1
|
Vinogradov AA, Bashiri G, Suga H. Illuminating Substrate Preferences of Promiscuous F 420H 2-Dependent Dehydroamino Acid Reductases with 4-Track mRNA Display. J Am Chem Soc 2024; 146:31124-31136. [PMID: 39474650 DOI: 10.1021/jacs.4c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Stereoselective reduction of dehydroamino acids is a common biosynthetic strategy to introduce d-amino acids into peptidic natural products. The reduction, often observed during the biosynthesis of lanthipeptides, is performed by dedicated dehydroamino acid reductases (dhAARs). Enzymes from the three known dhAAR families utilize nicotinamide, flavin, or F420H2 coenzymes as hydride donors, and little is known about the catalysis performed by the latter family proteins. Here, we perform a bioinformatics-guided identification and large-scale in vitro characterization of five F420H2-dependent dhAARs. We construct an mRNA display-based pipeline for ultrahigh throughput substrate specificity profiling of the enzymes. The pipeline relies on a 4-track selection strategy to deliver large quantities of clean data, which were leveraged to build accurate substrate fitness models. Our results identify a remarkably promiscuous enzyme, referred to as MaeJC, that is capable of installing d-Ala residues into arbitrary substrates with minimal recognition requirements. We integrate MaeJC into a thiopeptide biosynthetic pathway to produce d-amino acids-containing thiopeptides, demonstrating the utility of MaeJC for the programmable installation of d-amino acids in ribosomal peptides.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
De Plano LM, Oddo S, Bikard D, Caccamo A, Conoci S. Generation of a Biotin-Tagged Dual-Display Phage. Cells 2024; 13:1696. [PMID: 39451214 PMCID: PMC11506469 DOI: 10.3390/cells13201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Phage display is widely used in biomedical research. One of the great advantages of phage display is the specificity of the connection of a foreign peptide exposed outside the capsid to the intended target. Secondary detection systems, which are often laborious and costly, are required to identify and quantify the peptide/target interaction. In this study, we generated a novel dual-display phage to facilitate the detection and quantification of the peptide/target interaction. First, we generated a biotin-tagged phage by adding a small biotin-accepting peptide (sBT) to gene-3 of the M13K07 helper phage. Subsequently, we enhanced the M13K07 biotin-tagged phage by incorporating a selective peptide on gene-8, which is then exposed to the phage capsid. The exposed peptide acts as a probe to bind to a selective molecular target, whose interaction can be readily visualized thanks to the biotinylated phage. Our versatile dual-display phage exhibits high flexibility; by swapping the displayed peptide/probe, one can change the phage target while retaining the sBT gene in-frame with the pIII. We expect the generated biotin-tagged dual phages to be used as a multifunctional probe to couple with several streptavidin-biotin-based systems.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - David Bikard
- Pasteur Institute, University of Paris, Synthetic Biology, 75015 Paris, France
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- LAB Sense Beyond Nano-DSFTM CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Grahn AK, Allen GL, Kay BK. Efficient Cloning of Inserts for Phage Display by Golden Gate Assembly. Methods Mol Biol 2023; 2702:191-203. [PMID: 37679620 DOI: 10.1007/978-1-0716-3381-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Phage display enables the discovery of high-affinity binders. In phage display, one commonly uses traditional cloning methods to insert DNA into the coding region of one of the five capsid proteins. Here we describe the use of a new vector with kanamycin resistance and BsaI sites for the utilization of Golden Gate cloning into the N-terminus of mature protein III. We also describe the successful pentavalent display of six different inserts: the AviD-tag, the Z-domain of protein A, the Myc-tag, the ALFA nanobody, the BC2 nanobody, and the Flag-tag.
Collapse
|
4
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
5
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries. Proc Natl Acad Sci U S A 2020; 117:25464-25475. [PMID: 32973096 DOI: 10.1073/pnas.2009279117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is a major posttranslational regulator of biology inside and outside of cells. Broad identification of optimal cleavage sites and natural substrates of proteases is critical for drug discovery and to understand protease biology. Here, we present a method that employs two genetically encoded substrate phage display libraries coupled with next generation sequencing (SPD-NGS) that allows up to 10,000-fold deeper sequence coverage of the typical six- to eight-residue protease cleavage sites compared to state-of-the-art synthetic peptide libraries or proteomics. We applied SPD-NGS to two classes of proteases, the intracellular caspases, and the ectodomains of the sheddases, ADAMs 10 and 17. The first library (Lib 10AA) allowed us to identify 104 to 105 unique cleavage sites over a 1,000-fold dynamic range of NGS counts and produced consensus and optimal cleavage motifs based position-specific scoring matrices. A second SPD-NGS library (Lib hP), which displayed virtually the entire human proteome tiled in contiguous 49 amino acid sequences with 25 amino acid overlaps, enabled us to identify candidate human proteome sequences. We identified up to 104 natural linear cut sites, depending on the protease, and captured most of the examples previously identified by proteomics and predicted 10- to 100-fold more. Structural bioinformatics was used to facilitate the identification of candidate natural protein substrates. SPD-NGS is rapid, reproducible, simple to perform and analyze, inexpensive, and renewable, with unprecedented depth of coverage for substrate sequences, and is an important tool for protease biologists interested in protease specificity for specific assays and inhibitors and to facilitate identification of natural protein substrates.
Collapse
|
7
|
Kara E, Nielsen NV, Eggertsdottir B, Thiede B, Kanse SM, Løset GÅ. Design and Characterization of a New pVII Combinatorial Phage Display Peptide Library for Protease Substrate Mining Using Factor VII Activating Protease (FSAP) as Model. Chembiochem 2020; 21:1875-1884. [PMID: 32180321 PMCID: PMC7383712 DOI: 10.1002/cbic.201900705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/07/2020] [Indexed: 12/18/2022]
Abstract
We describe a novel, easy and efficient combinatorial phage display peptide substrate-mining method to map the substrate specificity of proteases. The peptide library is displayed on the pVII capsid of the M13 bacteriophage, which renders pIII necessary for infectivity and efficient retrieval, in an unmodified state. As capture module, the 3XFLAG was chosen due to its very high binding efficiency to anti-FLAG mAbs and its independency of any post-translational modification. This library was tested with Factor-VII activating protease (WT-FSAP) and its single-nucleotide polymorphism variant Marburg-I (MI)-FSAP. The WT-FSAP results confirmed the previously reported Arg/Lys centered FSAP cleavage site consensus as dominant, as well as reinforcing MI-FSAP as a loss-of-function mutant. Surprisingly, rare substrate clones devoid of basic amino acids were also identified. Indeed one of these peptides was cleaved as free peptide, thus suggesting a broader range of WT-FSAP substrates than previously anticipated.
Collapse
Affiliation(s)
- Emrah Kara
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | - Nis Valentin Nielsen
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | | | - Bernd Thiede
- Department of BiosciencesUniversity of Oslo0316OsloNorway
| | - Sandip M. Kanse
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | - Geir Åge Løset
- Department of BiosciencesUniversity of Oslo0316OsloNorway
- Nextera ASOsloNorway
| |
Collapse
|
8
|
Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.
Collapse
|
9
|
Packer MS, Rees HA, Liu DR. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun 2017; 8:956. [PMID: 29038472 PMCID: PMC5643515 DOI: 10.1038/s41467-017-01055-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 01/15/2023] Open
Abstract
Here we perform phage-assisted continuous evolution (PACE) of TEV protease, which canonically cleaves ENLYFQS, to cleave a very different target sequence, HPLVGHM, that is present in human IL-23. A protease emerging from ∼2500 generations of PACE contains 20 non-silent mutations, cleaves human IL-23 at the target peptide bond, and when pre-mixed with IL-23 in primary cultures of murine splenocytes inhibits IL-23-mediated immune signaling. We characterize the substrate specificity of this evolved enzyme, revealing shifted and broadened specificity changes at the six positions in which the target amino acid sequence differed. Mutational dissection and additional protease specificity profiling reveal the molecular basis of some of these changes. This work establishes the capability of changing the substrate specificity of a protease at many positions in a practical time scale and provides a foundation for the development of custom proteases that catalytically alter or destroy target proteins for biotechnological and therapeutic applications.Proteases are promising therapeutics to treat diseases such as hemophilia which are due to endogenous protease deficiency. Here the authors use phage-assisted continuous evolution to evolve a variant TEV protease with altered target peptide sequence specificities.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Graduate Program in Biophysics Program, Harvard University, 240 Longwood Avenue, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Holly A Rees
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA. .,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA. .,Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Kara E, Manna D, Løset GÅ, Schneider EL, Craik CS, Kanse S. Analysis of the substrate specificity of Factor VII activating protease (FSAP) and design of specific and sensitive peptide substrates. Thromb Haemost 2017; 117:1750-1760. [PMID: 28726978 DOI: 10.1160/th17-02-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/11/2017] [Indexed: 01/29/2023]
Abstract
Factor VII (FVII) activating protease (FSAP) is a circulating serine protease that is likely to be involved in a number of disease conditions such as stroke, atherosclerosis, liver fibrosis, thrombosis and cancer. To date, no systematic information is available about the substrate specificity of FSAP. Applying phage display and positional scanning substrate combinatorial library (PS-SCL) approaches we have characterised the specificity of FSAP towards small peptides. Results were evaluated in the context of known protein substrates as well as molecular modelling of the peptides in the active site of FSAP. The representative FSAP-cleaved sequence obtained from the phage display method was Val-Leu-Lys-Arg-Ser (P4-P1'). The sequence X-Lys/Arg-Nle-Lys/Arg (P4-P1) was derived from the PS-SCL method. These results show a predilection for cleavage at a cluster of basic amino acids on the nonprime side. Quenched fluorescent substrate (Ala-Lys-Nle-Arg-AMC) (amino methyl coumarin) and (Ala-Leu-Lys-Arg-AMC) had a higher selectivity for FSAP compared to other proteases from the hemostasis system. These substrates could be used to measure FSAP activity in a complex biological system such as plasma. In histone-treated plasma there was a specific activation of pro-FSAP as validated by the use of an FSAP inhibitory antibody, corn trypsin inhibitor to inhibit Factor XIIa and hirudin to inhibit thrombin, which may account for some of the haemostasis-related effects of histones. These results will aid the development of further selective FSAP activity probes as well as specific inhibitors that will help to increase the understanding of the functions of FSAP in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandip Kanse
- Dr. Sandip M. Kanse, Institute for Basic Medical Sciences, Oslo University Hospital and University of Oslo, Sognvannsveien 9, 0372 Oslo, Norway, E-mail:
| |
Collapse
|
11
|
Li Q, Yi L, Hoi KH, Marek P, Georgiou G, Iverson BL. Profiling Protease Specificity: Combining Yeast ER Sequestration Screening (YESS) with Next Generation Sequencing. ACS Chem Biol 2017; 12:510-518. [PMID: 27977123 DOI: 10.1021/acschembio.6b00547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An enzyme engineering technology involving yeast endoplasmic reticulum (ER) sequestration screening (YESS) has been recently developed. Here, a new method is established, in which the YESS platform is combined with NextGen sequencing (NGS) to enable a comprehensive survey of protease specificity. In this approach, a combinatorial substrate library is targeted to the yeast ER and transported through the secretory pathway, interacting with any protease(s) residing in the ER. Multicolor FACS screening is used to isolate cells labeled with fluorophore-conjugated antibodies, followed by NGS to profile the cleaved substrates. The YESS-NGS method was successfully applied to profile the sequence specificity of the wild-type and an engineered variant of the tobacco etch mosaic virus protease. Proteolysis in the yeast secretory pathway was also mapped for the first time in vivo revealing a major cleavage pattern of Ali/Leu-X-Lys/Arg-Arg. Here Ali is any small aliphatic residue, but especially Leu. This pattern was verified to be due to the well-known endogenous protease Kex2 after comparison to a newly generated Kex2 knockout strain as well as cleavage of peptides with recombinant Kex2 in vitro. This information is particularly important for those using yeast display technology, as library members with Ali/Leu-X-Lys/Arg-Arg patterns are likely being removed from screens via Kex2 cleavage without the researcher's knowledge.
Collapse
Affiliation(s)
- Qing Li
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| | - Li Yi
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| | - Kam Hon Hoi
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| | - Peter Marek
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| | - George Georgiou
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| | - Brent L. Iverson
- Department of Chemistry, ‡Department of Biomedical
Engineering, §Department of Chemical Engineering, and ∥Section of Molecular Genetics and
Microbiology, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Kim EJ, Jeon CS, Hwang I, Chung TD. Translocation Pathway-Dependent Assembly of Streptavidin- and Antibody-Binding Filamentous Virus-Like Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601693. [PMID: 27762503 DOI: 10.1002/smll.201601693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Compared to well-tolerated p3 fusion, the display of fast-folding proteins fused to the minor capsid p7 and the major capsid p8, as well as in vivo biotinylation of biotin acceptor peptide (AP) fused to p7, are found to be markedly inefficient using the filamentous phage. Here, to overcome such limitations, the effect of translocation pathways, amber mutation, and phage and phagemid display systems on p7 and p8 display of antibody-binding domains are examined, while comparing the level of in vivo biotinylation of AP fused to p7 or p3. Interestingly, the in vivo biotinylation of AP occurs only in p3 fusion and the fast-folding antibody-binding scaffolds fused to p7 and p8 are best displayed via a twin-arginine translocation pathway in TG1 cells. The lower the expression level of the wild-type p8 and the smaller the size of the guest protein, the better the display of Z-domain fused to the recombinant p8. The in vivo biotinylated multifunctional filamentous virus-like particles can be vertically immobilized on streptavidin (SAV)-coated microspheres to resemble cellular microvilli-like structures, which reportedly enhance protein-protein interactions due to dramatically expanded flexible surface area.
Collapse
Affiliation(s)
- Eun Joong Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chang Su Jeon
- Samsung Electronics Co., Ltd, Samsungjeonja-ro 1, Hwaseong-si, Gyeonggi-do, 18448, Korea
| | - Inseong Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Korea
| |
Collapse
|
13
|
Abstract
The methylotropic yeast Pichia pastoris has been extensively used in large-scale production of properly folded recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins such as post-translational modifications, protein processing, and a reasonably sophisticated quality control of protein folding when compared against Escherichia coli. In this chapter, we describe the modified lab procedure for cloning and expression in Pichia pastoris of common food allergens sequences from the raw fruit to the fully folded biotinylated protein product.
Collapse
Affiliation(s)
- Maria Neophytou
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD, UK.
| | - Marcos Alcocer
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
14
|
Production of in vivo biotinylated scFv specific to almond ( Prunus dulcis ) proteins by recombinant Pichia pastoris. J Biotechnol 2016; 227:112-119. [DOI: 10.1016/j.jbiotec.2016.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022]
|
15
|
Woitowich NC, Philibert KD, Leitermann RJ, Wungjiranirun M, Urban JH, Glucksman MJ. EP24.15 as a Potential Regulator of Kisspeptin Within the Neuroendocrine Hypothalamus. Endocrinology 2016; 157:820-30. [PMID: 26653570 PMCID: PMC4733123 DOI: 10.1210/en.2015-1580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide kisspeptin (Kiss1) is integral to the advent of puberty and the generation of cyclical LH surges. Although many complex actions of Kiss1 are known, the mechanisms governing the processing/regulation of this peptide have not been unveiled. The metallo enzyme, endopeptidase 24.15 (thimet oligopeptidase), has been demonstrated to play a key role in the processing and thus the duration of action of the reproductive neuropeptide, GnRH, which signals downstream of Kiss1. Initial in silico modeling implied that Kiss1 could also be a putative substrate for EP24.15. Coincubation of Kiss1 and EP24.15 demonstrated multiple cleavages of the peptide predominantly between Arg29-Gly30 and Ser47-Phe48 (corresponding to Ser5-Phe6 in Kiss-10; Kiss-10 as a substrate had an additional cleavage between Phe6-Gly7) as determined by mass spectrometry. Vmax for the reaction was 2.37±0.09 pmol/min · ng with a Km of 19.68 ± 2.53μM, which is comparable with other known substrates of EP24.15. EP24.15 immunoreactivity, as previously demonstrated, is distributed in cell bodies, nuclei, and processes throughout the hypothalamus. Kiss1 immunoreactivity is localized primarily to cell bodies and fibers within the mediobasal and anteroventral-periventricular hypothalamus. Double-label immunohistochemistry indicated coexpression of EP24.15 and Kiss1, implicating that the regulation of Kiss1 by EP24.15 could occur in vivo. Further studies will be directed at determining the precise temporal sequence of EP24.15 effects on Kiss1 as it relates to the control of reproductive hormone secretion and treatment of fertility issues.
Collapse
Affiliation(s)
- Nicole C Woitowich
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Keith D Philibert
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Randy J Leitermann
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Manida Wungjiranirun
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Janice H Urban
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Marc J Glucksman
- Departments of Physiology and Biophysics (N.C.W., R.J.L., J.H.U.) and Biochemistry and Molecular Biology (N.C.W., K.D.P., M.W., M.J.G.), and Midwest Proteome Center (K.D.P., M.J.G.). Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
16
|
Adhikari M, Strych U, Kim J, Goux H, Dhamane S, Poongavanam MV, Hagström AEV, Kourentzi K, Conrad JC, Willson RC. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays. Anal Chem 2015; 87:11660-5. [PMID: 26456715 DOI: 10.1021/acs.analchem.5b00702] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.
Collapse
Affiliation(s)
- Meena Adhikari
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Ulrich Strych
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Jinsu Kim
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Heather Goux
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Sagar Dhamane
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | | | - Anna E V Hagström
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Katerina Kourentzi
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Richard C Willson
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States.,Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States.,Centro de Biotecnología FEMSA, Tecnológico de Monterrey , Monterrey, Nuevo León, Mexico
| |
Collapse
|
17
|
Tjhung KF, Deiss F, Tran J, Chou Y, Derda R. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display. Front Microbiol 2015; 6:340. [PMID: 25972845 PMCID: PMC4412080 DOI: 10.3389/fmicb.2015.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 12/01/2022] Open
Abstract
In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.).
Collapse
Affiliation(s)
- Katrina F Tjhung
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta Edmonton, AB, Canada
| | - Frédérique Deiss
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta Edmonton, AB, Canada
| | - Jessica Tran
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta Edmonton, AB, Canada
| | - Ying Chou
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta Edmonton, AB, Canada
| | - Ratmir Derda
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
18
|
Kim J, Adhikari M, Dhamane S, Hagström AEV, Kourentzi K, Strych U, Willson RC, Conrad JC. Detection of viruses by counting single fluorescent genetically biotinylated reporter immunophage using a lateral flow assay. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2891-8. [PMID: 25581289 PMCID: PMC4334444 DOI: 10.1021/am5082556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses.
Collapse
Affiliation(s)
- Jinsu Kim
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Meena Adhikari
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
| | - Sagar Dhamane
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
| | - Anna E. V. Hagström
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Katerina Kourentzi
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Ulrich Strych
- Section of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard C. Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Tecnológico de Monterrey, Departamento de Biotecnología e Ingeniería de Alimentos, Centro de Biotecnología FEMSA, Monterrey, Nuevo León, Mexico
| | - Jacinta C. Conrad
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| |
Collapse
|
19
|
Leder L. Site-specific protein labeling in the pharmaceutical industry: experiences from novartis drug discovery. Methods Mol Biol 2015; 1266:7-27. [PMID: 25560065 DOI: 10.1007/978-1-4939-2272-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chemically modified proteins play an important role in several fields of pharmaceutical R&D, starting from various activities in drug discovery all the way down to biopharmaceuticals with improved properties such as antibody-drug conjugates. In the first part of the present chapter the significance and use of labeled proteins in biophysical methods, biochemical and cellular assays, in vivo imaging, and biopharmaceuticals is reviewed in general. In this context, the most relevant methods for site-specific modification of proteins and their application are also described. In the second part of the chapter, in-house (Novartis) results and experience with different techniques for selective protein labeling are discussed, with a focus on chemical or enzymatic (Avi-tag) biotinylation of proteins and their application in biophysical and biochemical assays. It can be concluded that while modern methods of site-specific protein labeling offer new possibilities for pharmaceutical R&D, classical methods are still the mainstay mainly due to being well established. However, site-specific protein labeling is expected to increase in importance, in particular for antibody-drug conjugates and other chemically modified biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Leder
- Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Novartis Campus, 4056, Basel, Switzerland,
| |
Collapse
|
20
|
Litvinov J, Hagström AEV, Lopez Y, Adhikari M, Kourentzi K, Strych U, Monzon FA, Foster W, Cagle PT, Willson RC. Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 2014; 36:1863-8. [PMID: 24930095 DOI: 10.1007/s10529-014-1555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
We report a novel, modular approach to immuno-detection based on antibody recognition and PCR read-out that employs antibody-conjugated bacteriophage and easily-manipulated non-pathogenic viruses as affinity agents. Our platform employs phage genetically tagged for in vivo biotinylation during phage maturation that can easily be linked, through avidin, to any biotinylated affinity agent, including full-length antibodies, peptides, lectins or aptamers. The presence of analyte is reported with high sensitivity through real-time PCR. This approach avoids the need to clone antibody-encoding DNA fragments, allows the use of full-length, high affinity antibodies and, by having DNA reporters naturally encapsulated inside the bacteriophage, greatly reduces nonspecific binding of DNA. We validate the efficacy of this new approach through the detection of Vascular Endothelial Growth Factor, a known angiogenic cancer biomarker protein, at attomolar concentrations in bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Julia Litvinov
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX, 77204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Adhikari M, Dhamane S, Hagström AEV, Garvey G, Chen WH, Kourentzi K, Strych U, Willson RC. Functionalized viral nanoparticles as ultrasensitive reporters in lateral-flow assays. Analyst 2014; 138:5584-7. [PMID: 23905160 DOI: 10.1039/c3an00891f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two types of viral nanoparticles were functionalized with target-specific antibodies and multiple copies of an enzymatic reporter (horseradish peroxidase). The particles were successfully integrated into an immunochromatographic assay detecting MS2 bacteriophage, a model for viral pathogens. The sensitivity of the assay was greatly superior to conventional gold nanoparticle lateral flow assays, and results could easily be evaluated, even without advanced lab instruments.
Collapse
Affiliation(s)
- Meena Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ng S, Jafari MR, Matochko WL, Derda R. Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage. ACS Chem Biol 2012; 7:1482-7. [PMID: 22725642 DOI: 10.1021/cb300187t] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phage display is a powerful technology that enables the discovery of peptide ligands for many targets. Chemical modification of phage libraries have allowed the identification of ligands with properties not encountered in natural polypeptides. In this report, we demonstrated the synthesis of 2 × 10(8) genetically encoded glycopeptides from a commercially available phage-displayed peptide library (Ph.D.-7) in a two-step, one-pot reaction in <1.5 h. Unlike previous reports, we bypassed genetic engineering of phage. The glycan moiety was introduced via an oxime ligation following oxidation of an N-terminal Ser/Thr; these residues are present in the peptide libraries at 20-30% abundance. The construction of libraries was facilitated by simple characterization, which directly assessed the yield and regioselectivity of chemical reactions performed on phage. This quantification method also allowed facile yield determination of reactions in 10(9) distinct molecules. We envision that the methodology described herein will find broad application in the synthesis of custom chemically modified phage libraries.
Collapse
Affiliation(s)
- Simon Ng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mohammad R. Jafari
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Wadim L. Matochko
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ratmir Derda
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
23
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Hum Vaccin Immunother 2012; 8:1829-35. [PMID: 22906938 DOI: 10.4161/hv.21704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland
| | | | | |
Collapse
|
24
|
Kierny MR, Cunningham TD, Kay BK. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. NANO REVIEWS 2012; 3:NANO-3-17240. [PMID: 22833780 PMCID: PMC3404449 DOI: 10.3402/nano.v3i0.17240] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 12/14/2022]
Abstract
The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of 'Surface Enhanced Raman Scattering' (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market.
Collapse
Affiliation(s)
- Michael R Kierny
- Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | | | | |
Collapse
|
25
|
Kozlov IA, Thomsen ER, Munchel SE, Villegas P, Capek P, Gower AJ, Pond SJK, Chudin E, Chee MS. A highly scalable peptide-based assay system for proteomics. PLoS One 2012; 7:e37441. [PMID: 22701568 PMCID: PMC3373263 DOI: 10.1371/journal.pone.0037441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
We report a scalable and cost-effective technology for generating and screening high-complexity customizable peptide sets. The peptides are made as peptide-cDNA fusions by in vitro transcription/translation from pools of DNA templates generated by microarray-based synthesis. This approach enables large custom sets of peptides to be designed in silico, manufactured cost-effectively in parallel, and assayed efficiently in a multiplexed fashion. The utility of our peptide-cDNA fusion pools was demonstrated in two activity-based assays designed to discover protease and kinase substrates. In the protease assay, cleaved peptide substrates were separated from uncleaved and identified by digital sequencing of their cognate cDNAs. We screened the 3,011 amino acid HCV proteome for susceptibility to cleavage by the HCV NS3/4A protease and identified all 3 known trans cleavage sites with high specificity. In the kinase assay, peptide substrates phosphorylated by tyrosine kinases were captured and identified by sequencing of their cDNAs. We screened a pool of 3,243 peptides against Abl kinase and showed that phosphorylation events detected were specific and consistent with the known substrate preferences of Abl kinase. Our approach is scalable and adaptable to other protein-based assays.
Collapse
Affiliation(s)
- Igor A Kozlov
- Prognosys Biosciences Inc., La Jolla, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ng S, Jafari MR, Derda R. Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem Biol 2012; 7:123-38. [PMID: 21988453 DOI: 10.1021/cb200342h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Display of polypeptide on the coat proteins of bacteriophages and viruses is a powerful tool for selection and amplification of libraries of great diversity. Chemical diversity of these libraries, however, is limited to libraries made of natural amino acid side chains. Bacteriophages and viruses can be modified chemically; peptide libraries presented on phage thus can be functionalized to yield moieties that cannot be encoded genetically. In this review, we summarize the possibilities for using bacteriophage and viral particles as support for the synthesis of diverse chemically modified peptide libraries. This review critically summarizes the key chemical considerations for on-phage syntheses such as selection of reactions compatible with protein of phage, modification of phage "support" that renders it more suitable for reactions, and characterization of reaction efficiency.
Collapse
Affiliation(s)
- Simon Ng
- Department
of Chemistry and Alberta Innovates Centre
for Carbohydrate Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mohammad R. Jafari
- Department
of Chemistry and Alberta Innovates Centre
for Carbohydrate Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ratmir Derda
- Department
of Chemistry and Alberta Innovates Centre
for Carbohydrate Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
27
|
Smelyanski L, Gershoni JM. Site directed biotinylation of filamentous phage structural proteins. Virol J 2011; 8:495. [PMID: 22044460 PMCID: PMC3256129 DOI: 10.1186/1743-422x-8-495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Filamentous bacteriophages have been used in numerous applications for the display of antibodies and random peptide libraries. Here we describe the introduction of a 13 amino acid sequence LASIFEAQKIEWR (designated BT, which is biotinylated in vivo by E. coli) into the N termini of four of the five structural proteins of the filamentous bacteriophage fd (Proteins 3, 7, 8 and 9). The in vivo and in vitro biotinylation of the various phages were compared. The production of multifunctional phages and their application as affinity reagents are demonstrated.
Collapse
Affiliation(s)
- Larisa Smelyanski
- Department of Cell Research and Immunology, George S, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | | |
Collapse
|
28
|
Schilling O, dem Keller UA, Overall CM. Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites. Biol Chem 2011; 392:1031-7. [DOI: 10.1515/bc.2011.158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Proteomic identification of protease cleavage site specificity (PICS) is a recent proteomic approach for the easy mapping of protease subsite preferences that determines both the prime- and non-prime side specificity concurrently. Here we greatly facilitate user access by providing an automated and simple web-based data-analysis resource termed WebPics (http://clipserve.clip.ubc.ca/pics/). We demonstrate the utility of WebPics analysis of PICS data by determining the substrate specificity of factor Xa from P6-P6’, an important blood coagulation protease that proteolytically generates thrombin from prothrombin. PICS confirms existing data on non-prime site specificity and refines our knowledge of factor Xa prime-site selectivity.
Collapse
|
29
|
Kostallas G, Löfdahl PÅ, Samuelson P. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay. PLoS One 2011; 6:e16136. [PMID: 21267463 PMCID: PMC3022733 DOI: 10.1371/journal.pone.0016136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases and their substrates.
Collapse
Affiliation(s)
- George Kostallas
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Per-Åke Löfdahl
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Patrik Samuelson
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
30
|
Vaks L, Benhar I. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria. Methods Mol Biol 2011; 726:187-206. [PMID: 21424451 DOI: 10.1007/978-1-61779-052-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.
Collapse
Affiliation(s)
- Lilach Vaks
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | |
Collapse
|
31
|
Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010; 9:690-701. [PMID: 20811381 DOI: 10.1038/nrd3053] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets.
Collapse
Affiliation(s)
- Marcin Drag
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | |
Collapse
|
32
|
Machado MFM, Marcondes MF, Rioli V, Ferro ES, Juliano MA, Juliano L, Oliveira V. Catalytic properties of thimet oligopeptidase H600A mutant. Biochem Biophys Res Commun 2010; 394:429-33. [PMID: 20226173 DOI: 10.1016/j.bbrc.2010.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His(600). In the present work, the role of His(600) of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S(1) and S(1)' specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His(600) residue makes important interactions with the substrate, supporting the prediction that His(600) moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K(m) and k(cat), showing the importance of His(600) for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His(600) in TOP catalysis, transferring a proton to the newly generated NH2-terminus or helping Tyr(605) and/or Tyr(612) in the intermediate oxyanion stabilization.
Collapse
Affiliation(s)
- Maurício F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Gevaert K, Van Damme P, Ghesquière B, Impens F, Martens L, Helsens K, Vandekerckhove J. A la carte proteomics with an emphasis on gel-free techniques. Proteomics 2007; 7:2698-718. [PMID: 17640001 DOI: 10.1002/pmic.200700114] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since the introduction of the proteome term somewhat more than a decade ago the field of proteomics witnessed a rapid growth mainly fueled by instrumental analytical improvements. Of particular notice is the advent of a diverse set of gel-free proteomics techniques. In this review, we discuss several of these gel-free techniques both for monitoring protein concentration changes and protein modifications, in particular protein phosphorylation, glycosylation, and protein processing. Furthermore, different approaches for (multiplexed) gel-free proteome analysis are discussed.
Collapse
Affiliation(s)
- Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Machado M, Rioli V, Dalio F, Castro L, Juliano M, Tersariol I, Ferro E, Juliano L, Oliveira V. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem J 2007; 404:279-88. [PMID: 17313369 PMCID: PMC1868798 DOI: 10.1042/bj20070060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physicochemical properties of TOP (thimet oligopeptidase) and NEL (neurolysin) and their hydrolytic activities towards the FRET (fluorescence resonance energy transfer) peptide series Abz-GFSXFRQ-EDDnp [where Abz is o-aminobenzoyl; X=Ala, Ile, Leu, Phe, Tyr, Trp, Ser, Gln, Glu, His, Arg or Pro; and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] were compared with those of site-mutated analogues. Mutations at Tyr605 and Ala607 in TOP and at Tyr606 and Gly608 in NEL did not affect the overall folding of the two peptidases, as indicated by their thermal stability, CD analysis and the pH-dependence of the intrinsic fluorescence of the protein. The kinetic parameters for the hydrolysis of substrates with systematic variations at position P1 showed that Tyr605 and Tyr606 of TOP and NEL respectively, played a role in subsite S1. Ala607 of TOP and Gly608 of NEL contributed to the flexibility of the loops formed by residues 600-612 (GHLAGGYDGQYYG; one-letter amino acid codes used) in NEL and 599-611 (GHLAGGYDAQYYG; one-letter amino acid codes used) in TOP contributing to the distinct substrate specificities, particularly with an isoleucine residue at P1. TOP Y605A was inhibited less efficiently by JA-2 {N-[1-(R,S)-carboxy-3-phenylpropyl]Ala-Aib-Tyr-p-aminobenzoate}, which suggested that the aromatic ring of Tyr605 was an important anchor for its interaction with wild-type TOP. The hydroxy groups of Tyr605 and Tyr606 did not contribute to the pH-activity profiles, since the pKs obtained in the assays of mutants TOP Y605F and NEL Y606F were similar to those of wild-type peptidases. However, the pH-kcat/Km dependence curve of TOP Y605A differed from that of wild-type TOP and from TOP Y606F. These results provide insights into the residues involved in the substrate specificities of TOP and NEL and how they select cytosolic peptides for hydrolysis.
Collapse
Affiliation(s)
- Maurício F. M. Machado
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vanessa Rioli
- †Laboratório Especial de Toxinologia Aplicada (CAT/CEPID) Instituto Butantan, 05467-010, São Paulo, SP, Brazil
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Fernanda M. Dalio
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
| | - Leandro M. Castro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Maria A. Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Ivarne L. Tersariol
- ∥Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Emer S. Ferro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Luiz Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vitor Oliveira
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Kadonosono T, Kato M, Ueda M. Substrate specificity of rat brain neurolysin disclosed by molecular display system and putative substrates in rat tissues. Appl Microbiol Biotechnol 2007; 75:1353-60. [PMID: 17401561 DOI: 10.1007/s00253-007-0943-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 11/24/2022]
Abstract
To search for the substrates, other than neurotensin, of rat brain neurolysin, a novel method of determining peptidase activity was developed using a yeast molecular display system. This is a useful and convenient method of handling homogenously pure proteins to evaluate the properties of neurolysin. The neurolysin gene was ligated to the C-terminal half of the alpha-agglutinin gene with a FLAG tag sequence and a yeast cell-surface molecular displaying plasmid was constructed. Display of neurolysin with correct folding and appropriate activity was verified by immunofluorescence staining and activity measurement of a bradykinin-related peptide. The cleavage sites of peptides were determined by high-performance liquid chromatography (HPLC) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed the amino acid preferences of hydrophobic, aromatic, and basic residues, which were the same as those of soluble neurolysin. Moreover, this method clearly showed the presence of two recognition motifs in neurolysin. By using these motifs, novel substrate candidates of neurolysin in rat tissues were screened, and several bioactive peptides that regulate feeding were found. We also discussed the ubiquitous distribution of neurolysin in rat tissues and the functions of substrate candidate peptides.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
36
|
Gevaert K, Van Damme P, Ghesquière B, Vandekerckhove J. Protein processing and other modifications analyzed by diagonal peptide chromatography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1801-10. [PMID: 17035109 DOI: 10.1016/j.bbapap.2006.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 11/29/2022]
Abstract
Diagonal peptide chromatography consists of two consecutive, identical peptide separations with in between an enzymatic or chemical alteration of the side-chain structure of selected peptides. Such selected and altered peptides acquire different chromatographic properties thereby segregating from non-altered peptides in a series of secondary peptide separations. Originally described by Brown and Hartley in 1966, we have modified the technique such that it can be used for higher throughput gel-free proteomics. Our technique is termed COmbined FRActional DIagonal Chromatography (COFRADIC) and exploits evoked differences of the hydrophobicity of peptides in reverse-phase liquid chromatography. One important advantage of COFRADIC is its versatility: by changing the alteration reaction, different classes of peptides are sorted and finally analyzed. We previously published protocols and applications for separating methionyl, cysteinyl, amino terminal and phosphorylated peptides. In this review, we assess the potential of COFRADIC for the analysis of several posttranslational modifications emphasizing on in vivo protein processing events. Additional modifications that can be analyzed include phosphorylation and N-glycosylation. The potential of COFRADIC for isolating peptides holding such modified amino acids are discussed here.
Collapse
Affiliation(s)
- Kris Gevaert
- Department of Medical Protein Research and Biochemistry, Flanders Interuniversity Institute for Biotechnology and Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|