae-ro, Dongnam-gu, Cheonan, Republic of Korea
| | - Hyungryul Lim
- Department of Preventive Medicine, Dankook University, College of Medicine, 119 Dandae-ro, Dongnam-gu, Cheonan, Republic of Korea
| | - Jorn Olsen
- Danish Epidemiology Science Centre, Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Llúcia González-Safont
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avinguda Catalunya, 21, 46020 València, Spain; Predepartamental unit of Medicine, Universitat Jaume I, Avinguda Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Martine Vrijheid
- ISGlobal Barcelona Institute for Global Health, Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, Carrer Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Madrid, Spain
| | - Leeka Kheifets
- Department of Epidemiology, School of Public Health, University of California, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
24
|
Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. J Chem Neuroanat 2018; 91:1-7. [DOI: 10.1016/j.jchemneu.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
|
25
|
Hidisoglu E, Kantar-Gok D, Ozen S, Yargicoglu P. Short-term 2.1 GHz radiofrequency radiation treatment induces significant changes on the auditory evoked potentials in adult rats. Int J Radiat Biol 2018; 94:858-871. [DOI: 10.1080/09553002.2018.1492166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Enis Hidisoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar-Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Engineering Faculty, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
26
|
Hancı H, Kerimoğlu G, Mercantepe T, Odacı E. Changes in testicular morphology and oxidative stress biomarkers in 60-day-old Sprague Dawley rats following exposure to continuous 900-MHz electromagnetic field for 1 h a day throughout adolescence. Reprod Toxicol 2018; 81:71-78. [PMID: 30009952 DOI: 10.1016/j.reprotox.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 07/26/2017] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the 60-day-old male rat testis following exposure to continuous 900-megahertz (MHz) electromagnetic field (EMF) throughout the adolescent period using histopathological and biochemical analysis methods. Twenty-four Sprague Dawley rats aged 21 days were randomly and equally (n = 8) divided into three groups. No procedure was performed on the control group rats. The sham group rats were held in an EMF-cage without exposure to EMF. The EMF group rats were exposed to continuous 900-MHz EMF for 1 h each day inside the EMF-cage during adolescence. On postnatal day 60 the testes were extracted and divided into right and left halves. The right half was used for histopathological evaluation and the left half for biochemical analyses. Our results show that changes may occur in morphology and oxidative stress biomarkers in the rat testis following exposure to continuous 900-MHz EMF throughout the adolescent period.
Collapse
Affiliation(s)
- Hatice Hancı
- Department of Histology and Embryology, Karadeniz Technical University, Faculty of Medicine, TR-61080 Trabzon, Turkey.
| | - Gökçen Kerimoğlu
- Department of Histology and Embryology, Karadeniz Technical University, Faculty of Medicine, TR-61080 Trabzon, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, TR-53100 Rize, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Karadeniz Technical University, Faculty of Medicine, TR-61080 Trabzon, Turkey
| |
Collapse
|
27
|
López-Furelos A, Salas-Sánchez AA, Ares-Pena FJ, Leiro-Vidal JM, López-Martín E. Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line. Int J Radiat Biol 2018; 94:607-618. [PMID: 29659305 DOI: 10.1080/09553002.2018.1465610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study was to determine whether exposure to radiation from single or multiple radio-frequency (RF) signals at 900 and 2450 MHz would induce effects in the RAW 264.7 cell line. MATERIALS AND METHODS Cell cultures were exposed to single or combined RF for 4, 24, 48, or 72 h in a GTEM electromagnetic test chamber. At the end of the radiation exposure time, viability and cell growth were analyzed by flow cytometry, nitric oxide (NO) production was measured by colorimetry, the expression of HSP70 and TNF-α was ascertained by qPCR, and the phagocytic activity was observed by microscopy. RESULTS NO production increased after 48 h exposure at 2450 MHz, compared with controls. The group subjected to the combined interaction of two RFs showed an increase of HSP70 after 48 h exposure and a significant increase of NO and TNF-α after 72 h. The phagocytic activity of macrophages decreased in all groups as exposure time increased. CONCLUSIONS Our results indicated a decrease in phagocytic activity and an increase in inflammatory, cytoprotective, and cytotoxic responses in macrophages after continuous and combined exposure of multiple RF signals. Multiple RF interact in everyday life, the immune response in humans is unknown.
Collapse
Affiliation(s)
- Alberto López-Furelos
- a Department of Morphological Sciences , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Aarón A Salas-Sánchez
- b Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Francisco J Ares-Pena
- b Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - José M Leiro-Vidal
- c Institute of Alimentary Analysis , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Elena López-Martín
- a Department of Morphological Sciences , University of Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
28
|
Khedr MH, Shafaa MW, Abdel-Ghaffar A, Saleh A. Radioprotective efficacy of Ginkgo biloba and Angelica archangelica extract against technetium-99m-sestamibi induced oxidative stress and lens injury in rats. Int J Radiat Biol 2017; 94:37-44. [DOI: 10.1080/09553002.2018.1407463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mahmoud H. Khedr
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat W. Shafaa
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Ahmed Saleh
- Exploratory Center for Science and Technology, Cairo, Egypt
| |
Collapse
|
29
|
Magnetic Fields and Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18102175. [PMID: 29057846 PMCID: PMC5666856 DOI: 10.3390/ijms18102175] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Collapse
|
30
|
Kivrak EG, Altunkaynak BZ, Alkan I, Yurt KK, Kocaman A, Onger ME. Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. J Microsc Ultrastruct 2017; 5:216-224. [PMID: 30023257 PMCID: PMC6025788 DOI: 10.1016/j.jmau.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
The radiation emitted from mobile phones has various deleterious effects on human health. This study was conducted to evaluate the effects of exposure to the 900-MHz radiation electromagnetic fields (EMF) emitted by mobile phones on Ammon's horn and the dentate gyrus (DG) in the hippocampus and cerebellum of male Wistar albino rats. We also investigated the neuroprotective effects of the antioxidants Boswellia sacra (BS) and folic acid (FA) against exposure to EMF. Twenty-four adult male rats were randomly divided into four groups of six animals each, an EMF group, an EMF + FA exposure group (EFA), an EMF + BS exposure group (EBS) and a control group (Cont). The EMF, EFA and EBS groups were exposed to 900-MHz EMF radiation inside a tube once daily over 21 days (60 min/day). The Cont group was not exposed to 900-MHz EMF. The results showed that EMF caused a significant decrease in total pyramidal and granular cell numbers in the hippocampus, and DG and in Purkinje cell numbers in the cerebellum in the EMF group compared to the other groups (p < 0.05). BS and FA attenuated the neurodegenerative effects of EMF in the hippocampus and cerebellum. Significant differences were also determined between the numbers of neurons in the EFA and EMF groups, and between the EBS and EMF groups (p < 0.05). However, there were no significant differences among Cont, EFA and EBS (p > 0.05). Our results may contribute to ongoing research into the effects of 900-MHz EMF exposure. Abbreviations: BS, Boswellia sacra; CA, cornu ammonis; CAT, catalase; CE, coefficient of error; CV, coefficient of variation; DG, dentate gyrus; DNA, deoxyribonucleic acid; EMF, electromagnetic field; EBS, the group that is exposed to EMF and received a single daily gavage of BS (500 mg/kg/day) during 21 days; EEG, electroencephalogram; EFA, the group that is exposed to EMF and received a single daily gavage of folic acid (50 mg/kg/day) during 21 days; FA, folic acid; gr, granular layer; H2O2, hydrogen peroxide; MHz, Megahertz; ml, molecular layer; RF, radiofrequency; ROS, reactive oxygen specimens; SEM, standard error of the mean.
Collapse
Affiliation(s)
- Elfide Gizem Kivrak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Isinsu Alkan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kiymet Kubra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Kocaman
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Emin Onger
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
31
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
32
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
33
|
Nikzad S, Mahmoudi G, Amini P, Baradaran-Ghahfarokhi M, Vahdat-Moaddab A, Sharafi SM, Hojaji-Najafabadi L, Hosseinzadeh A. Effects of radiofrequency radiation in the presence of gold nanoparticles for the treatment of renal cell carcinoma. J Renal Inj Prev 2017; 6:103-108. [PMID: 28497084 PMCID: PMC5423275 DOI: 10.15171/jrip.2017.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 01/13/2023] Open
Abstract
Introduction: The most common type of kidney cancer is renal cell carcinoma (RCC), which accounts for more than 80% of all kidney cancers.
Objectives: The aim of this study was to evaluate the effects of radiofrequency (RF) radiation in the presence of gold nanoparticles (GNPs) for the treatment of RCC.
Materials and Methods: Human embryonic kidney (HEK) cancer cells were divided into 6 groups. Various tests were performed on HEK cells in the presence of RF and GNPs. In order to investigate the radiation effects on the cells’ survival, MTT [3-(4,5-dimethylthiazol–2-yl)-2,5-iphenyltetrazolium bromide] assay was performed at different days during and post-irradiation period. The repeated measure analysis of variance (ANOVA) method was used for statistical analysis of the cells’ survival using SPSS version 16.0. A significant level of 0.05 was considered to the tests.
Results: Using the ANOVA test, a significant decrease in cell’s survival was seen in the RF exposed group 3 compared to the control group (P=0.035). While, differences were not significant between RF exposed group 2 and the control group (P>0.05). A significant decrease in cell’s survival in the RF exposed groups 5 (P=0.025) and 6 (P=0.018) at the presence of GNP compared to the control group was seen.
Conclusion: Results of this study showed that, this method can be efficiently used for RCC treatment as an alternative to nephrectomy. More follow up in vivo studies on mammalians are needed to investigate the potential of the presented method for clinical applications.
Collapse
Affiliation(s)
- Safoora Nikzad
- Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Golshan Mahmoudi
- Medical Physics Department, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Payam Amini
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Milad Baradaran-Ghahfarokhi
- Department of Medical Physics and Medical Engineering & Students Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Medical Radiation Engineering, Faculty of Advanced Sciences & Technologies, Isfahan University, Isfahan, Iran
| | | | - Seyedeh Maryam Sharafi
- Infectious Disease and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Hojaji-Najafabadi
- Nanotechnology Department, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan, Iran
| | - Ali Hosseinzadeh
- Research Center for Modeling in Health, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, and, Epidemiology and Biostatistics Department, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
34
|
Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice. Sci Rep 2017; 7:44521. [PMID: 28303965 PMCID: PMC5355939 DOI: 10.1038/srep44521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests that exposure to radiofrequency electromagnetic radiation (RF-EMR) can influence learning and memory in rodents. In this study, we examined the effects of single exposure to 1.8 GHz RF-EMR for 30 min on subsequent recognition memory in mice, using the novel object recognition task (NORT). RF-EMR exposure at an intensity of >2.2 W/kg specific absorption rate (SAR) power density induced a significant density-dependent increase in NORT index with no corresponding changes in spontaneous locomotor activity. RF-EMR exposure increased dendritic-spine density and length in hippocampal and prefrontal cortical neurons, as shown by Golgi staining. Whole-cell recordings in acute hippocampal and medial prefrontal cortical slices showed that RF-EMR exposure significantly altered the resting membrane potential and action potential frequency, and reduced the action potential half-width, threshold, and onset delay in pyramidal neurons. These results demonstrate that exposure to 1.8 GHz RF-EMR for 30 min can significantly increase recognition memory in mice, and can change dendritic-spine morphology and neuronal excitability in the hippocampus and prefrontal cortex. The SAR in this study (3.3 W/kg) was outside the range encountered in normal daily life, and its relevance as a potential therapeutic approach for disorders associated with recognition memory deficits remains to be clarified.
Collapse
|
35
|
Houston BJ, Nixon B, King BV, De Iuliis GN, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction 2016; 152:R263-R276. [PMID: 27601711 DOI: 10.1530/rep-16-0126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/02/2016] [Indexed: 11/08/2022]
Abstract
Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.
Collapse
Affiliation(s)
- B J Houston
- Priority Research Centre for Reproductive ScienceSchool of Environmental and Life Sciences
| | - B Nixon
- Priority Research Centre for Reproductive ScienceSchool of Environmental and Life Sciences
| | - B V King
- School of Mathematical and Physical SciencesUniversity of Newcastle, Callaghan, New South Wales, Australia
| | - G N De Iuliis
- Priority Research Centre for Reproductive ScienceSchool of Environmental and Life Sciences
| | - R J Aitken
- Priority Research Centre for Reproductive ScienceSchool of Environmental and Life Sciences
| |
Collapse
|
36
|
Shekoohi-Shooli F, Mortazavi SMJ, Shojaei-Fard MB, Nematollahi S, Tayebi M. Evaluation of the Protective Role of Vitamin C on the Metabolic and Enzymatic Activities of the Liver in the Male Rats After Exposure to 2.45 GHz Of Wi-Fi Routers. J Biomed Phys Eng 2016; 6:157-164. [PMID: 27853723 PMCID: PMC5106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND The use of devices emitted microwave radiation such as mobile phones, wireless fidelity (Wi-Fi) routers, etc. is increased rapidly. It has caused a great concern; the researchers should identify its effects on people's health. We evaluated the protective role of Vitamin C on the metabolic and enzymatic activities of the liver after exposure to Wi-Fi routers. MATERIAL AND METHODS 70 male Wistar rats weighing 200-250 g were randomly divided into 7 groups (10 rats in each group).The first stage one -day test: Group A (received vitamin C 250 mg/kg/day orally together with 8- hour/day Wi-Fi exposure).Group B (exposed to Wi-Fi radiation). Group C (received vitamin C). Group D or Control (was neither exposed to radiation of Wi-Fi modem nor did receive vitamin C). The second phase of experiment had done for five consecutive days. It involved Group E (received vitamin C), Group F (exposed to Wi-Fi radiation), Group G (received vitamin C together with Wi-Fi radiation). The distance between animals' restrainers was 20 cm away from the router antenna. Finally, blood samples were collected and assayed the level of hepatic enzymes including alkaline phosphatase(ALP), alanine amino transferase(ALT) aspartate amino transferase (ASL), gamma glutamyl transferase (GGT) and the concentration of Blood Glucose, Cholesterol , Triglyceride(TG),High density lipoprotein (HDL)and low density lipoprotein (LDL). RESULTS Data obtained from the One day test showed an increase in concentration of blood glucose, decrease in Triglyceride level and GGT factor (P<0.05), however no observed significant difference on the Cholesterol , HDL , LDL level and hepatic enzymes activities in compare to control group. Groups of the five-day test showed reduction in the amount of blood glucose, elevation of cholesterol level and LDL relative to control group(P<0.05). CONCLUSION WiFi exposure may exert alternations on the metabolic parameters and hepatic enzymes activities through stress oxidative and increasing of free radicals, but the use of vitamin C protects them from changing induced. Also taking optimum dose of vitamin C is essential for radioprotective effect and maintaining optimum health.
Collapse
Affiliation(s)
- F Shekoohi-Shooli
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S M J Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M B Shojaei-Fard
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran; Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Nematollahi
- Biostatistics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Tayebi
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Biochemical and histological studies on adverse effects of mobile phone radiation on rat's brain. J Chem Neuroanat 2016; 78:10-19. [PMID: 27474378 DOI: 10.1016/j.jchemneu.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
With the rapid development of electronic technologies, the public concern about the potential health hazards induced by radiofrequency (RF) radiation has been grown. To investigate the effect of 1800MHz RF radiation emitted from mobile phone on the rat's brain, the present study was performed. Forty male rats were randomly divided into two equal groups; control and exposed group. The later one exposed to 1800MHz emitted from mobile phone with an SAR value of 0.6W/kg for two hours/day for three months. The brain tissues were collected at the end of the experimental period and separated into hippocampus and cerebellum for subsequent biochemical, histological, immunohistochemical and electron microscopic investigations. The rats that were exposed to RF- radiation had a significant elevation in MDA content and a significant reduction in antioxidant parameters (glutathione, super oxide dismutase and glutathione peroxidase) in both regions. Degenerative changes were observed in the hippocampus pyramidal cells, dark cells and cerebellar Purkinje cells with vascular congestion. In addition a significant DNA fragmentation and over expression of cyclooxygenase-2 apoptotic gene was detected. Those results suggested that, direct chronic exposure to mobile phone caused severe biochemical and histopathological changes in the brain.
Collapse
|
38
|
Ozguner F, Altinbas A, Ozaydin M, Dogan A, Vural H, Kisioglu AN, Cesur G, Yildirim NG. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health 2016; 21:223-30. [PMID: 16342473 DOI: 10.1191/0748233705th228oa] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electromagnetic radiation (EMR) or radiofrequency fields of cellular mobile phones may affect biological systems by increasing free radicals, which appear mainly to enhance lipid peroxidation, and by changing the antioxidant defense systems of human tissues, thus leading to oxidative stress. Mobile phones are used in close proximity to the heart, therefore 900 MHz EMR emitting mobile phones may be absorbed by the heart. Caffeic acid phenethyl ester (CAPE), one of the major components of honeybee propolis, was recently found to be a potent free radical scavenger and antioxidant, and is used in folk medicine. The aim of this study was to examine 900 MHz mobile phone-induced oxidative stress that promotes production of reactive oxygen species (ROS) and the role of CAPE on myocardial tissue against possible oxidative damage in rats. Thirty rats were used in the study. Animals were randomly grouped as follows: sham-operated control group (N: 10) and experimental groups: (a) group II: 900 MHz EMR exposed group (N: 10); and (b) group III: 900 MHz EMR exposed+CAPE-treated group (N: 10). A 900 MHz EMR radiation was applied to groups II and III 30 min/day, for 10 days using an experimental exposure device. Malondialdehyde (MDA, an index of lipid peroxidation), and nitric oxide (NO, a marker of oxidative stress) were used as markers of oxidative stress-induced heart impairment. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status. In the EMR exposed group, while tissue MDA and NO levels increased, SOD, CAT and GSH-Px activities were reduced. CAPE treatment in group III reversed these effects. In this study, the increased levels of MDA and NO and the decreased levels of myocardial SOD, CAT and GSH-Px activities demonstrate the role of oxidative mechanisms in 900 MHz mobile phone-induced heart tissue damage, and CAPE, via its free radical scavenging and antioxidant properties, ameliorates oxidative heart injury. These results show that CAPE exhibits a protective effect on mobile phone-induced and free radical mediated oxidative heart impairment in rats.
Collapse
Affiliation(s)
- Fehmi Ozguner
- Department of Physiology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health 2016; 23:411-20. [DOI: 10.1177/0748233707080906] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Mechanisms of adverse effects of EMR indicate that reactive oxygen species (ROS) may play a role in the biological effects of this radiation. The aims of this study were to examine 900 MHz mobile phone-induced oxidative stress that promotes production of ROS and to investigate the role of vitamins E and C, which have antioxidant properties, on endometrial tissue against possible 900MHz mobile phone-induced endometrial impairment in rats. The animals were randomly grouped (eight each) as follows: 1) Control group (without stress and EMR, Group I), 2) sham-operated rats stayed without exposure to EMR (exposure device off, Group II), 3) rats exposed to 900MHz EMR (EMR group, Group III) and 4) a 900MHz EMR exposed + vitamin-treated group (EMR + Vit group, Group IV). A 900 MHz EMR was applied to EMR and EMR + Vit group 30min/day, for 30 days using an experimental exposure device. Endometrial levels of nitric oxide (NO, an oxidant product) and malondialdehyde (MDA, an index of lipid peroxidation), increased in EMR exposed rats while the combined vitamins E and C caused a significant reduction in the levels of NO and MDA. Likewise, endometrial superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased in EMR exposed animals while vitamins E and C caused a significant increase in the activities of these antioxidant enzymes. In the EMR group histopathologic changes in endometrium, diffuse and severe apoptosis was present in the endometrial surface epithelial and glandular cells and the stromal cells. Diffuse eosinophilic leucocyte and lymphocyte infiltration were observed in the endometrial stroma whereas the combination of vitamins E and C caused a significant decrease in these effects of EMR. It is concluded that oxidative endometrial damage plays an important role in the 900 MHz mobile phone-induced endometrial impairment and the modulation of oxidative stress with vitamins E and C reduces the 900MHz mobile phone-induced endometrial damage both at biochemical and histological levels. Toxicology and Industrial Health 2007; 23: 411—420.
Collapse
Affiliation(s)
- Mehmet Guney
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey, mguney@ med.sdu.edu.tr
| | - Fehmi Ozguner
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Baha Oral
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nermin Karahan
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Tamer Mungan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
40
|
Nagarjunakonda S, Amalakanti S, Uppala V, Gajula RK, Tata RS, Bolla HB, Rajanala L, Athina S, Daggumati R, Lavu H, Devanaboina AK. Mobile phones and seizures: drug-resistant epilepsy is less common in mobile-phone-using patients. Postgrad Med J 2016; 93:25-28. [DOI: 10.1136/postgradmedj-2016-134140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 11/03/2022]
|
41
|
Arendash GW. Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer's Disease. J Alzheimers Dis 2016; 53:753-71. [PMID: 27258417 PMCID: PMC4981900 DOI: 10.3233/jad-160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
We have demonstrated in multiple studies that daily, long-term electromagnetic field (EMF) treatment in the ultra-high frequency range not only protects Alzheimer's disease (AD) transgenic mice from cognitive impairment, but also reverses such impairment in aged AD mice. Moreover, these beneficial cognitive effects appear to be through direct actions on the AD process. Based on a large array of pre-clinical data, we have initiated a pilot clinical trial to determine the safety and efficacy of EMF treatment to mild-moderate AD subjects. Since it is important to establish the safety of this new neuromodulatory approach, the main purpose of this review is to provide a comprehensive assessment of evidence supporting the safety of EMFs, particularly through transcranial electromagnetic treatment (TEMT). In addition to our own pre-clinical studies, a rich variety of both animal and cell culture studies performed by others have underscored the anticipated safety of TEMT in clinical AD trials. Moreover, numerous clinical studies have determined that short- or long-term human exposure to EMFs similar to those to be provided clinically by TEMT do not have deleterious effects on general health, cognitive function, or a variety of physiologic measures-to the contrary, beneficial effects on brain function/activity have been reported. Importantly, such EMF exposure has not been shown to increase the risk of any type of cancer in human epidemiologic studies, as well as animal and cell culture studies. In view of all the above, clinical trials of safety/efficacy with TEMT to AD subjects are clearly warranted and now in progress.
Collapse
|
42
|
Seada MA, Elkholy SE, Meshrif WS. Does the cellphone radio-frequency electromagnetic radiation during ringing or talking modes induce locomotor disturbance inDrosophila melanogaster? AFRICAN ZOOLOGY 2016. [DOI: 10.1080/15627020.2016.1151828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration. Brain Res 2016; 1635:1-11. [DOI: 10.1016/j.brainres.2016.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/15/2022]
|
44
|
Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 2015; 51:158-65. [DOI: 10.1016/j.neuro.2015.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
45
|
Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 2015; 75:85-93. [PMID: 26371078 DOI: 10.1016/j.jchemneu.2015.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies.
Collapse
Affiliation(s)
- Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, 21280 Diyarbakir, Turkey
| |
Collapse
|
46
|
Real versus Simulated Mobile Phone Exposures in Experimental Studies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:607053. [PMID: 26346766 PMCID: PMC4539441 DOI: 10.1155/2015/607053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/14/2015] [Indexed: 12/01/2022]
Abstract
We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets.
Collapse
|
47
|
Ye W, Wang F, Zhang W, Fang N, Zhao W, Wang J. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo. Anat Histol Embryol 2015; 45:197-208. [PMID: 26171674 DOI: 10.1111/ahe.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/10/2015] [Indexed: 01/16/2023]
Abstract
The biological effects on cardiovascular development of chicken embryos were examined after radiation exposure using mobile phone (900 MHz; specific absorption rate˜1.07 W/kg) intermittently 3 h per day during incubation. Samples were selected by morphological and histological methods. The results showed the rate of embryonic mortality and cardiac deformity increased significantly in exposed group (P < 0.05). No any histological pathological changes were observed on Day 5-7 (D5-D7) of incubation. A higher distribution of lipid droplets was unexpectedly present in myocardial tissue from the exposure groups on D10-D13. Soon afterwards, myofilament disruption, atrioventricular valve focal necrosis, mitochondria vacuolization and atrial natriuretic peptide (ANP) decrease appeared on D15-D21 of incubation. Comet assay data showed the haemocyte mean tail in the exposed group was significantly larger than that of the control (P < 0.01). The arterial vascular wall of exposed group was thicker (P < 0.05) than that of the control on D13, which was reversed to normal in later stages. Our findings suggest that long-term exposure of MPR may induce myocardium pathological changes, DNA damage and increased mortality; however, there was little effect on vascular development.
Collapse
Affiliation(s)
- W Ye
- Medical College of Henan University, Kaifeng, 475000, China.,Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - F Wang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhang
- Medical College of Henan University, Kaifeng, 475000, China
| | - N Fang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhao
- Medical College of Henan University, Kaifeng, 475000, China
| | - J Wang
- Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
48
|
Histological changes in albino rat hippocampus following postnatal exposure to radiofrequency electromagnetic field emitted from mobile phones. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/01.ehx.0000464783.65190.9e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Hancı H, Türedi S, Topal Z, Mercantepe T, Bozkurt İ, Kaya H, Ersöz Ş, Ünal B, Odacı E. Can prenatal exposure to a 900 MHz electromagnetic field affect the morphology of the spleen and thymus, and alter biomarkers of oxidative damage in 21-day-old male rats? Biotech Histochem 2015; 90:535-43. [DOI: 10.3109/10520295.2015.1042051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Curcio G, Mazzucchi E, Marca GD, Vollono C, Rossini PM. Electromagnetic fields and EEG spiking rate in patients with focal epilepsy. Clin Neurophysiol 2015; 126:659-66. [DOI: 10.1016/j.clinph.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 01/24/2023]
|