1
|
Cao X, Zhang Y, Ding Y, Wan Y. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol 2024; 25:784-801. [PMID: 38926530 DOI: 10.1038/s41580-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Collapse
Affiliation(s)
- Xinang Cao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
3
|
Haga Y, Bandyopadhyay D, Khatun M, Tran E, Steele R, Banerjee S, Ray R, Nazzal M, Ray RB. Increased expression of long non-coding RNA FIRRE promotes hepatocellular carcinoma by HuR-CyclinD1 axis signaling. J Biol Chem 2024; 300:107247. [PMID: 38556083 PMCID: PMC11061211 DOI: 10.1016/j.jbc.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin D1/genetics
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Mice, Nude
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- Hepatitis C/complications
- Up-Regulation
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Mousumi Khatun
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ellen Tran
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Sumona Banerjee
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA.
| |
Collapse
|
4
|
Watanabe T, Hayashi S, Zhaoyu Y, Inada H, Nagaoka K, Tateyama M, Tanaka Y. A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA. J Gastroenterol 2024; 59:315-328. [PMID: 38315437 DOI: 10.1007/s00535-023-02070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Currently, standard treatments for chronic hepatitis B such as nucleos(t)ide analogs (NAs), effectively reduce hepatitis B virus (HBV) loads but rarely result in a functional cure (defined as sustained HBsAg loss). We report the discovery of a novel, 4-pyridone compound, SAG-524, a potent and orally bioavailable small molecule inhibitor of HBV replication. METHODS The antiviral characteristics and selectivity of SAG-524 and its derivative compound against HBV were evaluated in HBV-infection assays and HBV-infected chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mice with humanized livers (PXB mice), alone or in combination with entecavir. Toxicity studies were conducted in mice and monkeys. RESULTS SAG-524 reduced HBV-DNA (IC50 = 0.92 nM) and HBsAg (IC50 = 1.4 nM) in the supernatant of the HepG2.2.15 cells. SAG-524 selectively destabilized HBV-RNA via PAPD5, but not GAPDH or albumin mRNA, by shortening the poly(A) tail. PAPD5 may also be involved in HBV regulation via ELAVL1. In a study of HBV-infected PXB mice, SAG-524 produced potent reductions of serum HBsAg and HBcrAg, and the minimum effective dose was estimated to be 6 mg/kg/day. The combination therapy with entecavir greatly reduced HBsAg and cccDNA in the liver due to reduction of human hepatocytes with good tolerability. Administration of SAG-524 to monkeys, up to 1000 mg/kg/day for two weeks, led to no significant toxicity, as determined by blood tests and pathological images. CONCLUSIONS We have identified SAG-524 as novel and orally bioavailable HBV-RNA destabilizers which can reduce HBsAg and HBV-DNA levels, and possibly contribute a functional cure.
Collapse
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Yan Zhaoyu
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Hiroki Inada
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Masakuni Tateyama
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan.
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan.
| |
Collapse
|
5
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Effects of combinations of gapmer antisense oligonucleotides on the target reduction. Mol Biol Rep 2023; 50:3539-3546. [PMID: 36787053 PMCID: PMC9925919 DOI: 10.1007/s11033-022-08224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND The co-administration of several therapeutic oligonucleotides targeting the same transcript is a beneficial approach. It broadens the target sites for diseases associated with various mutations or splice variants. However, little is known how a combination of antisense oligonucleotides (ASOs), which is one of the major modalities of therapeutic oligonucleotides, affects the potency. In this study, we aimed to elucidate the combination-effects of ASOs and the relationship between the target sites and potency of different combinations. METHOD AND RESULTS We designed 113 ASOs targeting human superoxide dismutase 1 pre-mRNA and found 13 ASOs that had comparable silencing activity in vitro. An analysis of combination-effects on the silencing potency of 37 pairs of two ASOs on HeLa cells revealed that 29 pairs had comparable potency to that of two ASOs; on the other hand, eight pairs had reduced potency, indicating a negative impact on the activity. A reduced potency was seen in pairs targeting the same intron, exon-intron combination, or two different introns. The sequence distance of target sites was not the major determinant factor of combination-effects. In addition, a combination of three ASOs preserving the potency could be designed by avoiding two-ASO pairs, which had a reduced potency. CONCLUSIONS This study revealed that more than half of the combinations retain their potency by paring two ASOs; in contrast, some pairs had a reduced potency. This could not be predicted only by the distance between the target sites.
Collapse
|
7
|
The RNA-Binding Protein ELAVL1 Regulates Hepatitis B Virus Replication and Growth of Hepatocellular Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23147878. [PMID: 35887229 PMCID: PMC9316910 DOI: 10.3390/ijms23147878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
Previous RNA immunoprecipitation followed by proteomic approaches successfully demonstrated that Embryonic Lethal, Abnormal Vision, Drosophila-Like 1 (ELAVL1) interacts with hepatitis B virus (HBV)-derived RNAs. Although ELAVL family proteins stabilize AU-rich element (ARE)-containing mRNAs, their role in HBV transcription remains unclear. This study conducted loss-of-function assays of ELAVL1 for inducible HBV-replicating HepAD38 cells and HBx-overexpressed HepG2 cells. In addition, clinicopathological analyses in primary hepatocellular carcinoma (HCC) surgical samples were also conducted. Lentivirus-mediated short hairpin RNA knockdown of ELAVL1 resulted in a decrease in both viral RNA transcription and production of viral proteins, including HBs and HBx, probably due to RNA stabilization by ELAVL1. Cell growth of HepAD38 cells was more significantly impaired in ELAVL1-knockdown than those in the control group, with or without HBV replication, indicating that ELAVL1 is involved in proliferation by factors other than HBV-derived RNAs. Immunohistochemical analyses of 77 paired HCC surgical specimens demonstrated that diffuse ELAVL1 expression was detected more frequently in HCC tissues (61.0%) than in non-tumor tissues (27.3%). In addition, the abundant expression of ELAVL1 tended to affect postoperative recurrence in HBV-related HCC patients. In conclusion, ELAVL1 contributes not only to HBV replication but also to HCC cell growth. It may be a potent therapeutic target for HBV-related HCC treatment.
Collapse
|
8
|
Liu J, Wang F, Zhang Y, Liu J, Zhao B. ADAR1-Mediated RNA Editing and Its Role in Cancer. Front Cell Dev Biol 2022; 10:956649. [PMID: 35898396 PMCID: PMC9309331 DOI: 10.3389/fcell.2022.956649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
It is well known that the stability of RNA, the interaction between RNA and protein, and the correct translation of protein are significant forces that drive the transition from normal cell to malignant tumor. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that catalyzes the deamination of adenosine to inosine (A-to-I), which is one dynamic modification that in a combinatorial manner can give rise to a very diverse transcriptome. ADAR1-mediated RNA editing is essential for survival in mammals and its dysregulation results in aberrant editing of its substrates that may affect the phenotypic changes in cancer. This overediting phenomenon occurs in many cancers, such as liver, lung, breast, and esophageal cancers, and promotes tumor progression in most cases. In addition to its editing role, ADAR1 can also play an editing-independent role, although current research on this mechanism is relatively shallowly explored in tumors. In this review, we summarize the nature of ADAR1, mechanisms of ADAR1 editing-dependent and editing-independent and implications for tumorigenesis and prognosis, and pay special attention to effects of ADAR1 on cancers by regulating non-coding RNA formation and function.
Collapse
Affiliation(s)
- Jizhe Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Yindan Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Jingfeng Liu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| |
Collapse
|
9
|
Gaither J, Lin YH, Bundschuh R. RBPBind: Quantitative prediction of Protein-RNA interactions. J Mol Biol 2022; 434:167515. [DOI: 10.1016/j.jmb.2022.167515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
10
|
Ren Y, Huo Y, Li W, He M, Liu S, Yang J, Zhao H, Xu L, Guo Y, Si Y, Zhao H, Rao S, Wang J, Ma Y, Wang X, Yu J, Wang F. A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation. Genome Biol 2021; 22:290. [PMID: 34649616 PMCID: PMC8518180 DOI: 10.1186/s13059-021-02508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells. RESULTS We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity. CONCLUSIONS Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiabin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongmei Zhao
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Lingjie Xu
- Emergency Department of West China Hospital, Sichuan University, Chengdu, 610014, China
| | - Yuehong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
11
|
Specificity of RNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:882-900. [PMID: 33607297 PMCID: PMC9403030 DOI: 10.1016/j.gpb.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/03/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022]
Abstract
The secondary structure is a fundamental feature of both noncoding and messenger RNAs. However, our understanding of the secondary structure of mRNA, especially that of the coding regions, remains elusive, likely due to translation and the lack of RNA-binding proteins that sustain the consensus structure, such as those that bind to noncoding RNA. Indeed, mRNA has recently been found to adopt diverse alternative structures, the overall functional significance of which remains untested. We hereby approached this problem by estimating the folding specificity, i.e., the probability that a fragment of RNA folds back to the same partner once refolded. We showed that the folding specificity of mRNA is lower than that of noncoding RNA and exhibits moderate evolutionary conservation. Notably, we found that specific rather than alternative folding is likely evolutionarily adaptive since specific folding is frequently associated with functionally important genes or sites within a gene. Additional analysis in combination with ribosome density suggests the ability to modulate ribosome movement as one potential functional advantage provided by specific folding. Our findings revealed a novel facet of the RNA structurome with important functional and evolutionary implications and indicated a potential method for distinguishing the mRNA secondary structures maintained by natural selection from molecular noise.
Collapse
|
12
|
Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1581. [PMID: 31970930 DOI: 10.1002/wrna.1581] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Altered gene expression is a characteristic feature of many disease states such as tumorigenesis, and in most cancers, it facilitates cancer cell survival and adaptation. Alterations in global gene expression are strongly impacted by post-transcriptional gene regulation. The RNA binding protein (RBP) HuR (ELAVL1) is an established regulator of post-transcriptional gene regulation and is overexpressed in most human cancers. In many cancerous settings, HuR is not only overexpressed, but it is "overactive" as denoted by increased subcellular localization within the cytoplasm. This dysregulation of HuR expression and cytoplasmic localization allows HuR to stabilize and increase the translation of various prosurvival messenger RNA (mRNAs) involved in the pathogenesis of numerous cancers and various diseases. Based on almost 20 years of work, HuR is now recognized as a therapeutic target. Herein, we will review the role HuR plays in the pathophysiology of different diseases and ongoing therapeutic strategies to target HuR. We will focus on three ongoing-targeted strategies: (1) inhibiting HuR's translocation from the nucleus to the cytoplasm; (2) inhibiting the ability of HuR to bind target RNA; and (3) silencing HuR expression levels. In an oncologic setting, HuR has been demonstrated to be critical for a cancer cell's ability to survive a variety of cancer relevant stressors (including drugs and elements of the tumor microenvironment) and targeting this protein has been shown to sensitize cancer cells further to insult. We strongly believe that targeting HuR could be a powerful therapeutic target to treat different diseases, particularly cancer, in the near future. This article is categorized under: RNA in Disease and Development > RNA in Disease NRA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation.
Collapse
Affiliation(s)
- Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Yoshinaga M, Takeuchi O. RNA binding proteins in the control of autoimmune diseases. Immunol Med 2019; 42:53-64. [DOI: 10.1080/25785826.2019.1655192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Chung T, Kim D. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network. PLoS One 2019; 14:e0216257. [PMID: 31026297 PMCID: PMC6485761 DOI: 10.1371/journal.pone.0216257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
RNA-binding proteins (RBPs) are important in gene expression regulations by post-transcriptional control of RNAs and immune system development and its function. Due to the help of sequencing technology, numerous RNA sequences are newly discovered without knowing their binding partner RBPs. Therefore, demands for accurate prediction method for RBP binding sites are increasing. There are many attempts for RBP binding site predictions using various machine-learning techniques combined with various RNA features. In this work, we present a new deep convolution neural network model trained on CLIP-seq datasets using multi-sized filters and multi-modal features to predict the binding property of RBPs. With this model, we integrated sequence and structure information to extract sequence motifs, structure motifs, and combined motifs at the same time. The RBP binding site prediction on RBP-24 dataset was compared with two multi-modal methods, GraphProt and Deepnet-rbp, using area under curve (AUC) of receiver-operating characteristics (ROC). Our method (average AUC = 0.920) outperformed 20 RBPs with GraphProt (average AUC = 0.888) and 15 RBP with Deepnet-rbp (average AUC = 0.902). The improvement was achieved by using multi-sized convolution filters, where average relative error reduction was 17%. By introducing new RNA structure representation, structure probability matrix, average relative error was reduced by 3% when compared to one-hot encoded secondary structure representation. Interestingly, structure probability matrix was more effective on ALKBH5, where relative error reduction was 30%. We developed new sequence motif enrichment method, which we stated as response enrichment method. We successfully enriched sequence motif for 12 RBPs, which had high resemblance with other literature evidences, RBPgroup and CISBP-RNA. Finally by analyzing these results altogether, we found intricate interplay between sequence motif and structure motif, which agreed with other researches.
Collapse
Affiliation(s)
- Taesu Chung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Karginov FV. HuR controls apoptosis and activation response without effects on cytokine 3' UTRs. RNA Biol 2019; 16:686-695. [PMID: 30777501 DOI: 10.1080/15476286.2019.1582954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
RNA binding proteins regulate gene expression through several post-transcriptional mechanisms. The broadly expressed HuR/ELAVL1 is important for proper function of multiple immune cell types, and has been proposed to regulate cytokine and other mRNA 3' UTRs upon activation. However, this mechanism has not been previously dissected in stable cellular settings. In this study, HuR demonstrated strong anti-apoptotic and activation roles in Jurkat T cells. Detailed transcriptomic analysis of HuR knockout cells revealed a substantial negative impact on the activation program, coordinately preventing the expression of immune response gene categories, including all cytokines. Knockout cells showed a significant defect in IL-2 production, which was rescued upon reintroduction of HuR. Interestingly, the mechanism of HuR regulation did not involve control of the cytokine 3' UTRs: HuR knockout did not affect the activity of 3' UTR reporters in 293 cells, and had no effect on IL-2 and TNF 3' UTRs in resting or activated Jurkats. Instead, impaired cytokine production corresponded with defective induction of the IL-2 promoter upon activation. Accordingly, upregulation of NFATC1 was also impaired, without 3' UTR effects. Together, these results indicate that HuR controls cytokine production through coordinated upstream pathways, and that additional mechanisms must be considered in investigating its function.
Collapse
Affiliation(s)
- Fedor V Karginov
- a Department of Molecular, Cell, and Systems Biology , Institute for Integrative Genome Biology, University of California , Riverside , CA , USA
| |
Collapse
|
16
|
Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc Natl Acad Sci U S A 2019; 116:2935-2944. [PMID: 30718402 PMCID: PMC6386705 DOI: 10.1073/pnas.1808696116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HuR is a pivotal player in binding mRNAs containing AU-rich elements and regulating their stability and decay. HuR embeds three RNA recognition motifs (RRMs). The function of RRM3 is not completely understood, and the structure of the entire Hu protein family is so far unknown. Here, we provide structural and mechanistic insights into how HuR RRM3 discriminates between U-rich and AU-rich targets. RRM3 uses additional mechanisms, like multiple-register binding and homodimerization, to fine-tune its affinity for RNA. These results highlight the multifunctional role of HuR RRM3 but also the subtle adaptability of RRMs, the most abundant RNA-binding domain in eukaryotes. Since elevated HuR levels are associated with disease, our structure may help develop new therapeutic strategies. Human antigen R (HuR) is a key regulator of cellular mRNAs containing adenylate/uridylate–rich elements (AU-rich elements; AREs). These are a major class of cis elements within 3′ untranslated regions, targeting these mRNAs for rapid degradation. HuR contains three RNA recognition motifs (RRMs): a tandem RRM1 and 2, followed by a flexible linker and a C-terminal RRM3. While RRM1 and 2 are structurally characterized, little is known about RRM3. Here we present a 1.9-Å-resolution crystal structure of RRM3 bound to different ARE motifs. This structure together with biophysical methods and cell-culture assays revealed the mechanism of RRM3 ARE recognition and dimerization. While multiple RNA motifs can be bound, recognition of the canonical AUUUA pentameric motif is possible by binding to two registers. Additionally, RRM3 forms homodimers to increase its RNA binding affinity. Finally, although HuR stabilizes ARE-containing RNAs, we found that RRM3 counteracts this effect, as shown in a cell-based ARE reporter assay and by qPCR with native HuR mRNA targets containing multiple AUUUA motifs, possibly by competing with RRM12.
Collapse
|
17
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
18
|
Komnenov D, Scipione C, Bazzi Z, Garabon J, Koschinsky M, Boffa M. Pro-inflammatory cytokines reduce human TAFI expression via tristetraprolin-mediated mRNA destabilisation and decreased binding of HuR. Thromb Haemost 2017; 114:337-49. [DOI: 10.1160/th14-08-0653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/12/2015] [Indexed: 01/26/2023]
Abstract
SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.
Collapse
|
19
|
Re-evaluating Strategies to Define the Immunoregulatory Roles of miRNAs. Trends Immunol 2017; 38:558-566. [PMID: 28666937 DOI: 10.1016/j.it.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
miRNAs play an important role in fine-tuning host immune homeostasis and responses through the regulation of mRNA stability and translation. Studies have demonstrated that miRNA-mediated regulation of gene expression has a profound impact on immune cell development, function, and response to invading pathogens. As we continue to examine the mechanisms by which miRNAs maintain the balance between robust protective host immune responses and dysregulated responses that promote immune pathology, careful consideration of the complexity of post-transcriptional immune regulation is needed. Distinct tissue- and stimulus-specific RNA-RNA and RNA-protein interactions can modulate the functions of a given miRNA. Thus, new challenges emerge in the identification of post-transcriptional coregulatory modules and the genetic factors that impact miRNA function.
Collapse
|
20
|
Lang M, Berry D, Passecker K, Mesteri I, Bhuju S, Ebner F, Sedlyarov V, Evstatiev R, Dammann K, Loy A, Kuzyk O, Kovarik P, Khare V, Beibel M, Roma G, Meisner-Kober N, Gasche C. HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Res 2017; 77:2424-2438. [PMID: 28428272 PMCID: PMC5826591 DOI: 10.1158/0008-5472.can-15-1726] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/30/2015] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
HuR is an RNA-binding protein implicated in immune homeostasis and various cancers, including colorectal cancer. HuR binding to AU-rich elements within the 3' untranslated region of mRNAs encoding oncogenes, growth factors, and various cytokines leads message stability and translation. In this study, we evaluated HuR as a small-molecule target for preventing colorectal cancer in high-risk groups such as those with familial adenomatosis polyposis (FAP) or inflammatory bowel disease (IBD). In human specimens, levels of cytoplasmic HuR were increased in colonic epithelial cells from patients with IBD, IBD-cancer, FAP-adenoma, and colorectal cancer, but not in patients with IBD-dysplasia. Intraperitoneal injection of the HuR small-molecule inhibitor MS-444 in AOM/DSS mice, a model of IBD and inflammatory colon cancer, augmented DSS-induced weight loss and increased tumor multiplicity, size, and invasiveness. MS-444 treatment also abrogated tumor cell apoptosis and depleted tumor-associated eosinophils, accompanied by a decrease in IL18 and eotaxin-1. In contrast, HuR inhibition in APCMin mice, a model of FAP and colon cancer, diminished the number of small intestinal tumors generated. In this setting, fecal microbiota, evaluated by 16S rRNA gene amplicon sequencing, shifted to a state of reduced bacterial diversity, with an increased representation of Prevotella, Akkermansia, and Lachnospiraceae Taken together, our results indicate that HuR activation is an early event in FAP-adenoma but is not present in IBD-dysplasia. Furthermore, our results offer a preclinical proof of concept for HuR inhibition as an effective means of FAP chemoprevention, with caution advised in the setting of IBD. Cancer Res; 77(9); 2424-38. ©2017 AACR.
Collapse
Affiliation(s)
- Michaela Lang
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Katharina Passecker
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Ildiko Mesteri
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florian Ebner
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Vitaly Sedlyarov
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Rayko Evstatiev
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Kyle Dammann
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Alexander Loy
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Orest Kuzyk
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | | | - Christoph Gasche
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Division of Gastroenterology and Hepatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Galloway A, Turner M. Cell cycle RNA regulons coordinating early lymphocyte development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28231639 PMCID: PMC5574005 DOI: 10.1002/wrna.1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. WIREs RNA 2017, 8:e1419. doi: 10.1002/wrna.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
22
|
Nicholson CO, Friedersdorf M, Keene JD. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq. RNA (NEW YORK, N.Y.) 2017; 23:32-46. [PMID: 27742911 PMCID: PMC5159647 DOI: 10.1261/rna.058115.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 05/27/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding RNAs orchestrate post-transcriptional processes through the recognition of specific sites on targeted transcripts. Thus, understanding the connection between binding to specific sites and active regulation of the whole transcript is essential. Many immunoprecipitation techniques have been developed that identify either whole transcripts or binding sites of RBPs on each transcript using cell lysates. However, none of these methods simultaneously measures the strength of each binding site and quantifies binding to whole transcripts. In this study, we compare current procedures and present digestion optimized (DO)-RIP-seq, a simple method that locates and quantifies RBP binding sites using a continuous metric. We have used the RBP HuR/ELAVL1 to demonstrate that DO-RIP-seq can quantify HuR binding sites with high coverage across the entire human transcriptome, thereby generating metrics of relative RNA binding strength. We demonstrate that this quantitative enrichment of binding sites is proportional to the relative in vitro binding strength for these sites. In addition, we used DO-RIP-seq to quantify and compare HuR's binding to whole transcripts, thus allowing for seamless integration of binding site data with whole-transcript measurements. Finally, we demonstrate that DO-RIP-seq is useful for identifying functional mRNA target sets and binding sites where combinatorial interactions between HuR and AGO-microRNAs regulate the fate of the transcripts. Our data indicate that DO-RIP-seq will be useful for quantifying RBP binding events that regulate dynamic biological processes.
Collapse
Affiliation(s)
- Cindo O Nicholson
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Matthew Friedersdorf
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
23
|
Fotinos A, Fritz DT, Lisica S, Liu Y, Rogers MB. Competing Repressive Factors Control Bone Morphogenetic Protein 2 (BMP2) in Mesenchymal Cells. J Cell Biochem 2016. [PMID: 26212702 DOI: 10.1002/jcb.25290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount, timing, and location of bone morphogenetic protein 2 (BMP2) synthesis influences the differentiation of pluripotent mesenchymal cells in embryos and adults. The BMP2 3'untranslated region (3'UTR) contains a highly conserved AU-rich element (ARE) embedded in a sequence that commonly represses gene expression in mesenchymal cells. Computational analyses indicate that this site also may bind several microRNAs (miRNAs). Although miRNAs frequently target AU-rich regions, this ARE is unusual because the miRNAs directly span the ARE. We began to characterize the factors that may regulate Bmp2 expression via this complex site. The activating protein HuR (Hu antigen R, ELAVL1, HGNC:3312) directly binds this ARE and can activate gene expression. An miRNA was demonstrated to reverse HuR-mediated activation. Mutational and RNA-interference evidence also supports an AUF1 (AU-factor-1, HNRNPD, HGNC:5036) contribution to the observed repressive activity of the 3'UTR in mesenchymal cells. A limited number of studies describe how miRNAs interact with ARE-binding proteins that bind adjacent sites. This study is among the first to describe protein/miRNA interactions at the same site.
Collapse
Affiliation(s)
- Anastasios Fotinos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - David T Fritz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Steven Lisica
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Yijun Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Melissa B Rogers
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
24
|
Zhang J, Kong L, Guo S, Bu M, Guo Q, Xiong Y, Zhu N, Qiu C, Yan X, Chen Q, Zhang H, Zhuang J, Wang Q, Zhang SS, Shen Y, Chen M. hnRNPs and ELAVL1 cooperate with uORFs to inhibit protein translation. Nucleic Acids Res 2016; 45:2849-2864. [PMID: 27789685 PMCID: PMC5389705 DOI: 10.1093/nar/gkw991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/23/2016] [Indexed: 01/25/2023] Open
Abstract
Most of our knowledge about translation regulatory mechanisms comes from studies on lower organisms. However, the translation control system of higher organisms is less understood. Here we find that in 5΄ untranslated region (5΄UTR) of human Annexin II receptor (AXIIR) mRNA, there are two upstream open reading frames (uORFs) acting in a fail-safe manner to inhibit the translation from the main AUG. These uORFs are unfavorable for re-initiation after termination of uORF translation. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), hnRNPA0 and ELAV like RNA binding protein 1 (ELAVL1) bind to the 5΄UTR of AXIIR mRNA. They focus the translation of uORFs on uORF1 and attenuate leaky scanning that bypasses uORFs. The cooperation between the two uORFs and the three proteins formed a multiple fail-safe system that tightly inhibits the translation of downstream AXIIR. Such cooperation between multiple molecules and elements reflects that higher organism develops a complex translation regulatory system to achieve accurate and flexible gene expression control.
Collapse
Affiliation(s)
- Jiewen Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijuan Kong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Sichao Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengmeng Bu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qian Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yuan Xiong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ning Zhu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chuan Qiu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuejing Yan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qian Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hongfei Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Qiong Wang
- Department of Cardiology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PN 17033, USA
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meihong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
25
|
Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res 2016; 44:e32. [PMID: 26467480 PMCID: PMC4770198 DOI: 10.1093/nar/gkv1025] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/11/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp.
Collapse
Affiliation(s)
- Sai Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Jingtian Zhou
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hailin Hu
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing 100084, China MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Ligong Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chao Cheng
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
HafezQorani S, Lafzi A, de Bruin RG, van Zonneveld AJ, van der Veer EP, Son YA, Kazan H. Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation. Nucleic Acids Res 2016; 44:e83. [PMID: 26837572 PMCID: PMC4872080 DOI: 10.1093/nar/gkw048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023] Open
Abstract
Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3'UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions.
Collapse
Affiliation(s)
- Saber HafezQorani
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı, No:1, 06800 Ankara, Turkey
| | - Atefeh Lafzi
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı, No:1, 06800 Ankara, Turkey
| | - Ruben G de Bruin
- Einthoven Laboratory of Experimental Vascular Medicine, Albinusdreef 2, 2333 ZA Leiden, The Netherlands Department of Nephrology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory of Experimental Vascular Medicine, Albinusdreef 2, 2333 ZA Leiden, The Netherlands Department of Nephrology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory of Experimental Vascular Medicine, Albinusdreef 2, 2333 ZA Leiden, The Netherlands Department of Nephrology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yeşim Aydın Son
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı, No:1, 06800 Ankara, Turkey
| | - Hilal Kazan
- Department of Computer Engineering, Antalya International University, Çıplaklı Mahallesi, Farabi Caddesi No:23, 07190 Döşemealtı, Antalya, Turkey
| |
Collapse
|
27
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
28
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Griseri P, Pagès G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interferon Cytokine Res 2015; 34:242-54. [PMID: 24697202 DOI: 10.1089/jir.2013.0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Collapse
Affiliation(s)
- Paola Griseri
- 1 U.O.C Medical Genetics, Institute Giannina Gaslini , Genoa, Italy
| | | |
Collapse
|
30
|
Woo JH, Lee JH, Kim H, Choi Y, Park SM, Joe EH, Jou I. MAP kinase phosphatase-1 expression is regulated by 15-deoxy-Δ12,14-prostaglandin J2 via a HuR-dependent post-transcriptional mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:612-25. [PMID: 25805336 DOI: 10.1016/j.bbagrm.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 11/25/2022]
Abstract
In the present study, we demonstrate a mechanism through which 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) induces MKP-1 expression in rat primary astrocytes, leading to the regulation of inflammatory responses. We show that 15d-PGJ2 enhances the efficiency of MKP-1 pre-mRNA processing (constitutive splicing and 3'-end processing) and increases the stability of the mature mRNA. We further report that this occurs via the RNA-binding protein, Hu antigen R (HuR). Our experiments show that HuR knockdown abrogates the 15d-PGJ2-induced increases in the pre-mRNA processing and mature mRNA stability of MKP-1, whereas HuR overexpression further enhances the 15d-PGJ2-induced increases in these parameters. Using cysteine (Cys)-mutated HuR proteins, we show that the Cys-245 residue of HuR (but not Cys-13 or Cys-284) is critical for the direct binding of HuR with 15d-PGJ2 and the effects downstream of this interaction. Collectively, our data show that HuR is a novel target of 15d-PGJ2 and reveal HuR-mediated pre-mRNA processing and mature mRNA stabilization as important regulatory steps in the 15d-PGJ2-induced expression of MKP-1. The potential to use a small molecule such as 15d-PGJ2 to regulate the induction of MKP-1 at multiple levels of gene expression could be exploited as a novel therapeutic strategy aimed at combating a diverse range of MKP-1-associated pathologies.
Collapse
Affiliation(s)
- Joo Hong Woo
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Jee Hoon Lee
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Hyunmi Kim
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Yuree Choi
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Eun-hye Joe
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Ilo Jou
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea.
| |
Collapse
|
31
|
Griseri P, Pagès G. Regulation of the mRNA half-life in breast cancer. World J Clin Oncol 2014; 5:323-334. [PMID: 25114848 PMCID: PMC4127604 DOI: 10.5306/wjco.v5.i3.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
The control of the half-life of mRNA plays a central role in normal development and in disease progression. Several pathological conditions, such as breast cancer, correlate with deregulation of the half-life of mRNA encoding growth factors, oncogenes, cell cycle regulators and inflammatory cytokines that participate in cancer. Substantial stability means that a mRNA will be available for translation for a longer time, resulting in high levels of protein gene products, which may lead to prolonged responses that subsequently result in over-production of cellular mediators that participate in cancer. The stability of these mRNA is regulated at the 3’UTR level by different mechanisms involving mRNA binding proteins, micro-RNA, long non-coding RNA and alternative polyadenylation. All these events are tightly inter-connected to each other and lead to steady state levels of target mRNAs. Compelling evidence also suggests that both mRNA binding proteins and regulatory RNAs which participate to mRNA half-life regulation may be useful prognostic markers in breast cancers, pointing to a potential therapeutic approach to treatment of patients with these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay and discuss the possibility of its implication in breast cancer aggressiveness and the efficacy of targeted therapy.
Collapse
|
32
|
Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol 2014; 15:484-91. [PMID: 24840979 DOI: 10.1038/ni.2887] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
The rapid changes in gene expression that accompany developmental transitions, stress responses and proliferation are controlled by signal-mediated coordination of transcriptional and post-transcriptional mechanisms. In recent years, understanding of the mechanics of these processes and the contexts in which they are employed during hematopoiesis and immune challenge has increased. An important aspect of this progress is recognition of the importance of RNA-binding proteins and noncoding RNAs. These have roles in the development and function of the immune system and in pathogen life cycles, and they represent an important aspect of intracellular immunity.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Alison Galloway
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
33
|
Portal CF, Seifert JM, Buehler C, Meisner-Kober NC, Auer M. Novel 1:1 Labeling and Purification Process for C-Terminal Thioester and Single Cysteine Recombinant Proteins Using Generic Peptidic Toolbox Reagents. Bioconjug Chem 2014; 25:1213-22. [DOI: 10.1021/bc5000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Christophe F. Portal
- School
of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, The King’s Buildings, CH Waddington Building
3.07, Mayfield Road, Edinburgh EH9 3JD, United Kingdom
| | - Jan-Marcus Seifert
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Marinomed Biotechnologie GmbH, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Christof Buehler
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Supercomputing Systems AG, Technoparkstrasse
1, 8005 Zürich, Switzerland
| | - Nicole-Claudia Meisner-Kober
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Novartis Institutes for BioMedical Research, Novartis Campus Forum 1, 4056 Basel, Switzerland
| | - Manfred Auer
- School
of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, The King’s Buildings, CH Waddington Building
3.07, Mayfield Road, Edinburgh EH9 3JD, United Kingdom
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
| |
Collapse
|
34
|
Doh JH, Jung Y, Reinke V, Lee MH. C. elegans RNA-binding protein GLD-1 recognizes its multiple targets using sequence, context, and structural information to repress translation. WORM 2014; 2:e26548. [PMID: 24744981 DOI: 10.4161/worm.26548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans GLD-1, a maxi-KH motif containing RNA-binding protein, has various functions mainly during female germ cell development, suggesting that it likely controls the expression of a selective group of maternal mRNAs. To gain an insight into how GLD-1 specifically recognizes these mRNA targets, we identified 38 biochemically proven GLD-1 binding regions from multiple mRNA targets that are among over 100 putative targets co-immunoprecipitated with GLD-1. The sequence information of these regions revealed three over-represented and phylogenetically conserved sequence motifs. We found that two of the motifs, one of which is novel, are important for GLD-1 binding in several GLD-1 binding regions but not in other regions. Further analyses indicate that the importance of one of the sequence motifs is dependent on two aspects: (1) surrounding sequence information, likely acting as an accessory feature for GLD-1 to efficiently select the sequence motif and (2) RNA secondary structural environment where the sequence motif resides, which likely provides "binding-site accessibility" for GLD-1 to effectively recognize its targets. Our data suggest some mRNAs recruit GLD-1 by a distinct mechanism, which involves more than one sequence motif that needs to be embedded in the correct context and structural environment.
Collapse
Affiliation(s)
- Jung H Doh
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Yuchae Jung
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Valerie Reinke
- Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Min-Ho Lee
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| |
Collapse
|
35
|
Savan R. Post-transcriptional regulation of interferons and their signaling pathways. J Interferon Cytokine Res 2014; 34:318-29. [PMID: 24702117 DOI: 10.1089/jir.2013.0117] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3' untranslated regions (3' UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ~22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3' UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3' UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology, School of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
36
|
Gubin MM, Techasintana P, Magee JD, Dahm GM, Calaluce R, Martindale JL, Whitney MS, Franklin CL, Besch-Williford C, Hollingsworth JW, Abdelmohsen K, Gorospe M, Atasoy U. Conditional knockout of the RNA-binding protein HuR in CD4⁺ T cells reveals a gene dosage effect on cytokine production. Mol Med 2014; 20:93-108. [PMID: 24477678 DOI: 10.2119/molmed.2013.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
The posttranscriptional mechanisms by which RNA binding proteins (RBPs) regulate T-cell differentiation and cytokine production in vivo remain unclear. The RBP HuR binds to labile mRNAs, usually leading to increases in mRNA stability and/or translation. Previous work demonstrated that HuR binds to the mRNAs encoding the Th2 transcription factor trans-acting T-cell-specific transcription factor (GATA-3) and Th2 cytokines interleukin (IL)-4 and IL-13, thereby regulating their expression. By using a novel conditional HuR knockout (KO) mouse in which HuR is deleted in activated T cells, we show that Th2-polarized cells from heterozygous HuR conditional (OX40-Cre HuR(fl/+)) KO mice had decreased steady-state levels of Gata3, Il4 and Il13 mRNAs with little changes at the protein level. Surprisingly, Th2-polarized cells from homozygous HuR conditional (OX40-Cre HuR(fl/fl)) KO mice showed increased Il2, Il4 and Il13 mRNA and protein via different mechanisms. Specifically, Il4 was transcriptionally upregulated in HuR KO T cells, whereas Il2 and Il13 mRNA stabilities increased. Additionally, when using the standard ovalbumin model of allergic airway inflammation, HuR conditional KO mice mounted a robust inflammatory response similar to mice with wild-type HuR levels. These results reveal a complex differential posttranscriptional regulation of cytokines by HuR in which gene dosage plays an important role. These findings may have significant implications in allergies and asthma, as well as autoimmune diseases and infection.
Collapse
Affiliation(s)
- Matthew M Gubin
- University of Missouri, Columbia, Missouri, United States of America
| | | | - Joseph D Magee
- University of Missouri, Columbia, Missouri, United States of America
| | - Garrett M Dahm
- University of Missouri, Columbia, Missouri, United States of America
| | - Robert Calaluce
- University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer L Martindale
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maryln S Whitney
- University of Missouri, Columbia, Missouri, United States of America
| | - Craig L Franklin
- University of Missouri, Columbia, Missouri, United States of America
| | | | - John W Hollingsworth
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ulus Atasoy
- University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
37
|
Mukherjee N, Jacobs NC, Hafner M, Kennington EA, Nusbaum JD, Tuschl T, Blackshear PJ, Ohler U. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol 2014; 15:R12. [PMID: 24401661 PMCID: PMC4053807 DOI: 10.1186/gb-2014-15-1-r12] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/08/2013] [Indexed: 02/05/2023] Open
Abstract
Background ZFP36, also known as tristetraprolin or TTP, and ELAVL1, also known as HuR, are two disease-relevant RNA-binding proteins (RBPs) that both interact with AU-rich sequences but have antagonistic roles. While ELAVL1 binding has been profiled in several studies, the precise in vivo binding specificity of ZFP36 has not been investigated on a global scale. We determined ZFP36 binding preferences using cross-linking and immunoprecipitation in human embryonic kidney cells, and examined the combinatorial regulation of AU-rich elements by ZFP36 and ELAVL1. Results Targets bound and negatively regulated by ZFP36 include transcripts encoding proteins necessary for immune function and cancer, and transcripts encoding other RBPs. Using partial correlation analysis, we were able to quantify the association between ZFP36 binding sites and differential target RNA abundance upon ZFP36 overexpression independent of effects from confounding features. Genes with increased mRNA half-lives in ZFP36 knockout versus wild-type mouse cells were significantly enriched for our human ZFP36 targets. We identified thousands of overlapping ZFP36 and ELAVL1 binding sites, in 1,313 genes, and found that ZFP36 degrades transcripts through specific AU-rich sequences, representing a subset of the U-rich sequences ELAVL1 interacts with to stabilize transcripts. Conclusions ZFP36-RNA target specificities in vivo are quantitatively similar to previously reported in vitro binding affinities. ZFP36 and ELAVL1 bind an overlapping spectrum of RNA sequences, yet with differential relative preferences that dictate combinatorial regulatory potential. Our findings and methodology delineate an approach to unravel in vivo combinatorial regulation by RNA-binding proteins.
Collapse
|
38
|
McFarland AP, Horner SM, Jarret A, Joslyn RC, Bindewald E, Shapiro BA, Delker DA, Hagedorn CH, Carrington M, Gale M, Savan R. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nat Immunol 2014; 15:72-9. [PMID: 24241692 PMCID: PMC4183367 DOI: 10.1038/ni.2758] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022]
Abstract
IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.
Collapse
Affiliation(s)
- Adelle P McFarland
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Stacy M Horner
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2]
| | - Abigail Jarret
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Rochelle C Joslyn
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Don A Delker
- Divison of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Curt H Hagedorn
- 1] Divison of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Utah, Salt Lake City, Utah, USA. [2]
| | - Mary Carrington
- 1] Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. [2] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Li X, Kazan H, Lipshitz HD, Morris QD. Finding the target sites of RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:111-30. [PMID: 24217996 PMCID: PMC4253089 DOI: 10.1002/wrna.1201] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Schulz S, Doller A, Pendini NR, Wilce JA, Pfeilschifter J, Eberhardt W. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR. Cell Signal 2013; 25:2485-95. [PMID: 23978401 DOI: 10.1016/j.cellsig.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 01/21/2023]
Abstract
The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA.
Collapse
Affiliation(s)
- Sebastian Schulz
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
41
|
D’Agostino VG, Adami V, Provenzani A. A novel high throughput biochemical assay to evaluate the HuR protein-RNA complex formation. PLoS One 2013; 8:e72426. [PMID: 23951323 PMCID: PMC3741180 DOI: 10.1371/journal.pone.0072426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022] Open
Abstract
The RNA binding protein HuR/ELAVL1 binds to AU-rich elements (AREs) promoting the stabilization and translation of a number of mRNAs into the cytoplasm, dictating their fate. We applied the AlphaScreen technology using purified human HuR protein, expressed in a mammalian cell-based system, to characterize in vitro its binding performance towards a ssRNA probe whose sequence corresponds to the are present in TNFα 3’ untranslated region. We optimized the method to titrate ligands and analyzed the kinetic in saturation binding and time course experiments, including competition assays. The method revealed to be a successful tool for determination of HuR binding kinetic parameters in the nanomolar range, with calculated Kd of 2.5±0.60 nM, kon of 2.76±0.56*106 M-1 min-1, and koff of 0.007±0.005 min-1. We also tested the HuR-RNA complex formation by fluorescent probe-based RNA-EMSA. Moreover, in a 384-well plate format we obtained a Z-factor of 0.84 and an averaged coefficient of variation between controls of 8%, indicating that this biochemical assay fulfills criteria of robustness for a targeted screening approach. After a screening with 2000 small molecules and secondary verification with RNA-EMSA we identified mitoxantrone as an interfering compound with rHuR and TNFα probe complex formation. Notably, this tool has a large versatility and could be applied to other RNA Binding Proteins recognizing different RNA, DNA, or protein species. In addition, it opens new perspectives in the identification of small-molecule modulators of RNA binding proteins activity.
Collapse
Affiliation(s)
- Vito G. D’Agostino
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Mattarello, Trento, Italy
| | - Valentina Adami
- High Throughput Screening core facility, Centre for Integrative Biology, University of Trento, Mattarello, Trento, Italy
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Mattarello, Trento, Italy
- * E-mail:
| |
Collapse
|
42
|
Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, Fritzsche A, Aeschimann F, Pfanzagl V, Basselet P, Weiler J, Hintersteiner M, Morrissey DV, Meisner-Kober NC. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J 2013; 32:1115-27. [PMID: 23511973 PMCID: PMC3630355 DOI: 10.1038/emboj.2013.52] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/31/2013] [Indexed: 12/24/2022] Open
Abstract
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing.
Collapse
Affiliation(s)
- Lukas Stalder
- Novartis Institutes for Biomedical Research, NIBR Biologics Center, RNAi Therapeutics, Basel 4000, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613-34. [PMID: 22538991 PMCID: PMC3474909 DOI: 10.1007/s00018-012-0990-9] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as "junk DNA", it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5' and 3' untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This review discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Collapse
Affiliation(s)
- Lucy W Barrett
- Centre for Neuromuscular and Neurological Disorders (CNND), The University of Western Australia (M518), 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
44
|
The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet 2012; 8:e1003000. [PMID: 23071454 PMCID: PMC3469421 DOI: 10.1371/journal.pgen.1003000] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022] Open
Abstract
Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs”). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates. Recent studies of functional genetic variation in humans have identified numerous loci that are associated with variation in gene expression levels, called expression quantitative trait loci (eQTLs). The mechanisms by which these loci affect gene expression, however, are still largely unknown. Specifically, since most studies rely on measures of steady-state gene expression levels, they are unable to distinguish between the relative influences of either transcriptional- or decay-related processes. To address this gap, we examined the specific impact of mRNA decay processes on steady-state gene expression levels for over 16,000 genes in human lymphoblastoid cell lines. By characterizing decay rates in 70 individuals, we show that steady-state expression levels are significantly influenced by variation in decay rates for 10% of genes. Yet, for roughly half of these genes, we find that individuals with higher expression levels also have faster decay rates. This pattern points to a non-simple mechanistic interplay between transcriptional and decay processes, especially for genes involved in rapid cellular responses. Finally, we identify 195 genetic variants that are significantly associated with both gene expression variation and variation in mRNA decay rates. Using these data, we estimate that that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates.
Collapse
|
45
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
46
|
Vasudevan S. Functional validation of microRNA-target RNA interactions. Methods 2012; 58:126-34. [PMID: 22910526 DOI: 10.1016/j.ymeth.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small, non-coding RNA regulators of gene expression with important outcomes in cell state, proliferation, metabolism, immunity and development; their deregulation leads to significant clinical consequences. MicroRNAs and their associated target RNAs can be identified by genetic, bioinformatic and biochemical methods. MicroRNAs can recognize target mRNAs via direct base-pairing and recruit effector complexes to modulate their gene expression in a sequence-specific manner. MicroRNA interactions with target RNAs produce their roles in gene expression. The following are some of the validation methods employed to confirm functionally relevant microRNA interactions with their target mRNAs. Each method involves interference with the microRNA or the target mRNA to disable their interaction, which should lead to loss of microRNA-mediated gene expression if the interaction is functionally consequential. Subsequent alleviation of the interference and restoration of productive base-pairing interactions between the microRNA and target should rescue microRNA-mediated gene expression and confirm the functional requirement for direct microRNA-target mRNA interaction. Characterization of functional microRNA interactions with their target mRNAs will provide significant insights into their gene expression regulatory mechanism and lead to the development of potential therapeutic approaches to manipulate these interactions and their consequent gene expression outcomes.
Collapse
Affiliation(s)
- S Vasudevan
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
47
|
Andersen JE, Huang FW, Penner RC, Reidys CM. Topology of RNA-RNA Interaction Structures. J Comput Biol 2012; 19:928-43. [DOI: 10.1089/cmb.2011.0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jørgen E. Andersen
- Center for Quantum Geometry of Moduli Spaces, Aarhus University, Århus, Denmark
| | - Fenix W.D. Huang
- Institut for Matematik og Datalogi, University of Southern Denmark, Odense, Denmark
| | - Robert C. Penner
- Center for Quantum Geometry of Moduli Spaces, Aarhus University, Århus, Denmark
- Math and Physics Departments, California Institute of Technology, Pasadena, California
| | - Christian M. Reidys
- Institut for Matematik og Datalogi, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Idler RK, Hennig GW, Yan W. Bioinformatic identification of novel elements potentially involved in messenger RNA fate control during spermatogenesis. Biol Reprod 2012; 87:138. [PMID: 23053435 PMCID: PMC4435427 DOI: 10.1095/biolreprod.112.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
In eukaryotic cells, 3' untranslated regions (3' UTRs) of mRNA transcripts contain conserved sequence elements (motifs), which, once bound by RNA-binding proteins, can affect mRNA stability and translational efficacy. Despite abundant sequences contained within the 3' UTRs, only a limited number of motifs are known to interact with RNA-binding proteins and have a role in mRNA fate control. Spermatogenesis represents an excellent in vivo model for studying posttranscriptional regulation of gene expression because numerous mRNAs are transcribed in late pachytene spermatocytes and/or round spermatids, but their translation will not occur until many hours or even days later, when they have developed into elongated spermatids, in which transcription has long been shut off because of the increasingly condensed chromatin. Translationally suppressed mRNAs are sequestered and confined to ribonuclear protein particles, and their loading onto the ribosomes marks their translation. By bioinformatic sequence analyses of the 3' UTRs of translationally suppressed mRNAs during spermatogenesis, we identified numerous novel sequence elements overrepresented in the transcripts subject to posttranscriptional regulation than in the unregulated transcripts. These include AU(U/A)(U/A)UGAGU and (A/U)AUUA(U/C/G) for genes translationally upregulated in early spermiogenesis, and (G/A)GUACG(U/C/A)(A/U)(A/U) and UGUAGC for genes translationally upregulated in late spermiogenesis. The bioinformatic approach reported in this study can be adapted for rapid discovery of novel regulatory elements involved in mRNA fate control in a wide range of tissues or organs.
Collapse
Affiliation(s)
| | | | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
49
|
Kundu P, Fabian MR, Sonenberg N, Bhattacharyya SN, Filipowicz W. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res 2012; 40:5088-100. [PMID: 22362743 PMCID: PMC3367187 DOI: 10.1093/nar/gks148] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The microRNA (miRNA)-mediated repression of protein synthesis in mammalian cells is a reversible process. Target mRNAs with regulatory AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTR) can be relieved of miRNA repression under cellular stress in a process involving the embryonic lethal and altered vision family ARE-binding protein HuR. The HuR-mediated derepression occurred even when AREs were positioned at a considerable distance from the miRNA sites raising questions about the mechanism of HuR action. Here, we show that the relief of miRNA-mediated repression involving HuR can be recapitulated in different in vitro systems in the absence of stress, indicating that HuR alone is sufficient to relieve the miRNA repression upon binding to RNA ARE. Using in vitro assays with purified miRISC and recombinant HuR and its mutants, we show that HuR, likely by its property to oligomerize along RNA, leads to the dissociation of miRISC from target RNA even when miRISC and HuR binding sites are positioned at a distance. Further, we demonstrate that HuR association with AREs can also inhibit miRNA-mediated deadenylation of mRNA in the Krebs-2 ascites extract, in a manner likewise depending on the potential of HuR to oligomerize.
Collapse
Affiliation(s)
- Pradipta Kundu
- Friedrich Miescher Institute for Biomedical Research, PO Box 2543, 4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Yoshigai E, Hara T, Okuyama T, Okumura T, Kaibori M, Kwon AH, Nishizawa M. Characterization of natural antisense transcripts expressed from interleukin 1β-inducible genes in rat hepatocytes. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-0874-1-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|