1
|
Janzing NBM, Niehoff M, Sander W, Senges CHR, Schäkermann S, Bandow JE. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS E-based molecular networking. Microbiol Spectr 2024; 12:e0042324. [PMID: 38864648 PMCID: PMC11218499 DOI: 10.1128/spectrum.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.
Collapse
Affiliation(s)
- Niklas B. M. Janzing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Maurice Niehoff
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wolfram Sander
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Melnyk S, Stepanyshyn A, Yushchuk O, Mandler M, Ostash I, Koshla O, Fedorenko V, Kahne D, Ostash B. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Appl Microbiol Biotechnol 2022; 106:1543-1556. [PMID: 35147743 PMCID: PMC9528727 DOI: 10.1007/s00253-022-11814-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/15/2023]
Abstract
Streptomyces roseochromogenes NRRL 3504 is best known as a producer of clorobiocin, a DNA replication inhibitor from the aminocoumarin family of antibiotics. This natural product currently draws attention as a promising adjuvant for co-application with other antibiotics against Gram-negative multidrug-resistant pathogens. Herein, we expand the genetic toolkit for NRRL 3504 by showing that a set of integrative and replicative vectors, not tested previously for this strain, could be conjugally transferred at high frequency from Escherichia coli to NRRL 3504. Using this approach, we leverage a cumate-inducible expression of cluster-situated regulatory gene novG to increase clorobiocin titers by 30-fold (up to approximately 200 mg/L). To our best knowledge, this is the highest level of clorobiocin production reported so far. Our findings set a working ground for further improvement of clorobiocin production as well as for the application of genetic methods to illuminate the cryptic secondary metabolome of NRRL 3504. Key Points • Efficient system for conjugative transfer of plasmids into NRRL 3504 was developed. • Expression of regulatory genes in NRRL 3504 led to increase in clorobiocin titer. • Secondary metabolome of NRRL 3504 becomes an accessible target for genetic manipulations using the expanded vector set and improved intergeneric conjugation protocol.
Collapse
Affiliation(s)
- Sofia Melnyk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Anastasia Stepanyshyn
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Michael Mandler
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
3
|
Dai P, Wang CX, Gao H, Wang QZ, Tang XL, Chen GD, Hong K, Hu D, Yao XS. Characterization of Methyltransferase AlmCII in Chalcomycin Biosynthesis: The First TylF Family O-Methyltransferase Works on a 4'-Deoxysugar. Chembiochem 2017; 18:1510-1517. [PMID: 28488816 DOI: 10.1002/cbic.201700216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/11/2022]
Abstract
Sugar O-methylation is a ubiquitous modification in natural products and plays diverse roles. This realization has inspired many attempts to search for novel methyltransferases. Chalcomycins are a group of 16-membered macrolides containing two methylated sugars that require three methyltransferases for their biosynthesis. Here, we identified that AlmCII, a sugar O-methyltransferase belonging to the TylF family that was previously only known to methylate sugars with a 4'-hydroxy group, can methylate a 4',6'-dideoxysugar during the biosynthesis of chalcomycins. An in vitro enzymatic assay revealed that AlmCII is divalent metal-dependent with an optimal pH of 8.0 and optimal temperature of 42 °C. Moreover, the 3'-O-demethylated chalcomycins exhibit less than 6 % of the antibacterial activity of their parent compounds. This is the first report demonstrating that a TylF family O-methyltransferase can use a 4'-deoxy sugar as a substrate and highlighting the importance of this methylation for the antibacterial activity of chalcomycins.
Collapse
Affiliation(s)
- Ping Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Qiao-Zhen Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Xiao-Long Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, No.345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| |
Collapse
|
4
|
Sanabria-Ríos DJ, Rivera-Torres Y, Maldonado-Domínguez G, Domínguez I, Ríos C, Díaz D, Rodríguez JW, Altieri-Rivera JS, Ríos-Olivares E, Cintrón G, Montano N, Carballeira NM. Antibacterial activity of 2-alkynoic fatty acids against multidrug-resistant bacteria. Chem Phys Lipids 2013; 178:84-91. [PMID: 24365283 DOI: 10.1016/j.chemphyslip.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
The first study aimed at determining the structural characteristics needed to prepare antibacterial 2-alkynoic fatty acids (2-AFAs) was accomplished by synthesizing several 2-AFAs and other analogs in 18-76% overall yields. Among all the compounds tested, the 2-hexadecynoic acid (2-HDA) displayed the best overall antibacterial activity against Gram-positive Staphylococcus aureus (MIC=15.6 μg/mL), Staphylococcus saprophyticus (MIC=15.5 μg/mL), and Bacillus cereus (MIC=31.3 μg/mL), as well as against the Gram-negative Klebsiella pneumoniae (7.8 μg/mL) and Pseudomonas aeruginosa (MIC=125 μg/mL). In addition, 2-HDA displayed significant antibacterial activity against methicillin-resistant S. aureus (MRSA) ATCC 43300 (MIC=15.6 μg/mL) and clinical isolates of MRSA (MIC=3.9 μg/mL). No direct relationship was found between the antibacterial activity of 2-AFAs and their critical micelle concentration (CMC) suggesting that the antibacterial properties of these fatty acids are not mediated by micelle formation. It was demonstrated that the presence of a triple bond at C-2 and the carboxylic acid moiety in 2-AFAs are important for their antibacterial activity. 2-HDA has the potential to be further evaluated for use in antibacterial formulations.
Collapse
Affiliation(s)
- David J Sanabria-Ríos
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States.
| | - Yaritza Rivera-Torres
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States
| | - Gamalier Maldonado-Domínguez
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States
| | - Idializ Domínguez
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States
| | - Camille Ríos
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States
| | - Damarith Díaz
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, United States
| | - José W Rodríguez
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, PO Box 60327, Bayamón, PR 00960, United States
| | - Joanne S Altieri-Rivera
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, PO Box 60327, Bayamón, PR 00960, United States
| | - Eddy Ríos-Olivares
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, PO Box 60327, Bayamón, PR 00960, United States
| | - Gabriel Cintrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, PR 00931-3346, United States
| | - Nashbly Montano
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, PR 00931-3346, United States
| | - Néstor M Carballeira
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, PR 00931-3346, United States
| |
Collapse
|
5
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Flinspach K, Westrich L, Kaysser L, Siebenberg S, Gomez-Escribano JP, Bibb M, Gust B, Heide L. Heterologous expression of the biosynthetic gene clusters of coumermycin A1, clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 2010; 93:823-32. [DOI: 10.1002/bip.21493] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:105-48. [DOI: 10.1007/128_2010_78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Gómez García I, Stevenson CEM, Usón I, Freel Meyers CL, Walsh CT, Lawson DM. The crystal structure of the novobiocin biosynthetic enzyme NovP: the first representative structure for the TylF O-methyltransferase superfamily. J Mol Biol 2009; 395:390-407. [PMID: 19857499 DOI: 10.1016/j.jmb.2009.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/19/2022]
Abstract
NovP is an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high-resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated cosubstrate S-adenosyl-l-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent-metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical 'lid' region that gates access to the cosubstrate binding pocket and an active center that contains a 3-Asp putative metal binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking, we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilize NovP for methylating a range of glycosylated compounds.
Collapse
|
9
|
Heide L. Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins. Biotechnol Adv 2009; 27:1006-1014. [PMID: 19463934 DOI: 10.1016/j.biotechadv.2009.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are inhibitors of gyrase and highly effective antibacterial agents. Their biosynthetic gene clusters have been cloned from the respective Streptomyces producer strains, and the function of nearly all genes contained therein has been elucidated by genetic and biochemical methods. Efficient methods have been developed for the genetic manipulation and the heterologous expression of the clusters, and more than 100 new derivatives of these antibiotics have been generated by metabolic engineering, mutasynthesis and chemoenzymatic synthesis, providing a model for the power of genetic and genomic methods for the generation of new bioactive compounds.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmaceutical Biology, Pharmaceutical Institute, Tübingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
|
11
|
Heide L. Aminocoumarins mutasynthesis, chemoenzymatic synthesis, and metabolic engineering. Methods Enzymol 2009; 459:437-55. [PMID: 19362650 DOI: 10.1016/s0076-6879(09)04618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are formed by different Streptomyces strains and are potent inhibitors of bacterial gyrase. Their biosynthetic gene clusters have been analyzed in detail by genetic and biochemical investigations. Heterologous expression of these gene clusters by site-specific integration into the genome of the fully sequenced host Streptomyces coelicolor A3(2) readily results in an accumulation of the antibiotics in yields similar to the wildtype strains. In recent years, the aminocoumarins have developed into a model system for the generation of new antibiotics by genetic methods. Prior to heterologous expression in S. coelicolor, cosmids containing the complete biosynthetic clusters can be manipulated in Escherichia coli by lambda RED-mediated recombination, creating single or multiple gene replacements or gene deletions. Thereby, mutant strains are generated which are blocked in the synthesis of certain intermediates or in specific tailoring reactions. For instance, mutasynthetic experiments can subsequently be carried out to generate aminocoumarin antibiotics that contain modified acyl moieties attached to the aminocoumarin core, and chemoenzymatic synthesis can be employed for the acylation of the deoxysugar moiety of structural analogues of the aminocoumarin antibiotics. Metabolic engineering-the combination of gene deletions and foreign gene expression via replicative expression vectors-can be used to generate further structural variants of these antibiotics. These methods can be combined, allowing the generation of a wide variety of new compounds. This chapter may provide general pointers for the use of genetic methods in the generation of new antibiotics.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Heide L, Westrich L, Anderle C, Gust B, Kammerer B, Piel J. Use of a Halogenase of Hormaomycin Biosynthesis for Formation of New Clorobiocin Analogues with 5-Chloropyrrole Moieties. Chembiochem 2008; 9:1992-9. [DOI: 10.1002/cbic.200800186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Binz TM, Wenzel SC, Schnell HJ, Bechthold A, Müller R. Heterologous Expression And Genetic Engineering of the Phenalinolactone Biosynthetic Gene Cluster by Using Red/ET Recombineering. Chembiochem 2008; 9:447-54. [DOI: 10.1002/cbic.200700549] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Anderle C, Hennig S, Kammerer B, Li SM, Wessjohann L, Gust B, Heide L. Improved mutasynthetic approaches for the production of modified aminocoumarin antibiotics. ACTA ACUST UNITED AC 2007; 14:955-67. [PMID: 17719494 DOI: 10.1016/j.chembiol.2007.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022]
Abstract
This study reports improved mutasynthetic approaches for the production of aminocoumarin antibiotics. Previously, the mutasynthetic production of aminocoumarins with differently substituted benzoyl moieties was limited by the substrate specificity of the amide synthetase CloL. We expressed two amide synthetases with different substrate specificity, CouL and SimL, in appropriately engineered producer strains. After feeding of precursor analogs that were not accepted by CloL, but by SimL or CouL, a range of aminocoumarins, unattainable in our previous experiments, was produced and isolated in preparative amounts. Further, we developed a two-stage mutasynthesis procedure for the production of hybrid antibiotics that showed the substitution pattern of novobiocin in the aminocoumarin moiety and that of clorobiocin in the deoxysugar moiety. The substitution pattern of the benzoyl moiety was determined by external addition of an appropriate precursor. Twenty-five aminocoumarin compounds were prepared by these methods, and their structures were elucidated with mass and 1H-NMR spectroscopy.
Collapse
Affiliation(s)
- Christine Anderle
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Balibar CJ, Garneau-Tsodikova S, Walsh CT. Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis. ACTA ACUST UNITED AC 2007; 14:679-90. [PMID: 17584615 DOI: 10.1016/j.chembiol.2007.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 05/01/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022]
Abstract
The last stages of assembly of the aminocoumarin antibiotics, clorobiocin and coumermycin A(1), which target the GyrB subunits of bacterial DNA gyrase, involve enzymatic transfer of the pyrrolyl-2-carbonyl acyl group from a carrier protein (CloN1/CouN1) to the 3'-OH of the noviosyl moiety of the antibiotic scaffold. The enzyme, CouN7, will catalyze both the forward and back reaction on both arms of the coumermycin scaffold. This occurs via an O-acyl-Ser(101)-CouN7 intermediate, as shown by transient labeling of the enzyme with [(14)C]acetyl-S-CouN1 as donor and by inactivating mutation of the active site, Ser(101), to Ala. The intermediacy of the pyrrolyl-2-carbonyl-O-CouN7 allows net pyrrole transfer between distinct aminocoumarin scaffolds, for example, between the descarbamoylnovobiocin scaffold and coumermycin A(1) and vice versa. CouN7 also allows shuttling of surrogate acyl groups between noviosyl-aminocoumarin scaffolds to generate new antibiotic variants.
Collapse
Affiliation(s)
- Carl J Balibar
- Department of Biological and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
16
|
Freitag A, Li SM, Heide L. Biosynthesis of the unusual 5,5-gem-dimethyl-deoxysugar noviose: investigation of the C-methyltransferase gene cloU. MICROBIOLOGY-SGM 2006; 152:2433-2442. [PMID: 16849806 DOI: 10.1099/mic.0.28931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aminocoumarin antibiotic clorobiocin contains an unusual branched deoxysugar with a 5,5-gem-dimethyl structure. Inactivation of the putative C-methyltransferase gene cloU was carried out, which led to the loss of the axial methyl group at C-5 of this deoxysugar moiety. This result establishes the function of cloU, and at the same time it proves that the biosynthesis of the deoxysugar moiety of clorobiocin proceeds via a 3,5-epimerization of the dTDP-4-keto-6-deoxyglucose intermediate. The inactivation was carried out on a cosmid which contained the entire clorobiocin biosynthetic gene cluster. Expression of the modified cluster in a heterologous host led to the formation of desmethyl-clorobiocin and a structural isomer thereof. Both compounds were isolated on a preparative scale, their structures were elucidated by 1H-NMR and mass spectroscopy and their antibacterial activity was assayed.
Collapse
Affiliation(s)
- Anja Freitag
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Shu-Ming Li
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Jakimowicz P, Tello M, Meyers CLF, Walsh CT, Buttner MJ, Field RA, Lawson DM. The 1.6-A resolution crystal structure of NovW: a 4-keto-6-deoxy sugar epimerase from the novobiocin biosynthetic gene cluster of Streptomyces spheroides. Proteins 2006; 63:261-5. [PMID: 16411240 DOI: 10.1002/prot.20818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Piotr Jakimowicz
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Flatman RH, Eustaquio A, Li SM, Heide L, Maxwell A. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob Agents Chemother 2006; 50:1136-42. [PMID: 16569821 PMCID: PMC1426943 DOI: 10.1128/aac.50.4.1136-1142.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/26/2005] [Accepted: 01/04/2006] [Indexed: 11/20/2022] Open
Abstract
Novobiocin and clorobiocin are gyrase inhibitors produced by Streptomyces strains. Structurally, the two compounds differ only by substitution at two positions: CH3 versus Cl at position 8' of the aminocoumarin ring and carbamoyl versus 5-methyl-pyrrol-2-carbonyl (MePC) at the 3"-OH of noviose. Using genetic engineering, we generated a series of analogs carrying H, CH3, or Cl at 8' and H, carbamoyl, or MePC at 3"-OH. Comparison of the gyrase inhibitory activities of all nine structural permutations confirmed that acylation of 3"-OH is essential for activity, with MePC being more effective than carbamoyl. Substitution at 8' further enhanced activity, but the effect of CH3 or Cl depended on the nature of the acyl group at 3": in the presence of carbamoyl at 3", CH3 resulted in higher activity; in the presence of MePC at 3", Cl resulted in higher activity. This suggests that the structures of both natural compounds are highly evolved for optimal interaction with gyrase. In a second series of experiments, clorobiocin derivatives with and without the methyl group at 4"-OH of noviose, and with different positions of the MePC group of noviose, were tested. Again clorobiocin was superior to all of its analogs. The activities of all compounds were also tested against topoisomerase IV (topo IV). Clorobiocin stood out as a remarkably effective topo IV inhibitor. The relative activities of the different compounds toward topo IV showed a pattern similar to that of the relative gyrase-inhibitory activities. This is the first report of a systematic evaluation of a series of aminocoumarins against both gyrase and topo IV. The results give further insight into the structure-activity relationships of aminocoumarin antibiotics.
Collapse
Affiliation(s)
- Ruth H Flatman
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Zhang C, Albermann C, Fu X, Peters NR, Chisholm JD, Zhang G, Gilbert EJ, Wang PG, Van Vranken DL, Thorson JS. RebG- and RebM-Catalyzed Indolocarbazole Diversification. Chembiochem 2006; 7:795-804. [PMID: 16575939 DOI: 10.1002/cbic.200500504] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rebeccamycin and staurosporine represent two broad classes of indolocarbazole glycoside natural products with antitumor properties. Based upon previous sequence annotation and in vivo studies, rebG encodes for the rebeccamycin N-glucosyltransferase, and rebM for the requisite 4'-O-methyltransferase. In the current study, an efficient in vivo biotransformation system for RebG was established in both Streptomyces lividans and Escherichia coli. Bioconversion experiments revealed RebG to glucosylate a set of indolocarbazole surrogates, the products of which could be further modified by in vitro RebM-catalyzed 4'-O-methylation. Both RebG and RebM displayed substrate promiscuity, and evidence for a remarkable lack of RebG regioselectivity in the presence of asymmetric substrates is also provided. In the context of the created indolocarbazole analogues, cytotoxicity assays also highlight the importance of 4'-O-methylation for their biological activity.
Collapse
Affiliation(s)
- Changsheng Zhang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leeds JA, Schmitt EK, Krastel P. Recent developments in antibacterial drug discovery: microbe-derived natural products – from collection to the clinic. Expert Opin Investig Drugs 2006; 15:211-26. [PMID: 16503759 DOI: 10.1517/13543784.15.3.211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pharmaceutical industry has historically relied on nature to provide compounds for antibacterial drug discovery. In recent years, several pharmaceutical companies have scaled back their efforts in natural product research. Nevertheless, the screening of natural products for antibacterial activity continues to provide excellent sources of biologically and chemically informative leads for new drugs. New technologies in high-throughput cultivation, genetic approaches to biodiversity and discovery of relatively untapped sources of natural products are expanding the ability to find novel, potent and highly selective antibacterial structures. Advances in purification, dereplication and structure elucidation, combined with the ability to chemically or biologically derivatise hits, aim to make the timeline for natural product-derived drug discovery similar or shorter than that expected for small synthetic molecules. This review addresses the strengths and shortcomings of technologies focused on microbe-derived natural products for antibacterial drug discovery and stresses the need for commitment to these approaches in order to achieve the goal of delivering safe, efficacious and high-quality medicines in the long run.
Collapse
Affiliation(s)
- Jennifer A Leeds
- Infectious Diseases Area, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
21
|
Freitag A, Wemakor E, Li SM, Heide L. Acyl Transfer in Clorobiocin Biosynthesis: Involvement of Several Proteins in the Transfer of the Pyrrole-2-carboxyl Moiety to the Deoxysugar. Chembiochem 2005; 6:2316-25. [PMID: 16276503 DOI: 10.1002/cbic.200500252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clorobiocin is an aminocoumarin antibiotic containing a pyrrole-2-carboxyl moiety, attached through an ester bond to a deoxysugar. The pyrrole moiety is important for the binding of the antibiotic to its biological target, gyrase. The complete biosynthetic gene cluster for clorobiocin has been cloned and sequenced from the natural producer, Streptomyces roseochromogenes DS 12.976. In this study, the genes cloN1 and cloN7 were deleted separately from a cosmid containing the complete clorobiocin cluster. The modified cosmids were introduced into the genome of the heterologous host Streptomyces coelicolor M512 by using the integration functions of the PhiC31 phage. While a heterologous producer strain harbouring the intact clorobiocin biosynthetic gene cluster accumulated clorobiocin, the cloN1- and cloN7-defective integration mutants accumulated a clorobiocin derivative that lacked the pyrrole-2-carboxyl moiety, while also producing free pyrrole-2-carboxylic acid. The structures of these metabolites were confirmed by NMR and MS analysis. These results showed that CloN1 and CloN7, together with the previously investigated CloN2, are involved in the transfer of the pyrrole-2-carboxyl moiety to the deoxysugar of clorobiocin. A possible mechanism for the role of these three proteins in the acyl-transfer process is suggested.
Collapse
Affiliation(s)
- Anja Freitag
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|