1
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
3
|
Prescher H, Frank M, Gütgemann S, Kuhfeldt E, Schweizer A, Nitschke L, Watzl C, Brossmer R. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion. J Med Chem 2017; 60:941-956. [DOI: 10.1021/acs.jmedchem.6b01111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Martin Frank
- Molecular
Structure Analysis Core Facility-W160, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | - Astrid Schweizer
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | | | | |
Collapse
|
4
|
Izumi M, Otsuki A, Nishihara M, Okamoto R, Kajihara Y. Chemical synthesis of a synthetic analogue of the sialic acid-binding lectin siglec-7. Chembiochem 2014; 15:2503-7. [PMID: 25277834 DOI: 10.1002/cbic.201402494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 11/09/2022]
Abstract
As a basis for the development of an artificial carbohydrate-binding lectin, we chemically synthesized a domain of siglec-7, a well-characterized sialic-acid-binding lectin. The full polypeptide (127 amino acids) was constructed by sequential native chemical ligation (NCL) of five peptide segments. Because of poor cysteine availability for NCL, cysteine residues were introduced at suitable ligation sites; these cysteine residues were alkylated in order to mimic native glutamine or asparagine residues, or converted to an alanine residue by desulfurization after NCL. After folding the full-length polypeptide, the sialic-acid-binding activity of the synthetic siglec-7 was clearly demonstrated by STD NMR and ELISA experiments. We succeeded in the synthesis of siglec-7 by installing three extra cysteine residues with side-chain modifications and found that these modifications did not affect the binding activity.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)
| | | | | | | | | |
Collapse
|
5
|
Otto DME, Campanero-Rhodes MA, Karamanska R, Powell AK, Bovin N, Turnbull JE, Field RA, Blackburn J, Feizi T, Crocker PR. An expression system for screening of proteins for glycan and protein interactions. Anal Biochem 2011; 411:261-70. [PMID: 21211507 PMCID: PMC3740237 DOI: 10.1016/j.ab.2010.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/22/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022]
Abstract
Here we describe a versatile high-throughput expression system that permits genome-wide screening of type 1 membrane and secreted proteins for interactions with glycans and proteins using both cell-expressed and soluble forms of the expressed proteins. Based on Gateway cloning methodology, we have engineered a destination vector that directs expression of enhanced green fluorescent protein (EGFP)-tagged proteins at the cell surface via a glycosylphosphatidylinositol tail. The EGFP fusion proteins can then be cleaved with PreScission protease to release soluble forms of proteins that can be optionally biotinylated. We demonstrate the utility of this cloning and expression system for selected low-affinity membrane lectins from the siglec family of sialic acid-binding immunoglobulin-like lectins, for the glycosaminoglycan-binding proteins FGF-1 and BACE, and for the heterotypic adhesion molecules JAM-B and JAM-C. Cell-expressed proteins can be evaluated for glycan interactions using polyvalent soluble glycan probes and for protein interactions using either cells or soluble proteins. Following cleavage from the cell surface, proteins were complexed in solution and sufficient avidity was achieved to measure weak protein–glycan and weak protein–protein interactions using glycan arrays and surface plasmon resonance, respectively.
Collapse
Affiliation(s)
- Diana M E Otto
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
7
|
Biassoni R. Natural killer cell receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:35-52. [PMID: 19065782 DOI: 10.1007/978-0-387-09789-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are an important arm of the innate immune response that are directly involved in the recognition and lysis of virus-infected and tumor cells. Such function is under the control of a complex array of germline-encoded receptors able to deliver either inhibitory or activating signals. The majority of inhibitory receptors expressed by NK cells are major histocompatibility complex (MHC) class I-specific and display clonal and stochastic distribution on the cell surface. Thus, a given NK cell expresses at least one self class I inhibitory receptor. Under normal conditions, the strength of inhibitory signals delivered by multiple interactions always overrides the activating signals, resulting in NK cell self-tolerance. Under certain pathological conditions, such as viral infections or tumor transformation, the delicate balance of inhibition versus activation is broken, resulting in downregulation or loss of MHC class I expression. In general, the degree of inhibition induced by class I-specific receptors is proportional to the amount of these molecules on the cell surface. Thus, in transformed cells, this inhibition can be overridden by the triggering signal cascades, leading to cell activation. The majority of triggering receptors expressed by NK cells belong to the multichain immune recognition receptor (MIRR) family and use separate signal-transducing polypeptides similar to those used by other immune receptors such as the T-cell antigen receptor, the B-cell antigen receptor and other receptors expressed by myeloid cells. Inhibitory receptors are not members of the MIRR family but they are relevant for a better understanding the exquisite equilibrium and regulatory crosstalk between positive and negative signals.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16147 Genova, Italy.
| |
Collapse
|
8
|
Zhi Z, Laurent N, Powell AK, Karamanska R, Fais M, Voglmeir J, Wright A, Blackburn JM, Crocker PR, Russell DA, Flitsch S, Field RA, Turnbull JE. A Versatile Gold Surface Approach for Fabrication and Interrogation of Glycoarrays. Chembiochem 2008; 9:1568-75. [DOI: 10.1002/cbic.200700788] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Karamanska R, Clarke J, Blixt O, Macrae JI, Zhang JQ, Crocker PR, Laurent N, Wright A, Flitsch SL, Russell DA, Field RA. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J 2007; 25:69-74. [PMID: 17574526 DOI: 10.1007/s10719-007-9047-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Plant lectin recognition of glycans was evaluated by SPR imaging using a model array of N-biotinylated aminoethyl glycosides of beta-D-glucose (negative control), alpha-D: -mannose (conA-responsive), beta-D-galactose (RCA(120)-responsive) and N-acetyl-beta-D-: glucosamine (WGA-responsive) printed onto neutravidin-coated gold chips. Selective recognition of the cognate ligand was observed when RCA(120) was passed over the array surface. Limited or no binding was observed for the non-cognate ligands. SPR imaging of an array of 40 sialylated and unsialylated glycans established the binding preference of hSiglec7 for alpha2-8-linked disialic acid structures over alpha2-6-sialyl-LacNAcs, which in turn were recognized and bound with greater affinity than alpha2-3-sialyl-LacNAcs. Affinity binding data could be obtained with as little as 10-20 microg of lectin per experiment. The SPR imaging technique was also able to establish selective binding to the preferred glycan ligand when analyzing crude culture supernatant containing 10-20 microg of recombinant hSiglec7-Fc. Our results show that SPR imaging provides results that are in agreement with those obtained from fluorescence based carbohydrate arrays but with the added advantage of label-free analysis.
Collapse
Affiliation(s)
- Rositsa Karamanska
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Swaminathan CP, Brown PH, Roychowdhury A, Wang Q, Guan R, Silverman N, Goldman WE, Boons GJ, Mariuzza RA. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci U S A 2006; 103:684-9. [PMID: 16407132 PMCID: PMC1334652 DOI: 10.1073/pnas.0507656103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The innate immune system constitutes the first line of defense against microorganisms in both vertebrates and invertebrates. Although much progress has been made toward identifying key receptors and understanding their role in host defense, far less is known about how these receptors recognize microbial ligands. Such studies have been severely hampered by the need to purify ligands from microbial sources and a reliance on biological assays, rather than direct binding, to monitor recognition. We used synthetic peptidoglycan (PGN) derivatives, combined with microcalorimetry, to define the binding specificities of human and insect peptidoglycan recognition proteins (PGRPs). We demonstrate that these innate immune receptors use dual strategies to distinguish between PGNs from different bacteria: one based on the composition of the PGN peptide stem and another that senses the peptide bridge crosslinking the stems. To pinpoint the site of PGRPs that mediates discrimination, we engineered structure-based variants having altered PGN-binding properties. The plasticity of the PGRP-binding site revealed by these mutants suggests an intrinsic capacity of the innate immune system to rapidly evolve specificities to meet new microbial challenges.
Collapse
Affiliation(s)
- Chittoor P Swaminathan
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Biassoni R, Dimasi N. Human natural killer cell receptor functions and their implication in diseases. Expert Rev Clin Immunol 2005; 1:405-417. [DOI: 10.1586/1744666x.1.3.405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|