1
|
Rey F, Vital XG, Cruz S, Melo T, Lopes D, Calado R, Simões N, Mascaró M, Domingues MR. Habitat shapes the lipidome of the tropical photosynthetic sea slug Elysia crispata. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:382-396. [PMID: 40417258 PMCID: PMC12102446 DOI: 10.1007/s42995-025-00281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/09/2025] [Indexed: 05/27/2025]
Abstract
Sacoglossan sea slugs have attracted considerable scientific attention due to their capacity to retain functional macroalgal chloroplasts inside their cells. This endosymbiotic association is nutritionally relevant for these organisms and represents an interesting research issue for biotechnological applications. The Caribbean species Elysia crispata can integrate chloroplasts from different macroalgal species. The lipidome of chloroplasts includes lipid classes unique to these photosynthetic organelles. Specialized lipids, such as the glycolipids MGDG, DGDG, and SQDG, are essential for maintaining the integrity of both the thylakoid membranes and the overall chloroplast membrane structure. Additionally, lipids are a diverse group of biomolecules playing essential roles at nutritional and physiological levels. A combined approach using LC-HR-MS and MS/MS was employed to determine the polar lipid profile of the photosynthetic sea slug E. crispata from two habitats in the north-western tropical Atlantic (Sistema Arrecifal Veracruzano and Mahahual) and two different feeding conditions (fed and after 1 week of starvation). Significant differences were identified in the abundance of structural and signalling phospholipids (PC, PI, PG, PS, CL) suggesting different nutritional states between populations. The composition of glycolipids demonstrated a clear separation by habitat, but not by feeding conditions. The lower abundance of glycolipids in the Mahahual samples suggests a lower density of chloroplasts in their tissues compared to Veracruz individuals. These results corroborate that 1 week of starvation is insufficient to initiate the degradation of plastid membranes. This study confirms the advantages of using lipidomics as a tool to enhance our knowledge of the ecology of marine invertebrates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-025-00281-1.
Collapse
Affiliation(s)
- Felisa Rey
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Xochitl Guadalupe Vital
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Alcaldía Coyoacán, 04510 Ciudad de Mexico, México
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356 Sisal, Mexico
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nuno Simões
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356 Sisal, Mexico
- International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A and M University-Corpus Christi, Corpus Christi, TX 78412 USA
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, 97356 Sisal, Mexico
| | - Maite Mascaró
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356 Sisal, Mexico
| | - Maria Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Prisa D, Fresco R, Jamal A, Saeed MF, Spagnuolo D. Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture. Life (Basel) 2024; 14:1263. [PMID: 39459563 PMCID: PMC11509091 DOI: 10.3390/life14101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Marine macroalgae, which typically colonize coastal areas, are simple plant organisms. They live on rocks in coastal regions and are classified into red, brown, and green macroalgae. These algae are an important natural resource in agriculture due to their ability to enhance the structural, chemical, and biological properties of soil. Marine macroalgae can be used to produce various biocidal molecules that are effective in controlling plant pathogens. Much of the literature on marine macroalgae and their derivatives focuses primarily on the pharmaceutical field, while their use in agriculture is still considered secondary. However, various studies and experiments have demonstrated their potential to play a significant role in crop protection and enhancement. This review aims to highlight the various applications of macroalgae in plant production. It also emphasizes the biotechnological importance of marine macroalgae derivatives as biofertilizers, molecules for controlling insects and microorganisms, and as plant growth conditioners. Compounds from macroalgae, such as fatty acids, carotenoids, polyphenols, and carbohydrates, are being investigated for their fungicidal, antimicrobial, and antiviral effects against various plant pathogens. Beyond enhancing crop production, macroalgae can also be considered multifunctional bioinoculants suitable for use in organic farming.
Collapse
Affiliation(s)
- Domenico Prisa
- CREA Research Centre for Vegetable and Ornamental Crops, Via Dei Fiori 8, 51012 Pescia, Italy
| | - Roberto Fresco
- CREA Research Centre for Engineering and Agri-Food Transformation, Council for Agricultural Research and Economics, Via della Pascolare 16, 00016 Monterotondo, Italy;
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Damiano Spagnuolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Salita Sperone 31, 98166 Messina, Italy;
| |
Collapse
|
3
|
Lang T, Cummins SF, Paul NA, Campbell AH. Molecular responses of seaweeds to biotic interactions: A systematic review. JOURNAL OF PHYCOLOGY 2024; 60:1036-1057. [PMID: 39298370 DOI: 10.1111/jpy.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Seaweed farming is the single largest aquaculture commodity with >30 million tonnes produced each year. Furthermore, the restoration of lost seaweed forests is gaining significant momentum, particularly for kelps in warming temperate areas. Whether in aquaculture settings, following restoration practices, or in the wild, all seaweeds undergo biotic interactions with a diverse range of co-occurring or cocultured organisms. To date, most research assessing such biotic interactions has focused on the response of the organism interacting with seaweeds, rather than on the seaweeds themselves. However, understanding how seaweeds respond to other organisms, particularly on a molecular scale, is crucial for optimizing outcomes of seaweed farming or restoration efforts and, potentially, also for the conservation of natural populations. In this systematic review, we assessed the molecular processes that seaweeds undergo during biotic interactions and propose priority areas for future research. Despite some insights into the response of seaweeds to biotic interactions, this review specifically highlights a lack of characterization of biomolecules involved in the response to chemical cues derived from interacting organisms (four studies in the last 20 years) and a predominant use of laboratory-based experiments conducted under controlled conditions. Additionally, this review reveals that studies targeting metabolites (70%) are more common than those examining the role of genes (22%) and proteins (8%). To effectively inform seaweed aquaculture efforts, it will be crucial to conduct larger scale experiments simulating natural environments. Also, employing a holistic approach targeting genes and proteins would be beneficial to complement the relatively well-established role of metabolites.
Collapse
Affiliation(s)
- Tomas Lang
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
4
|
Marotta P, Sabatino V, Ambrosino L, Miralto M, Ferrante MI. De novo transcriptome assembly of a lipoxygenase knock-down strain in the diatom Pseudo-nitzschia arenysensis. Sci Data 2024; 11:522. [PMID: 38778120 PMCID: PMC11111692 DOI: 10.1038/s41597-024-03375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.
Collapse
Affiliation(s)
- Pina Marotta
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Valeria Sabatino
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Luca Ambrosino
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Miralto
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Immacolata Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- Associate to the National Institute of Oceanography and Applied Geophysics, 34151, Trieste, Italy.
| |
Collapse
|
5
|
Mannochio-Russo H, Swift SOI, Nakayama KK, Wall CB, Gentry EC, Panitchpakdi M, Caraballo-Rodriguez AM, Aron AT, Petras D, Dorrestein K, Dorrestein TK, Williams TM, Nalley EM, Altman-Kurosaki NT, Martinelli M, Kuwabara JY, Darcy JL, Bolzani VS, Wegley Kelly L, Mora C, Yew JY, Amend AS, McFall-Ngai M, Hynson NA, Dorrestein PC, Nelson CE. Microbiomes and metabolomes of dominant coral reef primary producers illustrate a potential role for immunolipids in marine symbioses. Commun Biol 2023; 6:896. [PMID: 37653089 PMCID: PMC10471604 DOI: 10.1038/s42003-023-05230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil.
| | - Sean O I Swift
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Christopher B Wall
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
- Ecology Behavior and Evolution Section, Department of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrés M Caraballo-Rodriguez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Kathleen Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Taylor M Williams
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Eileen M Nalley
- Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Noam T Altman-Kurosaki
- School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | | | - Jeff Y Kuwabara
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - John L Darcy
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Vanderlan S Bolzani
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, CA, USA
| | - Camilo Mora
- Geography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Anthony S Amend
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
6
|
Chadova K, Velansky P. Lipidome of the Brown Macroalga Undaria pinnatifida: Influence of Season and Endophytic Infection. Mar Drugs 2023; 21:466. [PMID: 37755079 PMCID: PMC10532667 DOI: 10.3390/md21090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
An analysis of the lipidome of the brown alga Undaria pinnatifida (Laminariales) was performed' more than 900 molecular species were identified in 12 polar lipids and 1 neutral lipid using HPLC/MS-MS. The seasonal changes of U. pinnatifida lipidome were determined. It was shown that acclimatization to winter and spring was accompanied by an increase in the unsaturation of both polar and neutral lipids. In autumn and summer, on the contrary, the contents of more saturated molecular species of all lipid classes increased. Based on the data obtained, a scheme for the polar and neutral lipid synthesis in brown algae was proposed. In addition, the influence of infection with the brown filamentous endophyte Laminariocolax aecidioides (Ectocarpales) on U. pinnatifida lipidome was studied. It was found that infection has the most noticeable effect on the molecular species composition of triacylglycerides, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylhydroxyethylglycine of the host macrophyte. In infected samples of algae, changes in the composition of triacylglycerides were revealed both in areas with the presence of an endophyte and in adjacent intact tissues, which may indicate the occurrence of a secondary infection.
Collapse
Affiliation(s)
- Ksenia Chadova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia;
| | | |
Collapse
|
7
|
Wang G, Ren Y, Wang S, Hou M, Weinberger F. Shifting chemical defence or novel weapons? A review of defence traits in Agarophyton vermiculophyllum and other invasive seaweeds. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:138-149. [PMID: 37073358 PMCID: PMC10077278 DOI: 10.1007/s42995-021-00109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called "novel weapons") are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.
Collapse
Affiliation(s)
- Gaoge Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yifei Ren
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Shasha Wang
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Minglei Hou
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
8
|
Sabatino V, Orefice I, Marotta P, Ambrosino L, Chiusano ML, d'Ippolito G, Romano G, Fontana A, Ferrante MI. Silencing of a Pseudo-nitzschia arenysensis lipoxygenase transcript leads to reduced oxylipin production and impaired growth. THE NEW PHYTOLOGIST 2022; 233:809-822. [PMID: 34533849 DOI: 10.1111/nph.17739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Because of their importance as chemical mediators, the presence of a rich and varied family of lipoxygenase (LOX) products, collectively named oxylipins, has been investigated thoroughly in diatoms, and the involvement of these products in important processes such as bloom regulation has been postulated. Nevertheless, little information is available on the enzymes and pathways operating in these protists. Exploiting transcriptome data, we identified and characterized a LOX gene, PaLOX, in Pseudo-nitzschia arenysensis, a marine diatom known to produce different species of oxylipins by stereo- and regio-selective oxidation of eicosapentaenoic acid (EPA) at C12 and C15. PaLOX RNA interference correlated with a decrease of the lipid-peroxidizing activity and oxylipin synthesis, as well as with a reduction of growth of P. arenysensis. In addition, sequence analysis and structure models of the C-terminal part of the predicted protein closely fitted with the data for established LOXs from other organisms. The presence in the genome of a single LOX gene, whose downregulation impairs both 12- and 15-oxylipins synthesis, together with the in silico 3D protein modelling suggest that PaLOX encodes for a 12/15S-LOX with a dual specificity, and provides additional support to the correlation between cell growth and oxylipin biosynthesis in diatoms.
Collapse
Affiliation(s)
- Valeria Sabatino
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Pina Marotta
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Maria Luisa Chiusano
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
- Department of Agriculture, Università degli Studi di Napoli Federico II, Portici, 80055, Italy
| | - Giuliana d'Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli - Naples, I-80078, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli - Naples, I-80078, Italy
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Dipartimento di Biologia, Università di Napoli "Federico II", Via Cupa Nuova Cinthia 21, Napoli, 80126, Italy
| | | |
Collapse
|
9
|
Jagusch H, Werner M, Koenis D, Dalli J, Werz O, Pohnert G. 14,17,18-Trihydroxy-Eicosatetraenoic Acid: A Novel Pro-Resolving Lipid Mediator from Marine Microalgae. ACS Pharmacol Transl Sci 2021; 4:1188-1194. [PMID: 34151208 DOI: 10.1021/acsptsci.1c00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Specialized pro-resolving mediators (SPMs) are enzymatically oxygenated derivatives of polyunsaturated fatty acids that function as central immunoregulators in mammals. Among them are resolvins (Rvs) that stimulate the clearance of harmful stimuli and limit pro-inflammatory processes. Because of their beneficial features and their high potency, SPMs are promising molecules for anti-inflammatory therapy. Besides mammals, also marine algae form lipid mediators such as prostaglandins and leukotrienes. In particular, microalgae are attractive candidates for the production of bioactive high-value metabolites. Here, we identified the diatom Cylindrotheca closterium as a prolific producer of SPMs. The diatom forms RvE3 and novel structurally related eicosanoids, including 14S/R,17R,18R-trihydroxy-eicosatetraenoic acid, which displays inflammation-resolving and anti-inflammatory bioactivities. This pro-resolving compound might enable advancements in anti-inflammatory therapy in mammals.
Collapse
Affiliation(s)
- Hans Jagusch
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Markus Werner
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Duco Koenis
- William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, United Kingdom
| | - Oliver Werz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
10
|
Pinto C, Ibáñez MR, Loyola G, León L, Salvatore Y, González C, Barraza V, Castañeda F, Aldunate R, Contreras-Porcia L, Fuenzalida K, Bronfman FC. Characterization of an Agarophyton chilense Oleoresin Containing PPARγ Natural Ligands with Insulin-Sensitizing Effects in a C57Bl/6J Mouse Model of Diet-Induced Obesity and Antioxidant Activity in Caenorhabditis elegans. Nutrients 2021; 13:1828. [PMID: 34071972 PMCID: PMC8227508 DOI: 10.3390/nu13061828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022] Open
Abstract
The biomedical potential of the edible red seaweed Agarophyton chilense (formerly Gracilaria chilensis) has not been explored. Red seaweeds are enriched in polyunsaturated fatty acids and eicosanoids, which are known natural ligands of the PPARγ nuclear receptor. PPARγ is the molecular target of thiazolidinediones (TZDs), drugs used as insulin sensitizers to treat type 2 diabetes mellitus. Medical use of TZDs is limited due to undesired side effects, a problem that has triggered the search for selective PPARγ modulators (SPPARMs) without the TZD side effects. We produced Agarophyton chilense oleoresin (Gracilex®), which induces PPARγ activation without inducing adipocyte differentiation, similar to SPPARMs. In a diet-induced obesity model of male mice, we showed that treatment with Gracilex® improves insulin sensitivity by normalizing altered glucose and insulin parameters. Gracilex® is enriched in palmitic acid, arachidonic acid, oleic acid, and lipophilic antioxidants such as tocopherols and β-carotene. Accordingly, Gracilex® possesses antioxidant activity in vitro and increased antioxidant capacity in vivo in Caenorhabditis elegans. These findings support the idea that Gracilex® represents a good source of natural PPARγ ligands and antioxidants with the potential to mitigate metabolic disorders. Thus, its nutraceutical value in humans warrants further investigation.
Collapse
Affiliation(s)
- Claudio Pinto
- Postgraduate Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Center for Aging and Regeneration (CARE), Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - María Raquel Ibáñez
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Gloria Loyola
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Luisa León
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Yasmin Salvatore
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Carla González
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Víctor Barraza
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Francisco Castañeda
- Department of Ecology and Biodiversity, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8320000, Chile; (F.C.); (L.C.-P.)
- Quintay Marine Research Center (CIMARQ), Faculty of Life Sciences, Universidad Andres Bello, Valparaiso, Quintay 2480000, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Rebeca Aldunate
- Faculty of Sciences, School of Biotechnology, Universidad Santo Tomas, Santiago 8320000, Chile;
| | - Loretto Contreras-Porcia
- Department of Ecology and Biodiversity, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8320000, Chile; (F.C.); (L.C.-P.)
- Quintay Marine Research Center (CIMARQ), Faculty of Life Sciences, Universidad Andres Bello, Valparaiso, Quintay 2480000, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Karen Fuenzalida
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Francisca C. Bronfman
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| |
Collapse
|
11
|
Ota K, Kamaike K, Miyaoka H. Total Synthesis of Chlorinated Oxylipin Eiseniachloride B. Chem Pharm Bull (Tokyo) 2021; 69:590-594. [PMID: 34078805 DOI: 10.1248/cpb.c21-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eiseniachloride B is a marine chlorinated oxylipin isolated from the brown alga Eisenia bicyclis. This natural product contains cyclopentane, chlorohydrin, and 14-membered lactone systems that incorporate five stereogenic centers. In this paper, we report on the total synthesis of structurally unique oxylipin eiseniachloride B from optically active lactol via ecklonialactone B in a linear sequence comprising 11 steps with a 12.1% overall yield.
Collapse
Affiliation(s)
- Koichiro Ota
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Kazuo Kamaike
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Miyaoka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
12
|
Emami S, Zhang Z, Taha AY. Quantitation of Oxylipins in Fish and Algae Oil Supplements Using Optimized Hydrolysis Procedures and Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass-Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9329-9344. [PMID: 32687334 DOI: 10.1021/acs.jafc.0c02461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fish and algae oil supplements are enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are precursors to oxidized fatty acids, known as oxylipins. Here, we optimized a base hydrolysis method for measuring oxylipins in oil with ultrahigh-performance liquid chromatography coupled to tandem mass-spectrometry (UPLC-MS/MS) and quantified them in fish and algae oil supplements. Hydrolysis of 2 μL of oil with sodium carbonate resulted in greater oxylipin concentrations and minimal matrix effects, compared to higher oil volumes (10, 20, and 30 μL). Oxylipin yield was higher when oil was hydrolyzed in methanol containing 0.1% acetic acid and 0.1% butylated hydroxytoluene, compared to no methanol, and using sodium hydroxide versus sodium carbonate. Oxylipins extracted from 2 μL of oil using sodium hydroxide in solvent showed that EPA-derived oxylipins were most abundant in fish oil (84-87%), whereas DHA-oxylipins were abundant in algae oil (83%). This study shows that fish and algae oils are direct sources of EPA- and DHA-derived oxylipins.
Collapse
Affiliation(s)
- Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, California 95616, United States
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, California 95616, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Jagusch H, Baumeister TUH, Pohnert G. Mammalian-Like Inflammatory and Pro-Resolving Oxylipins in Marine Algae. Chembiochem 2020; 21:2419-2424. [PMID: 32239741 PMCID: PMC7496315 DOI: 10.1002/cbic.202000178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Indexed: 12/31/2022]
Abstract
Oxylipins constitute a family of oxidized fatty acids, that are well known as tissue hormones in mammals. They contribute to inflammation and its resolution. The major classes of these lipid mediators are inflammatory prostaglandins (PGs) and leukotrienes (LTs) as well as pro-resolving resolvins (Rvs). Understanding their biosynthetic pathways and modes of action is important for anti-inflammatory interventions. Besides mammals, marine algae also biosynthesize mammalian-like oxylipins and thus offer new opportunities for oxylipin research. They provide prolific sources for these compounds and offer unique opportunities to study alternative biosynthetic pathways to the well-known lipid mediators. Herein, we discuss recent findings on the biosynthesis of oxylipins in mammals and algae including an alternative pathway to prostaglandin E2 , a novel pathway to a precursor of leukotriene B4 , and the production of resolvins in algae. We evaluate the pharmacological potential of the algal metabolites with implications in health and disease.
Collapse
Affiliation(s)
- Hans Jagusch
- Department of Instrumental Analytics/Bioorganic Analytics Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Tim U. H. Baumeister
- Fellow Group Plankton Community InteractionMax Planck Institute for Chemical EcologyHans-Knöll-Straße 807745JenaGermany
| | - Georg Pohnert
- Department of Instrumental Analytics/Bioorganic Analytics Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
- Fellow Group Plankton Community InteractionMax Planck Institute for Chemical EcologyHans-Knöll-Straße 807745JenaGermany
| |
Collapse
|
14
|
Rey F, Melo T, Cartaxana P, Calado R, Domingues P, Cruz S, Domingues MRM. Coping with Starvation: Contrasting Lipidomic Dynamics in the Cells of Two Sacoglossan Sea Slugs Incorporating Stolen Plastids from the Same Macroalga. Integr Comp Biol 2020; 60:43-56. [PMID: 32294176 DOI: 10.1093/icb/icaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several species of sacoglossan sea slugs are able to sequester chloroplasts from algae and incorporate them into their cells. However, the ability to maintain functional "stolen" plastids (kleptoplasts) can vary significantly within the Sacoglossa, giving species different capacities to withstand periods of food shortage. The present study provides an insight on the comparative shifts experienced by the lipidome of two sacoglossan sea slug species, Elysia viridis (long-term retention of functional chloroplasts) and Placida dendritica (retention of non-functional chloroplasts). A hydrophilic interaction liquid chromatography-mass spectrometry approach was employed to screen the lipidome of specimens from both species feeding on the macroalga Codium tomentosum and after 1-week of starvation. The lipidome of E. viridis was generally unaffected by the absence of food, while that of P. dendritica varied significantly. The retention of functional chloroplasts by E. viridis cells allows this species to endure periods of food shortage, while in P. dendritica a significant reduction in the amount of main lipids was the consequence of the consumption of its own mass to endure starvation. The large proportion of ether phospholipids (plasmalogens) in both sea slug species suggests that these compounds may play a key role in chloroplast incorporation in sea slug cells and/or be involved in the reduction of the oxidative stress resulting from the presence of kleptoplasts.
Collapse
Affiliation(s)
- Felisa Rey
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Tânia Melo
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paulo Cartaxana
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sónia Cruz
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - M Rosário M Domingues
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
15
|
Jagusch H, Werner M, Okuno T, Yokomizo T, Werz O, Pohnert G. An Alternative Pathway to Leukotriene B4 Enantiomers Involving a 1,8-Diol-Forming Reaction of an Algal Oxylipin. Org Lett 2019; 21:4667-4670. [DOI: 10.1021/acs.orglett.9b01554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hans Jagusch
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Markus Werner
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Oliver Werz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Department of Instrumental Analytics/Bioorganic Analytics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
16
|
Honda M, Ishimaru T, Itabashi Y, Vyssotski M. Glycerolipid Composition of the Red Macroalga Agarophyton Chilensis and Comparison to the Closely Related Agarophyton Vermiculophyllum Producing Different Types of Eicosanoids. Mar Drugs 2019; 17:md17020096. [PMID: 30717350 PMCID: PMC6410328 DOI: 10.3390/md17020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
The red macroalga Agarophyton chilensis is a well-known producer of eicosanoids such as hydroxyeicosatetraenoic acids, but the alga produces almost no prostaglandins, unlike the closely related A. vermiculophyllum. This indicates that the related two algae would have different enzyme systems or substrate composition. To carry out more in-depth discussions on the metabolic pathway of eicosanoids between the two algae, we investigated the characteristics of glycerolipids, which are the substrates of eicosanoids production, of A. chilensis and compared them to the reported values of A. vermiculophyllum. In A. chilensis, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylcholine (PC) were the major lipid classes and accounted for 44.4% of the total lipid extract. The predominant fatty acids were arachidonic acid (20:4n-6), an eicosanoids precursor, and palmitic acid (16:0). The 20:4n-6 content was extremely high in MGDG and PC (>70%), and the 16:0 content was extremely high in DGDG and SQDG (>40%). A chiral-phase HPLC analysis showed that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The glycerolipid molecular species were determined by reversed-phase HPLC–ESI–MS analysis. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (63.8%) and PC (48.2%), 20:4n-6/16:0 for DGDG (71.1%) and SQDG (29.4%). These lipid characteristics of A. chilensis were almost the same as those of A. vermiculophyllum. Hence, the differences of the eicosanoids producing ability between the two algae would not be due to the difference of substrate composition but the difference of enzyme system.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Takashi Ishimaru
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate 041-0811, Japan.
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate 041-0811, Japan.
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan.
| | - Mikhail Vyssotski
- Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand.
| |
Collapse
|
17
|
Chen H, Yang R, Chen J, Luo Q, Cui X, Yan X, Gerwick WH. 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime and induce defense of marine alga. BMC PLANT BIOLOGY 2019; 19:37. [PMID: 30669983 PMCID: PMC6341616 DOI: 10.1186/s12870-019-1642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/09/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Short chain oxylipins in plants as the main volatile organic carbon have been speculated to playing an important role for plant innate immunity, however, not yet intensively studied and far away established as the fully recognized algae defense signals. RESULTS The production of 1-octen-3-ol is self-amplified via the fatty acid-oxylipin metabolic cycle through positive feedback loop. Production of 1-octen-3-ol may act as a messenger that induces P. haitanensis to be in a "primed" state and ready for defense by upregulating the synthesis of methyl jasmonic acid, indole-3-acetic acid, and gibberellin A3. Production of these oxylipins also adjust the redox state in cells, resulting in host defense activation. CONCLUSIONS We provide the first demonstration that 1-octen-3-ol from P. haitanensis, can act as a self-stimulating community messenger. The multiple effects of 1-octen-3-ol may explain why P. haitanensis, a very ancient lineage within plant kingdom, thrives in the niche of intertidal zones.
Collapse
Affiliation(s)
- Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Juanjuan Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Qijun Luo
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Xiaoshan Cui
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
18
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Haploid females in the isomorphic biphasic life-cycle of Gracilaria chilensis excel in survival. BMC Evol Biol 2018; 18:174. [PMID: 30458728 PMCID: PMC6247624 DOI: 10.1186/s12862-018-1285-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Conditional differentiation is one of the most fundamental drivers of biodiversity. Competitive entities (usually species) differ in environmental or ecological niche enabling them to co-exist. Conditional differentiation of haploid and diploid generations is considered to be a requirement for the evolutionary stability of isomorphic biphasic life-cycles and the cause for the natural occurrence of both phases at uneven abundances. Theoretically, stage dependent survival rates are the most efficient way to explain conditional differentiation. Results We tested for conditional differentiation in survival rates among life stages (haploid males, haploid females, and diploids) of Gracilaria chilensis, an intertidal red alga occurring along the Chilean shores. Therefore, the fate of individuals was followed periodically for 3 years in five intertidal pools and, for the first time in isomorphic red algae, a composite model of the instantaneous survival rates was applied. The results showed the survival dependency on density (both competition and Allee effects), fertility, age, size, season and location, as well as the differentiation among stages for the survival dependencies of these factors. The young haploid females survived more than the young of the other stages under Allee effects during the environmentally stressful season at the more exposed locations, and under self-thinning during the active growth season. Furthermore, fertile haploid females had a higher survival than fertile haploid males or fertile diploids. Conclusions Here, we show a survival advantage of haploids over diploids. The haploid females probably optimize their resource management targeting structural and physiological adaptations that significantly enhance survival under harsher conditions. In a companion paper we demonstrate a fertility advantage of diploids over haploids. Together, the survival and fertility differentiation support the evolution and prevalence of biphasic life-cycles. Electronic supplementary material The online version of this article (10.1186/s12862-018-1285-z) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Balduyck L, Bruneel C, Goiris K, Dejonghe C, Foubert I. Influence of High Pressure Homogenization on Free Fatty Acid Formation in Nannochloropsis
sp. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lieselot Balduyck
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Charlotte Bruneel
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Koen Goiris
- KU Leuven Technology Campus Gent, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation, and Brewing Technology (EFBT); Gebroeders De Smetstraat 1 9000 Gent Belgium
| | - Céline Dejonghe
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| | - Imogen Foubert
- KU Leuven Kulak, Research Unit Food & Lipids; E. Sabbelaan 53 8500 Kortrijk Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven; Kasteelpark Arenberg 20 3001 Leuven Belgium
| |
Collapse
|
21
|
Xiong Y, Yang R, Sun X, Yang H, Chen H. Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1225-1237. [PMID: 29755207 PMCID: PMC5928181 DOI: 10.1007/s10811-017-1279-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 06/08/2023]
Abstract
A variety of different symbiotic microbial communities are harbored on the surface of seaweeds, the interactions of which depend upon nutritional exchanges between the microbes and the hosts. Metabolomic profiling is able to provide a comprehensive and unbiased snapshot of the metabolites associated with seaweed-microbe interactions. In this study, the relationships between phycosphere bacteria and the red alga Pyropia haitanensis were investigated on a metabolomic basis using gas chromatography-mass spectrometry, and the pathways of the interactions between the seaweed and its associated phycospheric microbes were revealed. Bacillus sp. WPySW2, one bacterial species isolated from the phycosphere of Pyropia species, had a significant influence on the metabolomic profile of the algae. Some of the intracellular metabolites such as phenylalanine, leucine, isoleucine, valine, proline, tyrosine, threonine, octadecanoic acid, hexadecanoic acid, and citric acid were downregulated in the thalli of P. haitanensis when it was co-cultured with Bacillus sp. WPySW2, while several special metabolites including melibiose, serine, glycerol-3-phosphate, galactosylglycerol, and alanine were upregulated. The results demonstrated that P. haitanensis grew better when it was co-cultured with Bacillus sp. WPySW2 at 20 °C. In conclusion, several main intracellular metabolites were downregulated and upregulated, which might have facilitated bacterial colonization.
Collapse
Affiliation(s)
- Yuqin Xiong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| | - Xiaoxiao Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
| | - Huatian Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| | - Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, No. 818 Fenghua Road, Post Box 71, Ningbo, Zhejiang 315211 China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211 China
| |
Collapse
|
22
|
Belghit I, Rasinger JD, Heesch S, Biancarosa I, Liland N, Torstensen B, Waagbø R, Lock EJ, Bruckner CG. In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Balduyck L, Stock T, Bijttebier S, Bruneel C, Jacobs G, Voorspoels S, Muylaert K, Foubert I. Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Kodama S, Nakajima S, Ozaki H, Takemoto R, Itabashi Y, Kuksis A. Enantioseparation of hydroxyeicosatetraenoic acids by hydroxypropyl-γ-cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 2016; 37:3196-3205. [DOI: 10.1002/elps.201600213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Shuji Kodama
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Shota Nakajima
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Hiromichi Ozaki
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Ryota Takemoto
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Arnis Kuksis
- Banting and Best Department of Medical Research; University of Toronto; Toronto ON Canada
| |
Collapse
|
25
|
Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ. Metabolomics: an emerging frontier of systems biology in marine macrophytes. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Barbosa M, Valentão P, Andrade PB. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Mar Drugs 2016; 14:23. [PMID: 26805855 PMCID: PMC4728519 DOI: 10.3390/md14010023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| |
Collapse
|
27
|
Hammann M, Rempt M, Pohnert G, Wang G, Boo SM, Weinberger F. Increased potential for wound activated production of Prostaglandin E 2 and related toxic compounds in non-native populations of Gracilaria vermiculophylla. HARMFUL ALGAE 2016; 51:81-88. [PMID: 28003063 DOI: 10.1016/j.hal.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/15/2015] [Accepted: 11/21/2015] [Indexed: 06/06/2023]
Abstract
The capacity of the East Asian seaweed Gracilaria vermiculophylla ("Ogonori") for production of prostaglandin E2 from arachidonic acid occasionally causes food poisoning after ingestion. During the last two decades the alga has been introduced to Europe and North America. Non-native populations have been shown to be generally less palatable to marine herbivores than native populations. We hypothesized that the difference in palatability among populations could be due to differences in the algal content of prostaglandins. We therefore compared the capacity for wound-activated production of prostaglandins and other eicosatetraenoid oxylipins among five native populations in East Asia and seven non-native populations in Europe and NW Mexico, using a targeted metabolomics approach. In two independent experiments non-native populations exhibited a significant tendency to produce more eicosatetraenoids than native populations after acclimation to identical conditions and subsequent artificial wounding. Fourteen out of 15 eicosatetraenoids that were detected in experiment I and all 19 eicosatetraenoids that were detected in experiment II reached higher mean concentrations in non-native than in native specimens. Wounding of non-native specimens resulted on average in 390% more 15-keto-PGE2, in 90% more PGE2, in 37% more PGA2 and in 96% more 7,8-di-hydroxy-eicosatetraenoic acid than wounding of native specimens. Not only PGE2, but also PGA2 and dihydroxylated eicosatetraenoic acid are known to deter various biological enemies of G. vermiculophylla that cause tissue or cell wounding, and in the present study the latter two compounds also repelled the mesograzer Littorina brevicula. Non-native populations of G. vermiculophylla are thus more defended against herbivory than native populations. This increased capacity for activated chemical defense may have contributed to their invasion success and at the same time it poses an elevated risk for human food safety.
Collapse
Affiliation(s)
- Mareike Hammann
- Helmholtz-Zentrum für Ozeanforschung GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Martin Rempt
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University, Lessingstraße 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University, Lessingstraße 8, D-07743 Jena, Germany
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Florian Weinberger
- Helmholtz-Zentrum für Ozeanforschung GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
28
|
Kumari P, Reddy CRK, Jha B. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). PLANT & CELL PHYSIOLOGY 2015; 56:1877-89. [PMID: 26276825 PMCID: PMC4715227 DOI: 10.1093/pcp/pcv115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/05/2015] [Indexed: 05/07/2023]
Abstract
The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress.
Collapse
Affiliation(s)
- Puja Kumari
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India Present address: Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - C R K Reddy
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
29
|
Yu X, Niu X, Zhang X, Pei G, Liu J, Chen L, Zhang W. Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Extraction and Analysis of Oxylipins from Macroalgae Illustrated on the Example Gracilaria vermiculophylla. Methods Mol Biol 2015; 1308:159-72. [PMID: 26108505 DOI: 10.1007/978-1-4939-2684-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxylipins are natural products that are derived by oxidative transformations of unsaturated fatty acids. These metabolites are found in a wide range of organisms from the animal kingdom to plants and algae. They represent an important class of signaling molecules, mediating intra- and intercellular processes such as development, inflammation, and other stress responses. In addition, these metabolites directly function as chemical defense against grazers and pathogens. In the red alga Gracilaria vermiculophylla, oxylipin production is initiated by mechanical tissue disruption and can also be induced in intact algae in response to external stress signals. The defense metabolites mostly result from the lipase- and lipoxygenase-mediated conversion of phospho- and galactolipids. Oxylipins can vary greatly in their size, degree of unsaturation, oxidation state, and functional groups. But also isomers with only subtle chemical differences are found. A variety of methods have been developed for separation, detection, and identification of oxylipins. This chapter focuses on the analysis of oxylipins in macroalgae and covers all aspects from sample preparation (including protocols for the investigation of oxylipins in wounded and intact algal tissue), extraction, purification, and subsequent analysis using liquid chromatography coupled to a UV detector or a mass spectrometer. The protocols developed for G. vermiculophylla can be readily adapted to the investigation of other macroalgae.
Collapse
|
31
|
Thomas F, Cosse A, Le Panse S, Kloareg B, Potin P, Leblanc C. Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes. THE NEW PHYTOLOGIST 2014; 204:567-576. [PMID: 25041157 DOI: 10.1111/nph.12925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
Brown algae are one of the few eukaryotic lineages that have evolved complex multicellularity, together with Opisthokonts (animals, fungi) and Plantae (land plants, green and red algae). In these three lineages, biotic stresses induce similar local defense reactions. Animals and land plants also feature a systemic immune response, protecting the whole organism after an attack on one of its parts. However, the occurrence of systemic defenses has never been investigated in brown algae. We elicited selected parts of the kelp Laminaria digitata and monitored distant, nonchallenged areas of the same individual for subsequent defense reactions. A systemic reaction was detected following elicitation on a distant area, including an oxidative response, an increase in haloperoxidase activities and a stronger resistance against herbivory. Based on experiments with pharmacological inhibitors, the liberation of free fatty acids is proposed to play a key role in systemic signaling, reminiscent of what is known in land plants. This study is the first report, outside the phyla of Opisthokonts and Plantae, of an intraorganism communication leading to defense reactions. These findings indicate that systemic immunity emerged independently at least three times, as a consequence of convergent evolution in multicellular eukaryotic lineages.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - Audrey Cosse
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - Sophie Le Panse
- Sorbonne Universités, UPMC Univ Paris 06, FR 2424, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, FR 2424, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, FR 2424, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, FR 2424, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - Philippe Potin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - Catherine Leblanc
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| |
Collapse
|
32
|
Kumari P, Reddy R, Jha B. Quantification of selected endogenous hydroxy-oxylipins from tropical marine macroalgae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:74-87. [PMID: 24052492 DOI: 10.1007/s10126-013-9533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/08/2013] [Indexed: 05/23/2023]
Abstract
The present study investigated the contents of hydroxy-oxylipins hydroxyoctadecadienoic acids (HODEs), hydroxyoctadecatrienoic acids (HOTrEs), and hydroxyeicosatetraenoic acids (HETEs) in 40 macroalgae belonging to the Chlorophyceae, Rhodophyceae and, Phaeophyceae. The hydroxy-oxylipin content was low and ranged from 0.14 ± 0.012 ng/g (Codium dwarkense) to 8,161.9 ± 253 ng/g (Chaetomorpha linum) among the Chlorophyceae, 345.4 ± 56.8 ng/g (Scytosiphon lomentaria) to 2,574.5 ± 155.5 ng/g (Stoechospermum marginatum) among the Phaeophyceae, and 19.4 ± 2.2 ng/g (Laurencia cruciata) to 1,753.1 ± 268.2 ng/g in Gracilaria corticata v. folifera) among the Rhodophyceae on fresh weight basis (p ≤ 0.01). The concentrations of C18-oxylipins were greater than C20-oxylipins in all the investigated macroalgae, except forUlva linza, Codium sursum, Dictyopteris deliculata, S. marginatum, Sargassum tenerrimum, Gracilaria spp. (except G. textorii), Rhodymenia sonderi, and Odonthalia veravalensis.The macroalgal species rich in HODEs, HOTrEs, and HETEs were segregated using principal component analysis. The red macroalgae showed the highest contents of HETEs, followed by brown and green macroalgae in consistent with their PUFA profiles. The relative contents of isomeric forms of oxylipins displayed the species-specific positional selectivity of lipoxygenase (LOX) enzyme in macroalgae. All the species exhibited 13-LOX specificity for linoleic acid analogous of higher plants, while 21 out of 40 species showed 9-LOX selectivity for the oxygenation of α-linolenic acid. No trend was observed for the oxygenation of arachidonic acid in macroalgae, except for in the Halymeniales, Ceramiales (except L. cruciata), and Corallinales. This study infers that LOX products, octadecanoids and eicosanoids, described in macroalgal taxa were similar to those of higher plants and mammals, respectively, and thus can be utilized as an alternative source of chemically synthesized oxylipin analogues in therapeutics, cosmetics, and nutritional oil supplements.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | | | | |
Collapse
|
33
|
Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E. Glycerolipids in photosynthesis: composition, synthesis and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:470-80. [PMID: 24051056 DOI: 10.1016/j.bbabio.2013.09.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Laurence Boudière
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Olivier Bastien
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| |
Collapse
|
34
|
Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 2012; 10:849-880. [PMID: 22690147 PMCID: PMC3366679 DOI: 10.3390/md10040849] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated.
Collapse
Affiliation(s)
- Sophie Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29680 Roscoff, France
| | - Philippe Potin
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| |
Collapse
|
35
|
Rempt M, Weinberger F, Grosser K, Pohnert G. Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla. Beilstein J Org Chem 2012; 8:283-9. [PMID: 22423296 PMCID: PMC3302091 DOI: 10.3762/bjoc.8.30] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Chemical defense of the invasive red alga Gracilaria vermiculophylla has been studied and compared to that of the noninvasive but related Gracilaria chilensis. Both species rely on a wound-activated chemical defense that makes them less attractive to the herbivorous sea snail Echinolittorina peruviana. The chemical stress response of both species was monitored by LC–ESIMS-based metabolic profiling and revealed commonalities and differences. Both algae rely on a rapid lipoxygenase mediated transformation of arachidonic acid to known and novel oxylipins. Common products are 7,8-dihydroxyeicosatetraenoic acid and a novel eicosanoid with an unusual γ-lactone moiety. Several prostaglandins were predominantly formed by the invasive species. The role of some of these metabolites was investigated by surveying the attachment of E. peruviana on artificial food containing the respective oxylipins. Both algae species are defended against this general herbivore by 7,8-dihydroxyeicosatetraenoic acid, whereas the prostaglandins and the novel oxylipins were inactive at naturally occurring concentrations. The role of different oxylipins in the invasive potential of Gracilaria spp. is discussed.
Collapse
Affiliation(s)
- Martin Rempt
- Institute for Inorganic and Analytical Chemistry, Lessingstr. 8, Friedrich-Schiller-University, D-07743 Jena, Germany, Tel: +493641948171; Fax +493641948172
| | | | | | | |
Collapse
|
36
|
Nylund GM, Weinberger F, Rempt M, Pohnert G. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One 2011; 6:e29359. [PMID: 22216258 PMCID: PMC3244454 DOI: 10.1371/journal.pone.0029359] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/27/2011] [Indexed: 01/01/2023] Open
Abstract
In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling involved pathways using metabolomics this work contributes significantly to the understanding of activated and inducible defences for marine macroalgae.
Collapse
Affiliation(s)
- Göran M Nylund
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
37
|
Rempt M, Schneider B, Pohnert G. A reactive conjugated allene involved in the biosynthesis of volatile oxylipins in the moss Dicranum scoparium. Org Lett 2011; 13:3229-31. [PMID: 21604791 DOI: 10.1021/ol201114g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We addressed the role of the unusual acetylenic fatty acid dicranin as a precursor for volatile oxylipins in the moss Dicranum scoparium. Dicranin is transformed immediately after mechanical wounding of moss tissue to volatile C5- and C6-oxylipins. The transformation of synthetic deuterium labeled dicranin was monitored using LC/MS analysis and multivariate statistics to identify polar metabolites produced during volatile formation. Among the newly formed oxylipins is a highly reactive conjugated C13 allene with similar degrees of labeling compared to the C5 volatiles suggesting that it results as second cleavage product from the biosynthesis of pentenal and pentenone.
Collapse
Affiliation(s)
- M Rempt
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstr. 8, D-07743 Jena, Germany
| | | | | |
Collapse
|
38
|
Weinberger F, Lion U, Delage L, Kloareg B, Potin P, Beltrán J, Flores V, Faugeron S, Correa J, Pohnert G. Up-Regulation of Lipoxygenase, Phospholipase, and Oxylipin-Production in the Induced Chemical Defense of the Red Alga Gracilaria chilensis against Epiphytes. J Chem Ecol 2011; 37:677-86. [DOI: 10.1007/s10886-011-9981-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/12/2011] [Accepted: 06/01/2011] [Indexed: 12/27/2022]
|
39
|
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8:1213-62. [PMID: 20479976 PMCID: PMC2866484 DOI: 10.3390/md8041213] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | | |
Collapse
|
40
|
Matos AR, Pham-Thi AT. Lipid deacylating enzymes in plants: old activities, new genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:491-503. [PMID: 19324564 DOI: 10.1016/j.plaphy.2009.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 05/01/2023]
Abstract
Because lipids are major components of cellular membranes, their degradation under stress conditions compromises compartmentalization. However, in addition to having structural roles, membrane lipids are also implicated in signalling processes involving the activity of lipolytic enzymes. Phospholipases D and C, acting on the polar heads of phospholipids, have been relatively well characterized in plants. In contrast, knowledge of lipid deacylating enzymes remains limited. Lipid acyl hydrolases (LAH) are able to hydrolyse both fatty acid moieties of polar lipids. They differ from phospholipases A(1) or A(2) (PLA) acting on sn-1 or sn-2 positions of phospholipids, respectively, as well as from lipases which de-esterify triacylglycerols. The free polyunsaturated fatty acids generated by deacylating enzymes can be used in the biosynthesis of oxylipins and the lysophospholipids, provided by PLAs, are also bioactive molecules. In the four decades that have passed since the first description of LAH activities in plants some enzymes have been purified. In recent years, the widespread use of molecular approaches together with the attention paid to lipid signalling has contributed to a renewed interest in LAH and has led to the identification of different gene families and the characterization of new enzymes. Additionally, several proteins with putative lipase/esterase signatures have been identified. In the present paper we review currently available data on LAHs, PLAs, triacylglycerol lipases and other putative deacylating enzymes. The roles of lipid deacylating enzymes in plant growth, development and stress responses are discussed in the context of their involvement in membrane deterioration, lipid turnover and cellular signalling.
Collapse
Affiliation(s)
- Ana Rita Matos
- Centro de Engenharia Biológica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.
| | | |
Collapse
|
41
|
Illijas MI, Indy JR, Yasui H, Itabashi Y. Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia. J Oleo Sci 2009; 58:103-10. [PMID: 19202307 DOI: 10.5650/jos.58.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii from Bali Island, Indonesia were determined for fresh and frozen-thawed samples using thin-layer chromatography, gas-liquid chromatography, and high-performance liquid chromatography. Glycoglycerolipids, which mainly consisted of mongalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG), were the predominant lipid components, accounting for 67% and 56% of the total polar lipid content in the fresh and frozen-thawed samples, respectively. Phospholipids, including phosphatidylcholines (PC) and phosphatidylglycerols (PG), were detected with lesser amounts in both samples (16-17% of the total polar lipid content). Free fatty acids (FFA), sterols and triacylglycerols (TAG) were also detected in minor quantities; however, the FFA content in the frozen-thawed sample increased to up to 20% of the total lipid content, suggesting that hydrolysis of the membrane lipids had occurred. A crude enzyme preparation from the alga showed activities for hydrolyzing the acyl groups of the phospholipids and glycoglycerolipids. Palmitic acid (16:0) and arachidonic acid (20:4n-6) were the major fatty acids in both the total lipid and in individual polar lipid classes as well as the dominant fatty acids released from the membrane lipids by enzymatic hydrolysis. The high level of 20:4n-6 (29%) in the total lipid and the presence of considerable amounts of PC (11% of the total polar lipid) and PG (6.2%) support classification of E. wentii into the Division Rhodophyta.
Collapse
Affiliation(s)
- Muhammad I Illijas
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate-shi, Hokkaido 041-8611, Japan
| | | | | | | |
Collapse
|
42
|
Cooperation and Functional Diversification of Two Closely Related Galactolipase Genes for Jasmonate Biosynthesis. Dev Cell 2008; 14:183-92. [DOI: 10.1016/j.devcel.2007.11.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/18/2007] [Accepted: 11/13/2007] [Indexed: 11/20/2022]
|
43
|
|
44
|
Weinberger F. Pathogen-induced defense and innate immunity in macroalgae. THE BIOLOGICAL BULLETIN 2007; 213:290-302. [PMID: 18083968 DOI: 10.2307/25066646] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Animals and vascular plants are known to defend themselves facultatively against pathogens, with innate receptors mediating their resistance. Macroalgal defense against microorganisms, in contrast, has until recently been regarded mainly as constitutive. Indeed, many macroalgae appear to be chemically defended at constantly high levels, and this is possibly one of the reasons why the first evidence of pathogen-aroused resistance in a macroalga was detected only a decade ago. Here, I summarize the results of studies that indicate the existence of pathogen-activated or pathogen-induced macroalgal defense. Most indications so far come from molecular investigations, which revealed major functional similarities among the defense systems of distant macroalgal clades and the innate immune systems of vascular plants and metazoans. Homologies exist in the primary and secondary defense-activating signals, as well as in the enzymes that are involved and the cellular responses that are activated. This strongly suggests that innate immunity also exists in relatively distinct macroalgal clades. However, a macroalgal receptor still needs to be isolated and characterized, and the molecular concept of macroalgal receptor-mediated immunity needs to be complemented with an ecological perspective on pathogen-induced defense, to develop a joint neuroecological perspective on seaweed-microbe interactions.
Collapse
Affiliation(s)
- Florian Weinberger
- Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany.
| |
Collapse
|