1
|
Mavropalias G, Wu YF, Boppart MD, Blazevich AJ, Nosaka K. Increases in Integrin-ILK-RICTOR-Akt Proteins, Muscle Mass, and Strength after Eccentric Cycling Training. Med Sci Sports Exerc 2022; 54:89-97. [PMID: 34468415 PMCID: PMC8921492 DOI: 10.1249/mss.0000000000002778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Recently, it has been suggested that a cellular pathway composed of integrin, integrin-linked kinase (ILK), rapamycin-insensitive companion of mTOR (RICTOR), and Akt may facilitate long-term structural and functional adaptations associated with exercise, independent of the mTORC1 pathway. Therefore, we examined changes in integrin-ILK-RICTOR-Akt protein in vastus lateralis (VL) before and after 8 wk of eccentric cycling training (ECC), which was expected to increase muscle function and VL cross-sectional area (CSA). METHODS Eleven men (23 ± 4 yr) completed 24 sessions of ECC with progressive increases in intensity and duration, resulting in a twofold increase in work from the first three (75.4 ± 14.1 kJ) to the last three sessions (150.7 ± 28.4 kJ). Outcome measures included lower limb lean mass, VL CSA, static strength, and peak and average cycling power output. These measures and VL samples were taken before and 4-5 d after the last training session. RESULTS Significant (P < 0.05) increases in integrin-β1 (1.64-fold) and RICTOR (2.99-fold) protein as well as the phosphorylated-to-total ILK ratio (1.70-fold) were found, but integrin-α7 and Akt did not change. Increases in lower limb, thigh, and trunk lean mass (2.8%-5.3%, P < 0.05) and CSA (13.3% ± 9.0%, P < 0.001) were observed. Static strength (18.1% ± 10.8%) and both peak (8.6% ± 10.5%) and average power output (7.4% ± 8.3%) also increased (P < 0.05). However, no significant correlations were found between the magnitude of increases in protein and the magnitude of increases in CSA, static strength, or power output. CONCLUSIONS In addition to increased muscle mass, strength, and power, we demonstrate that ECC increases integrin-β1 and RICTOR total protein and p-ILK/t-ILK, which may play a role in protection against muscle damage as well as anabolic signaling to induce muscle adaptations.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Exercise Medicine Research Institute, Edith Cowan University, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Yu-Fu Wu
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, IL
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL
| | - Marni D. Boppart
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, IL
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL
| | | | - Kazunori Nosaka
- Exercise Medicine Research Institute, Edith Cowan University, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
| |
Collapse
|
2
|
Bildyug N. Integrins in cardiac hypertrophy: lessons learned from culture systems. ESC Heart Fail 2021; 8:3634-3642. [PMID: 34232557 PMCID: PMC8497369 DOI: 10.1002/ehf2.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Heart growth and pathological changes are accompanied by extracellular matrix‐dependent alterations in integrins and integrin‐associated proteins, suggesting their role in heart development and disease. Most of our knowledge on the involvement of integrins in heart pathology is provided by the in vivo experiments, including cardiac hypertrophy models. However, in vivo studies are limited by the complex organization of heart tissue and fail to discern cell types and particular integrins implicated in hypertrophic signalling. This problem is being addressed by isolated cardiomyocyte primary cultures, which have been successfully used in different in vitro disease models. This review aimed to analyse the general approaches to studying integrins and integrin‐associated signalling pathways in cardiac hypertrophy focusing on the in vitro systems. The lessons learned from culture experiments on the models of hypertrophy induced by stretch, stimulating factors, and/or extracellular matrix components are summarized, demonstrating the major involvement of integrin‐mediated signalling in cardiac hypertrophic response and its apparent crosstalk with signal pathways induced by stretch or hypertrophy stimulating factors. The benefits and perspectives of using cardiomyocyte primary culture as a hypertrophy model are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
3
|
Giguère H, Dumont AA, Berthiaume J, Oliveira V, Laberge G, Auger-Messier M. ADAP1 limits neonatal cardiomyocyte hypertrophy by reducing integrin cell surface expression. Sci Rep 2018; 8:13605. [PMID: 30206251 PMCID: PMC6134004 DOI: 10.1038/s41598-018-31784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The ArfGAP with dual PH domains 1 (ADAP1) regulates the activation of the hypertrophic mitogen-activated protein kinase ERK1/2 pathway in non-cardiomyocytes. However, its role in cardiomyocytes is unknown. Our aim was to characterize the role of ADAP1 in the hypertrophic process of cardiomyocytes. We assessed the expression of ADAP1 in the hearts of adult and neonatal rats by RT-qPCR and Western blotting and showed that it is preferentially expressed in cardiomyocytes. Adenoviral-mediated ADAP1 overexpression in cultured rat neonatal ventricular cardiomyocytes limited their serum-induced hypertrophic response as measured by immunofluorescence microscopy. Furthermore, ADAP1 overexpression completely blocked phenylephrine- and Mek1 constitutively active (Mek1ca) mutant-induced hypertrophy in these cells. The anti-hypertrophic effect of ADAP1 was not caused by a reduction in protein synthesis, interference with the Erk1/2 pathway, or disruption of the fetal gene program activation, as assessed by nascent protein labeling, Western blotting, and RT-qPCR, respectively. An analysis of cultured cardiomyocytes by confocal microscopy revealed that ADAP1 partially re-organizes α-actinin into dense puncta, a phenomenon that is synergized by Mek1ca overexpression. Biotin labeling of cell surface proteins from cardiomyocytes overexpressing ADAP1 revealed that it reduces the surface expression of β1-integrin, an effect that is strongly potentiated by Mek1ca overexpression. Our findings provide insights into the anti-hypertrophic function of ADAP1 in cardiomyocytes.
Collapse
Affiliation(s)
- Hugo Giguère
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Audrey-Ann Dumont
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vanessa Oliveira
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gino Laberge
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
4
|
Manso AM, Li R, Monkley SJ, Cruz NM, Ong S, Lao DH, Koshman YE, Gu Y, Peterson KL, Chen J, Abel ED, Samarel AM, Critchley DR, Ross RS. Talin1 has unique expression versus talin 2 in the heart and modifies the hypertrophic response to pressure overload. J Biol Chem 2013; 288:4252-64. [PMID: 23266827 PMCID: PMC3567677 DOI: 10.1074/jbc.m112.427484] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/14/2012] [Indexed: 11/06/2022] Open
Abstract
Integrins are adhesive, signaling, and mechanotransduction proteins. Talin (Tln) activates integrins and links it to the actin cytoskeleton. Vertebrates contain two talin genes, tln1 and tln2. How Tln1 and Tln2 function in cardiac myocytes (CMs) is unknown. Tln1 and Tln2 expression were evaluated in the normal embryonic and adult mouse heart as well as in control and failing human adult myocardium. Tln1 function was then tested in the basal and mechanically stressed myocardium after cardiomyocyte-specific excision of the Tln1 gene. During embryogenesis, both Tln forms are highly expressed in CMs, but in the mature heart Tln2 becomes the main Tln isoform, localizing to the costameres. Tln1 expression is minimal in the adult CM. With pharmacological and mechanical stress causing hypertrophy, Tln1 is up-regulated in CMs and is specifically detected at costameres, suggesting its importance in the compensatory response to CM stress. In human failing heart, CM Tln1 also increases compared with control samples from normal functioning myocardium. To directly test Tln1 function in CMs, we generated CM-specific Tln1 knock-out mice (Tln1cKO). Tln1cKO mice showed normal basal cardiac structure and function but when subjected to pressure overload showed blunted hypertrophy, less fibrosis, and improved cardiac function versus controls. Acute responses of ERK1/2, p38, Akt, and glycogen synthase kinase 3 after mechanical stress were strongly blunted in Tln1cKO mice. Given these results, we conclude that Tln1 and Tln2 have distinct functions in the myocardium. Our data show that reduction of CM Tln1 expression can lead to improved cardiac remodeling following pressure overload.
Collapse
Affiliation(s)
- Ana Maria Manso
- From the Veterans Administration Healthcare, San Diego, California 92161
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Ruixia Li
- From the Veterans Administration Healthcare, San Diego, California 92161
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Susan J. Monkley
- the Department of Biochemistry, University of Leicester LE1 9HN, United Kingdom, and
| | - Nathalia M. Cruz
- From the Veterans Administration Healthcare, San Diego, California 92161
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Shannon Ong
- From the Veterans Administration Healthcare, San Diego, California 92161
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Dieu H. Lao
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Yevgeniya E. Koshman
- the Department of Physiology, Loyola University Medical Center, Maywood, Illinois 60153
| | - Yusu Gu
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Kirk L. Peterson
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - Ju Chen
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Allen M. Samarel
- the Department of Physiology, Loyola University Medical Center, Maywood, Illinois 60153
| | - David R. Critchley
- the Department of Biochemistry, University of Leicester LE1 9HN, United Kingdom, and
| | - Robert S. Ross
- From the Veterans Administration Healthcare, San Diego, California 92161
- UCSD School of Medicine, Department of Medicine, La Jolla, California 92093
| |
Collapse
|
5
|
Activation of SUR2B/Kir6.1 subtype of adenosine triphosphate-sensitive potassium channel improves pressure overload-induced cardiac remodeling via protecting endothelial function. J Cardiovasc Pharmacol 2011; 56:345-53. [PMID: 20505525 DOI: 10.1097/fjc.0b013e3181e6c7b8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sought to explore new strategies targeting SUR2B/Kir6.1, a subtype of adenosine triphosphate (ATP)-sensitive potassium channels (KATP), against pressure overload-induced heart failure. The effects of natakalim, a SUR2B/Kir6.1 selective channel opener, on progression of cardiac remodeling were investigated. Pressure overload-induced heart failure was induced in Wistar rats by abdominal aortic banding. The effects of natakalim (1, 3, and 9 mg·kg⁻¹·d⁻¹ for 10 weeks) on myocardial hypertrophy and heart failure, cardiac histology, vasoactive compounds, and gene expression were assessed. Ten weeks after the onset of pressure overload, natakalim treatment potently inhibited cardiac hypertrophy and prevented heart failure. Natakalim remarkably inhibited the changes of left ventricular hemodynamic parameters and reversed the increase of heart mass index, left ventricular weight index, and lung weight index. Histological examination demonstrated that there was no significant hypertrophy or fibrosis in pressure-overloaded hearts of natakalim-treated rats. Ultrastructural examination of hearts revealed well-organized myofibrils with mitochondria grouped along the periphery of longitudinally oriented fibers in rats from the natakalim group. The content of serum nitric oxide and plasma prostacyclin was increased, whereas that of plasma endothelin-1 and cardiac tissue hydroxyproline and atrial and B-type natriuretic peptide messenger RNA was downregulated in natakalim-treated rats. Natakalim at 0.01-100 µM had no effects on isolated working hearts derived from Wistar rats; however, natakalim had endothelium-dependent vasodilatory effects on the isolated tail artery helical strips precontracted with norepinephrine. These results indicate that natakalim reduces heart failure caused by pressure overloading by activating the SUR2B/Kir6.1 KATP channel subtype and protecting against endothelial dysfunction.
Collapse
|
6
|
Qi L, Boateng SY. The circadian protein Clock localizes to the sarcomeric Z-disk and is a sensor of myofilament cross-bridge activity in cardiac myocytes. Biochem Biophys Res Commun 2006; 351:1054-9. [PMID: 17097616 PMCID: PMC4036442 DOI: 10.1016/j.bbrc.2006.10.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
In the mammalian heart, the circadian protein Clock regulates glucose and fatty acid metabolism. In this study, we determined some of the factors that regulate Clock expression and subcellular distribution in myocytes. Using immunochemistry and biochemical subcellular fractionation, we have shown that Clock localizes to the Z-disk of the myofilaments. Increasing calcium and cross-bridge cycling with 10 microM phenylephrine for 48 h resulted in a threefold increase in Clock and a translocation of the protein to the nucleus. When myofilament cross-bridge cycling was inhibited with 10 microM verapamil or 7.5mM butanedione monoxime for 48 h, both significantly reduced the presence of Clock in the nucleus and cytoskeleton. These results suggest that the expression and subcellular distribution of Clock can be altered by changes in cross-bridge cycling, a major source of energy expenditure in myocytes. We suggest that the circadian Clock protein may help coordinate the sensing of energy expenditure with energy supply.
Collapse
Affiliation(s)
- Lixin Qi
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612-7342, USA
| | | |
Collapse
|
7
|
Chen H, Huang XN, Yan W, Chen K, Guo L, Tummalapali L, Dedhar S, St-Arnaud R, Wu C, Sepulveda JL. Role of the integrin-linked kinase/PINCH1/alpha-parvin complex in cardiac myocyte hypertrophy. J Transl Med 2005; 85:1342-56. [PMID: 16170337 DOI: 10.1038/labinvest.3700345] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Outside-in signaling from fibronectin (FN) through integrin receptors has been shown to play an important role in promoting cardiac myocyte hypertrophy and synergizes with other hypertrophic stimuli such as the alpha-adrenergic agonist phenylephrine (PE) and mechanical strain. The integrin-linked kinase (ILK) is a critical molecule involved in cell adhesion, motility and survival in nonmyocytes such as fibroblasts and epithelial cells. Its role in cardiac myocytes is unclear. In this study, we demonstrate that (1) ILK forms a complex with PINCH1 and alpha-parvin proteins (IPAP1 complex) in neonatal rat ventricular myocytes; (2) localization of IPAP1 complex proteins to costameres in cardiac myocytes is stimulated by FN, PE and synergistically by the combination of FN and PE in an integrin beta1-dependent manner; (3) a dominant-negative mutant lacking the PINCH-binding N-terminus of ILK (ILK-C) prevents costamere association of ILK and alpha-parvin, but not PINCH1; (4) FN- and PE-induced hypertrophy, measured by increased protein/DNA ratio, beating frequency and atrial natriuretic peptide expression, is stimulated by low levels of ILK-C but repressed by high ILK-C expression; and (5) overexpression of ILK-C, as well as deletion of the ILK gene in mouse neonatal ventricular myocytes, induces marked apoptosis of cardiac myocytes. These results suggest that the IPAP1 complex plays an important role in mediating integrin-signaling pathways that regulate cardiac myocyte hypertrophy and resistance to apoptosis.
Collapse
Affiliation(s)
- Hua Chen
- Department of Pathology, New York University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Cardiac hypertrophy is caused by hypertension, myocardial infarction, endocrine disorders, and perturbations in sarcomeric function, and has become a major cause of human morbidity and mortality. The generation of cardiac hypertrophy is associated with regulation of a cardiac gene program by cardiac transcription factors. The LIM proteins have been discovered to play an important role in cardiac hypertrophy. The LIM proteins contain one, two or multiple LIM domains and can be divided into different classes according to their amino acid sequence homologies. The LIM-only proteins, muscle LIM protein and human heart LIM protein are involved in cardiac hypertrophy by functioning as either an integrator of protein assembly of the actin-based cytoskeleton or tissue-specific coactivator of the receptor and the transcription factors. There have been many recent developments in the functions of LIM proteins related to cardiac hypertrophy and their interactions. It is hoped that the knowledge of LIM proteins will at least provide a greater choice of therapies and improved our management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Mei Han
- Institute of Basic Medicine, Department of Biochemistry and Molecular Biology, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jin-Kun Wen
- Institute of Basic Medicine,Department of Biochemistry and Molecular No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Bin Zheng
- Institute of Basic Medicine,Department of Biochemistry and Molecular No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| |
Collapse
|
9
|
Abstract
Cell-extracellular matrix (ECM) adhesion is crucial for control of cell behavior. It connects the ECM to the intracellular cytoskeleton and transduces bidirectional signals between the extracellular and intracellular compartments. The subcellular machinery that mediates cell-ECM adhesion and signaling is complex. It consists of transmembrane proteins (e.g., integrins) and at least several dozens of membrane-proximal proteins that assemble into a network through multiple protein interactions. Furthermore, despite sharing certain common components, cell-ECM adhesions exhibit considerable heterogeneity in different types of cells (e.g., the cell-ECM adhesions in cardiac myocytes are considerably different from those in fibroblasts). Here, we will first briefly describe the general properties of the integrin-mediated cell-ECM adhesion and signal transduction. Next, we will focus on one of the recently discovered cell-ECM adhesion protein complexes consisting of PINCH, integrin-linked kinase (ILK), and Parvin and use it as an example to illustrate the molecular basis underlying the assembly and functions of cell-ECM adhesions. Finally, we will discuss in detail the structure and regulation of cell-ECM adhesion complexes in cardiac myocytes, which illustrate the importance and complexity of the cell-ECM adhesion structures in organogenesis and diseases.
Collapse
Affiliation(s)
- Jorge L Sepulveda
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
10
|
García KD, Shah T, García J. Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. Am J Physiol Cell Physiol 2004; 287:C1048-57. [PMID: 15201137 DOI: 10.1152/ajpcell.00004.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise localization and role of inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) in cardiac muscle cells are largely unknown. It is believed that waves and oscillations in cytosolic free calcium triggered by activation of InsP3Rs underlie modifications of cellular responses that lead to changes in gene expression in other cells. However, how changes in cytosolic calcium alter gene expression in cardiac cells is unknown. Moreover, it is unclear how changes in cytosolic calcium that alter gene expression do so independently of effects of calcium on other cellular functions, such as contraction. Here we show that InsP3R type 2 is the only isoform present in cardiac myocytes isolated from neonatal mouse ventricles. We also show that type 2 InsP3Rs are associated with the nucleus and that activation of type 2 InsP3Rs with endothelin-1 or phenylephrine selectively increases transcription of atrial natriuretic factor and skeletal α-actin. Type 2 InsP3Rs are also in striations. Activation of InsP3Rs with adenophostin A in permeabilized cells induced calcium release in the nuclear domain and other regions of the cell away from the nucleus. Agonist-induced increase in gene expression and calcium release were blocked by the InsP3R inhibitors 2-aminoethoxydiphenyl borate and xestospongin C. The spatial separation of type 2 InsP3Rs provides support for the concept that microdomains of calcium discretely alter various cell processes. Our experiments suggest that calcium released by InsP3Rs in the nuclear domain provides a direct mechanism for the control of gene expression, whereas release of calcium in the cytoplasm may modulate other processes, such as contraction.
Collapse
Affiliation(s)
- Kelly D García
- Research Services, Edward Hines Jr. Department of Veterans Affairs Hospital, Hines 60141, Chicago, IL 60612, USA
| | | | | |
Collapse
|