1
|
Liang Y, Zhao H, Wang Q, Chen X, Li Q, Sun W, Chen C, Zhu H, Zhang Y. Penigrines A-E: Five undescribed azepine-indole alkaloids from Penicillium griseofulvum. PHYTOCHEMISTRY 2024; 220:114012. [PMID: 38311151 DOI: 10.1016/j.phytochem.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Penigrines A-E (1-5), five undescribed azepine-indole alkaloids, were isolated from the fungus Penicillium griseofulvum. Their structures with absolute configurations were determined by NMR, HRESIMS, ECD calculation, and X-ray diffraction experiments. Penigrine C (3) possesses an undescribed 6-oxa-8-azabicyclo[3.2.2]nonane-7,9-dione moiety that fused to an indole core, and penigrines D and E (4 and 5) are a pair of epimers. The plausible biosynthetic pathways of 1-5 are proposed. Penigrine A (1) shows the potential for heart failure treatment.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huimin Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qiwei Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xuanni Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
2
|
Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, X-ray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity. INORGANICS 2023. [DOI: 10.3390/inorganics11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of latonduine derivatives, namely 11-nitro-indolo[2,3-d]benzazepine-7-(1-amino-hydantoin) (B), triazole-fused indolo[2,3-d]benzazepine-based Schiff bases HL1 and HL2 and metal complexes [M(p-cymene)(HL1)Cl]Cl, where M = Ru (1), Os (2), and [Cu(HL2)Cl2] (3) were synthesized and characterized by spectroscopic techniques (UV–vis, 1H, 13C, 15N–1H HSQC NMR) and ESI mass spectrometry. The molecular structures of B and HL1 were confirmed by single-crystal X-ray diffraction, while that of 3 by electron diffraction of nanometer size crystalline sample. Molecular docking calculations of species B in the binding pocket of PIM-1 enzyme revealed that the 1-amino-hydantoin moiety is not involved in any hydrogen-bonding interactions, even though a good accommodation of the host molecule in the ATP binding pocket of the enzyme was found. The antiproliferative activity of organic compounds B, HL1 and HL2, as well as complexes 1–3 was investigated in lung adenocarcinoma A549, colon adenocarcinoma LS-174 and triple-negative breast adenocarcinoma MDA-MB-231 cells and normal human lung fibroblast cells MRC-5 by MTT assays; then, the results are discussed.
Collapse
|
3
|
Kadagathur M, Patra S, Devabattula G, George J, Phanindranath R, Shaikh AS, Sigalapalli DK, Godugu C, Nagesh N, Tangellamudi ND, Shankaraiah N. Design, synthesis of DNA-interactive 4-thiazolidinone-based indolo-/pyrroloazepinone conjugates as potential cytotoxic and topoisomerase I inhibitors. Eur J Med Chem 2022; 238:114465. [DOI: 10.1016/j.ejmech.2022.114465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
|
4
|
Kadagathur M, Sujat Shaikh A, Panda B, George J, Phanindranath R, Kumar Sigalapalli D, Bhale NA, Godugu C, Nagesh N, Shankaraiah N, Tangellamudi ND. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg Chem 2022; 122:105706. [DOI: 10.1016/j.bioorg.2022.105706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
5
|
Wittmann C, Sivchenko AS, Bacher F, Tong KKH, Guru N, Wilson T, Gonzales J, Rauch H, Kossatz S, Reiner T, Babak MV, Arion VB. Inhibition of Microtubule Dynamics in Cancer Cells by Indole-Modified Latonduine Derivatives and Their Metal Complexes. Inorg Chem 2022; 61:1456-1470. [PMID: 34995063 PMCID: PMC8790753 DOI: 10.1021/acs.inorgchem.1c03154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Indolo[2,3-d]benzazepines (indololatonduines)
are rarely discussed in the literature. In this project, we prepared
a series of novel indololatonduine derivatives and their RuII and OsII complexes and investigated their microtubule-targeting
properties in comparison with paclitaxel and colchicine. Compounds
were fully characterized by spectroscopic techniques (1H NMR and UV–vis), ESI mass-spectrometry, and X-ray crystallography,
and their purity was confirmed by elemental analysis. The stabilities
of the compounds in DMSO and water were confirmed by 1H
and 13C NMR and UV–vis spectroscopy. Novel indololatonduines
demonstrated anticancer activity in vitro in a low
micromolar concentration range, while their coordination to metal
centers resulted in a decrease of cytotoxicity. The preliminary in vivo activity of the RuII complex was investigated.
Fluorescence staining and in vitro tubulin polymerization
assays revealed the prepared compounds to have excellent microtubule-destabilizing
activities, even more potent than the well-known microtubule-destabilizing
agent colchicine. Several
synthesized indololatonduine derivatives and their
RuII and OsII complexes were investigated for
their microtubule-targeting properties in comparison with paclitaxel
and colchicine. Fluorescence staining and in vitro tubulin polymerization assays indicate excellent microtubule-destabilizing
activity. The compounds were even more potent than the well-known
microtubule-destabilizing agent colchicine.
Collapse
Affiliation(s)
- Christopher Wittmann
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Anastasiia S Sivchenko
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, PR China
| | - Felix Bacher
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Kelvin K H Tong
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, PR China
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, New York 10065, United States
| | - Thomas Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, New York 10065, United States
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, New York 10065, United States
| | - Hartmut Rauch
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany.,TranslaTUM - Central Institute for Translational Cancer Research, D-81675 Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany.,TranslaTUM - Central Institute for Translational Cancer Research, D-81675 Munich, Germany.,Department of Chemistry, Technical University of Munich, D-85748 Munich, Germany
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, PR China
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Kadagathur M, Patra S, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Syntheses and medicinal chemistry of azepinoindolones: a look back to leap forward. Org Biomol Chem 2021; 19:738-764. [PMID: 33459333 DOI: 10.1039/d0ob02181d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.
Collapse
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
7
|
Singh AK, Raj V, Saha S. Indole-fused azepines and analogues as anticancer lead molecules: Privileged findings and future directions. Eur J Med Chem 2017; 142:244-265. [PMID: 28803677 DOI: 10.1016/j.ejmech.2017.07.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
The search for new lead compounds of simple structure, displaying highest quality anti-tumor potency with new mechanisms of action and least adverse effects is the major intention of cancer drug discovery now a days. For the time being, indole-fused azepines emerged as a simple class of compounds prolifically designed with strong pharmacological significances in particular of cancer protecting ability. In the recent years from the efforts of our research group, indole-fused heteroazepines, a simple structural class achieved by fusion of indole with oxygen, sulphur and nitrogen containing heteroazepine rings, have known for its superior outcomes in cancer treatment. Surprisingly, the chemistry and biology of these unique families with an amazing role in cancer drug discovery has remained broadly unexplored. This short review is consequently an endeavor to highlight the preliminary ideas over this structural class and to draw the medical attention towards future development of indole-fused azepines and analogues for their promising function in cancer drug discovery.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
8
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
9
|
Ohuchi K, Funato M, Kato Z, Seki J, Kawase C, Tamai Y, Ono Y, Nagahara Y, Noda Y, Kameyama T, Ando S, Tsuruma K, Shimazawa M, Hara H, Kaneko H. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog. Stem Cells Transl Med 2015; 5:152-63. [PMID: 26683872 DOI: 10.5966/sctm.2015-0059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons. This disease is mainly caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Currently, no effective treatment is available, and only symptomatic treatment can be provided. Our purpose in the present study was to establish a human SMA-derived induced pluripotent stem cell (SMA-iPSC) disease model and assay a therapeutic drug in preparation for the development of a novel treatment of SMA. We generated iPSCs from the skin fibroblasts of a patient with SMA and confirmed that they were pluripotent and undifferentiated. The neural differentiation of SMA-iPSCs shortened the dendrite and axon length and increased the apoptosis of the spinal motor neurons. In addition, we found activated astrocytes in differentiated SMA-iPSCs. Using this model, we confirmed that treatment with the thyrotropin-releasing hormone (TRH) analog, 5-oxo-l-prolyl-l-histidyl-l-prolinamide, which had marginal effects in clinical trials, increases the SMN protein level. This increase was mediated through the transcriptional activation of the SMN2 gene and inhibition of glycogen synthase kinase-3β activity. Finally, the TRH analog treatment resulted in dendrite and axon development of spinal motor neurons in differentiated SMA-iPSCs. These results suggest that this human in vitro disease model stimulates SMA pathology and reveal the potential efficacy of TRH analog treatment for SMA. Therefore, we can screen novel therapeutic drugs such as TRH for SMA easily and effectively using the human SMA-iPSC model. Significance: Platelet-derived growth factor (PDGF) has recently been reported to produce the greatest increase in survival motor neuron protein levels by inhibiting glycogen synthase kinase (GSK)-3β; however, motor neurons lack PDGF receptors. A human in vitro spinal muscular atrophy-derived induced pluripotent stem cell model was established, which showed that the thyrotropin releasing hormone (TRH) analog promoted transcriptional activation of the SMN2 gene and inhibition of GSK-3β activity, resulting in the increase and stabilization of the SMN protein and axon elongation of spinal motor neurons. These results reveal the potential efficacy of TRH analog treatment for SMA.
Collapse
Affiliation(s)
- Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Zenichiro Kato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Yuya Tamai
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuhiro Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsubasa Kameyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| |
Collapse
|
10
|
Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection. J Virol 2015. [PMID: 26223645 DOI: 10.1128/jvi.00986-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.
Collapse
|
11
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Denis JG, Franci G, Altucci L, Aurrecoechea JM, de Lera ÁR, Álvarez R. Synthesis of 7-alkylidene-7,12-dihydroindolo[3,2-d]benzazepine-6-(5H)-ones (7-alkylidene-paullones) by N-cyclization–oxidative Heck cascade and characterization as sirtuin modulators. Org Biomol Chem 2015; 13:2800-10. [DOI: 10.1039/c4ob02493a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-induced cascade of N-cyclization and oxidative Heck reaction of o-alkynylanilines produced 7-alkylidene-indolobenzazepinones (paullones) that have sirtuin modulation activities.
Collapse
Affiliation(s)
- J. G. Denis
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - G. Franci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - L. Altucci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - J. M. Aurrecoechea
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco
- 48080 Bilbao
- Spain
| | - Á. R. de Lera
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - R. Álvarez
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| |
Collapse
|
13
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
14
|
Tsyshchuk IE, Vorobyeva DV, Peregudov AS, Osipov SN. Cu-Catalyzed Carbenoid Functionalization of Indoles by Methyl 3,3,3-Trifluoro-2-diazopropionate. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Filak LK, Göschl S, Heffeter P, Ghannadzadeh Samper K, Egger AE, Jakupec MA, Keppler BK, Berger W, Arion VB. Metal-Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation. Organometallics 2013; 32:903-914. [PMID: 23431223 PMCID: PMC3573711 DOI: 10.1021/om3012272] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 11/28/2022]
Abstract
Six novel ruthenium(II)- and osmium(II)-arene complexes with three modified indolo[3,2-c]quinolines have been synthesized in situ starting from 2-aminoindoloquinolines and 2-pyridinecarboxaldehyde in the presence of [M(p-cymene)Cl(2)](2) (M = Ru, Os) in ethanol. All complexes have been characterized by elemental analysis, spectroscopic techniques ((1)H, (13)C NMR, IR, UV-vis), and ESI mass spectrometry, while four complexes were investigated by X-ray diffraction. The complexes have been tested for antiproliferative activity in vitro in A549 (non-small cell lung), SW480 (colon), and CH1 (ovarian) human cancer cell lines and showed IC(50) values between 1.3 and >80 μM. The effects of Ru vs Os and modifications of the lactam unit on intermolecular interactions, antiproliferative activity, and cell cycle are reported. One ruthenium complex and its osmium analogue have been studied for anticancer activity in vivo applied both intraperitoneally and orally against the murine colon carcinoma model CT-26. Interestingly, the osmium(II) complex displayed significant growth-inhibitory activity in contrast to its ruthenium counterpart, providing stimuli for further investigation of this class of compounds as potential antitumor drugs.
Collapse
Affiliation(s)
- Lukas K Filak
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Filak LK, Göschl S, Hackl S, Jakupec MA, Arion VB. Ruthenium- and osmium-arene complexes of 8-substituted indolo[3,2- c]quinolines: Synthesis, X-ray diffraction structures, spectroscopic properties, and antiproliferative activity. Inorganica Chim Acta 2012; 393:252-260. [PMID: 23471093 PMCID: PMC3587412 DOI: 10.1016/j.ica.2012.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Six novel ruthenium(II)- and osmium(II)-arene complexes with indoloquinoline modified ligands containing methyl and halo substituents in position 8 of the molecule backbone have been synthesised and comprehensively characterised by spectroscopic methods (1H, 13C NMR, UV-Vis), ESI mass spectrometry and X-ray crystallography. Binding of indoloquinolines to a metal-arene scaffold makes the products soluble enough in biological media to allow for assaying their antiproliferative activity. The complexes were tested in three human cancer cell lines, namely A549 (non-small cell lung cancer), SW480 (colon carcinoma) and CH1 (ovarian carcinoma), yielding IC50 values in the 10-6-10-7 M concentration range after continuous exposure for 96 h. Compounds with halo substituents in position 8 are more effective cytotoxic agents in vitro than the previously reported species halogenated in position 2 of the indoloquinoline backbone. High antiproliferative activity of both series of substances may be due at least in part to their potential to act as DNA intercalators.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
17
|
Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis 2012; 2012:381029. [PMID: 22888461 PMCID: PMC3408674 DOI: 10.1155/2012/381029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials.
Collapse
|
18
|
|
19
|
|
20
|
Schmidt S, Preu L, Lemcke T, Totzke F, Schächtele C, Kubbutat MH, Kunick C. Dual IGF-1R/SRC inhibitors based on a N′-aroyl-2-(1H-indol-3-yl)-2-oxoacetohydrazide structure. Eur J Med Chem 2011; 46:2759-69. [DOI: 10.1016/j.ejmech.2011.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 01/07/2023]
|
21
|
A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol 2011; 7:544-52. [PMID: 21685895 DOI: 10.1038/nchembio.595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 01/15/2023]
Abstract
The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.
Collapse
|
22
|
Filak LK, Mühlgassner G, Bacher F, Roller A, Galanski M, Jakupec MA, Keppler BK, Arion VB. Ruthenium- and Osmium-Arene Complexes of 2-Substituted Indolo[3,2-c]quinolines: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity. Organometallics 2010; 30:273-283. [PMID: 21253447 PMCID: PMC3022494 DOI: 10.1021/om101004z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 11/30/2022]
Abstract
![]()
The synthesis of new modified indolo[3,2-c]quinoline ligands L1−L8 with metal-binding sites is reported. By coordination to ruthenium− and osmium−arene moieties 16 complexes of the type [(η6-p-cymene)M(L)Cl]Cl (1a,b−8a,b), where M is RuII or OsII and L is L1−L8, have been prepared. All compounds were comprehensively characterized by elemental analysis, electrospray ionization mass spectrometry, IR, UV−vis, and NMR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction (2a, 4a, 4b, 5a, 7a, and 7b). The complexes were tested for antiproliferative activity in vitro in three human cancer cell lines, namely, CH1 (ovarian carcinoma), SW480 (colon adenocarcinoma), and A549 (non-small-cell lung cancer), yielding IC50 values in the submicromolar or low micromolar range.
Collapse
Affiliation(s)
- Lukas K Filak
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Power DP, Lozach O, Meijer L, Grayson DH, Connon SJ. Concise synthesis and CDK/GSK inhibitory activity of the missing 9-azapaullones. Bioorg Med Chem Lett 2010; 20:4940-4. [PMID: 20621478 DOI: 10.1016/j.bmcl.2010.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
A remarkably concise, chromatography-free route to the parent compound of the paullone family of cyclin-dependent kinase (CDK) inhibitors is reported. A similar strategy allowed the synthesis of the hitherto missing 9-azapaullone and its protonated, N-oxidised and N-alkylated derivatives. Screening studies identified an active and strongly selective inhibitor of CDK9/cyclin T.
Collapse
Affiliation(s)
- David P Power
- Centre for Synthesis and Chemical Biology, School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
24
|
Brandt W, Mologni L, Preu L, Lemcke T, Gambacorti-Passerini C, Kunick C. Inhibitors of the RET tyrosine kinase based on a 2-(alkylsulfanyl)-4-(3-thienyl)nicotinonitrile scaffold. Eur J Med Chem 2010; 45:2919-27. [PMID: 20409618 DOI: 10.1016/j.ejmech.2010.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/16/2022]
Abstract
In an approach to optimize 2-(4-fluorobenzylsulfanyl)-4-(2-thienyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (1a), a weak inhibitor of the cancer-related tyrosine kinase RET originating from a screening campaign, analogues with 3-thienyl substitution were prepared. Among the novel derivatives, 2-amino-6-{[2-(4-chlorophenyl)-2-oxoethyl]sulfanyl}-4-(3-thienyl)pyridine-3,5-dicarbonitrile (13 g) was identified as a submicromolar RET inhibitor, displaying 3- and 100-fold selectivity versus ALK and ABL kinases, respectively. The novel inhibitor exhibited antiproliferative activity in the micromolar concentration range against both RET-dependent and RET-independent cancer cell lines. Docking experiments suggest a binding mode of the new inhibitors in the ATP binding pocket of the target kinase, explaining the observed structure-activity relationships.
Collapse
Affiliation(s)
- Wiebke Brandt
- Technische Universität Braunschweig, Institut für Pharmazeutische Chemie, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Nishihara K, Masuda S, Nakagawa S, Yonezawa A, Ichimura T, Bonventre JV, Inui KI. Impact of Cyclin B2 and Cell division cycle 2 on tubular hyperplasia in progressive chronic renal failure rats. Am J Physiol Renal Physiol 2010; 298:F923-34. [PMID: 20071461 DOI: 10.1152/ajprenal.00567.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the specific molecular events of progressive tubular damage in chronic renal failure (CRF), we conducted microarray analyses using isolated proximal tubules from subtotally nephrectomized (Nx) rats as a model of CRF. Our results clearly demonstrated time-dependent changes in gene expression profiles localized to proximal tubules. The expression of mitosis-specific genes Cyclin B2 and Cell division cycle 2 (Cdc2) was significantly and selectively increased in the proximal tubules during the compensated period but decreased to basal level in the end-stage period. Administration of everolimus, a potent inhibitor of mammalian target of rapamycin, markedly reduced compensatory hypertrophy and hyperplasia of epithelial cells, which was accompanied by complete abolishment of the expression of Cyclin B2 and Cdc2 enhancement; renal function was then severely decreased. Treatment with the Cdc2 inhibitor 2-cyanoethyl alsterpaullone clearly decreased epithelial cell hyperplasia, based on staining of phosphorylated histone H3 and Ki-67, while hypertrophy was not inhibited. In conclusion, we have demonstrated roles of Cyclin B2 and Cdc2 in the epithelial hyperplasia in response to Nx. These results advance the knowledge of the contribution of cell cycle regulators, especially M phase, in pathophysiology of tubular restoration and/or degeneration, and these two molecules are suggested to be a marker for the proliferation of proximal tubular cells in CRF.
Collapse
Affiliation(s)
- Kumiko Nishihara
- Department of Pharmacy, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Becker A, Kohfeld S, Lader A, Preu L, Pies T, Wieking K, Ferandin Y, Knockaert M, Meijer L, Kunick C. Development of 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters as selective inhibitors of mitochondrial malate dehydrogenase (mMDH). Eur J Med Chem 2009; 45:335-42. [PMID: 19906467 DOI: 10.1016/j.ejmech.2009.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
A collection of paullones was tested for inhibitory activity against mitochondrial malate dehydrogenase (mMDH) as a biological target for antiproliferative activity. Based on the results of this screening, 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters were developed as selective mMDH inhibitors. The new derivatives did not show noteworthy antiproliferative activity when tested on a panel of cancer cell lines, suggesting that mMDH inhibition is of minor relevance for the growth inhibition caused by paullones.
Collapse
Affiliation(s)
- Anja Becker
- Technische Universität Braunschweig, Institut für Pharmazeutische Chemie, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 2009; 156:885-98. [PMID: 19366350 DOI: 10.1111/j.1476-5381.2008.00085.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Geetha Vani Rayasam
- Department of Pharmacology, Research & Development (R&D III), Ranbaxy Research Labs, Gurgaon, Haryana, India.
| | | | | | | | | |
Collapse
|
28
|
Voigt B, Krug M, Schächtele C, Totzke F, Hilgeroth A. Probing novel 1-aza-9-oxafluorenes as selective GSK-3beta inhibitors. ChemMedChem 2008; 3:120-6. [PMID: 18000938 DOI: 10.1002/cmdc.200700175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Within the histopathology of Alzheimer's disease (AD) certain hallmarks are beeing observed. The occurance of protein deposits belong to such characteristic features. Such deposits can be found extracellular as beta-amyloid (Abeta) plaques and intracellular as neurofibrillary tangles (NFTs). In the search for novel AD therapeutics it became of great interest to investigate the formation of NFTs and their contribution to the AD symptomatic. NFTs consist of hyperphosphorylated tau protein. Within the phosphorylation process of tau protein two kinases are of great importance: cyclin dependent kinase 5 (cdk5) and its truncated regulatory subunit p25 and glycogen synthase kinase 3beta (GSK-3beta). The role of both kinases within the NFT formation process is still under debate. To better understand the pathophysiological process highly selective inhibitors of both kinases are of value. Known inhibitors lack the necessary selectivity. We developed novel 1-aza-9-oxafluo-renes as selective GSK-3beta inhibitors. Structure-activity relationships of a series of 4-phenyl substituted derivatives are discussed. Variation of the 3-side chain led to selective carbonyl amide derivatives with selectivity factors of more than 100 at the tested ATP competitor concentrations. Such selectivities permit specific investigation of the role of GSK-3beta within the NFT formation processes.
Collapse
Affiliation(s)
- Burkhardt Voigt
- Institute of Pharmacy, Martin-Luther University, Halle, Germany, Fax: +49 345 5527026
| | | | | | | | | |
Collapse
|
29
|
Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 2008; 52:3710-7. [PMID: 18644955 DOI: 10.1128/aac.00364-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 "short" (Tb10.161.3140) than for T. brucei GSK-3 "long" (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.
Collapse
|
30
|
Fousteris MA, Papakyriakou A, Koutsourea A, Manioudaki M, Lampropoulou E, Papadimitriou E, Spyroulias GA, Nikolaropoulos SS. Pyrrolo[2,3-a]carbazoles as Potential Cyclin Dependent Kinase 1 (CDK1) Inhibitors. Synthesis, Biological Evaluation, and Binding Mode through Docking Simulations. J Med Chem 2008; 51:1048-52. [DOI: 10.1021/jm0700666] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Reichwald C, Shimony O, Dunkel U, Sacerdoti-Sierra N, Jaffe CL, Kunick C. 2-(3-aryl-3-oxopropen-1-yl)-9-tert-butyl-paullones: a new antileishmanial chemotype. J Med Chem 2008; 51:659-65. [PMID: 18186603 DOI: 10.1021/jm7012166] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A screening program directed to find new agents against Leishmania donovani, the parasite causing visceral leishmaniasis, revealed that paullones attenuate the proliferation of axenic amastigotes. Because these structures were not active in a test system involving infected macrophages, a structure optimization campaign was carried out. Concomitant introduction of an unsaturated side chain into the 2-position and a tert-butyl substituent into the 9-position of the parent scaffold led to compounds inhibiting also parasites dwelling in macrophages. By inclusion of the so elaborated scaffold into a chalcone substructure, the toxicity against uninfected host cells was significantly reduced. For the synthesis of this new compound class, a novel modification of the Heck-type palladium-catalyzed C,C-cross coupling strategy was used, employing a ketone Mannich base as precursor for the alkene reactant. The so-prepared compounds exhibited improved antileishmanial activity both on axenic amastigotes (GI50 < 1 microM) as well as on parasites in infected macrophages.
Collapse
Affiliation(s)
- Christina Reichwald
- Technische Universität Braunschweig, Institut für Pharmazeutische Chemie, Beethovenstrasse 55, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Tymoshenko D. Chapter 1 Benzoheteropines with Fused Pyrrole, Furan and Thiophene Rings. ADVANCES IN HETEROCYCLIC CHEMISTRY 2008. [DOI: 10.1016/s0065-2725(07)00001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007; 152:21-37. [PMID: 17549046 PMCID: PMC1978280 DOI: 10.1038/sj.bjp.0707306] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted biological activity for these novel targets.
Collapse
Affiliation(s)
- S Ekins
- ACT LLC, 1 Penn Plaza, New York, NY 10119, USA.
| | | | | |
Collapse
|
34
|
Zakharov AV, Lagunin AA, Filimonov DA, Poroikov VV. Quantitative structure-activity relationships of cyclin-dependent kinase 1 inhibitors. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Moriarty KJ, Koblish H, Johnson DL, Galemmo RA. Progress in the Development of Agents to Control the Cell Cycle. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/7355_2006_006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
Goodnow RA, Gillespie P. 1Hit and Lead Identification: Efficient Practices for Drug Discovery. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:1-61. [PMID: 17280901 DOI: 10.1016/s0079-6468(06)45501-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Robert A Goodnow
- Discovery Chemistry, Roche Research Center, Nutley, NJ 07110-1199, USA
| | | |
Collapse
|