1
|
Fansher DJ, Besna JN, Pelletier JN. Indigo production identifies hotspots in cytochrome P450 BM3 for diversifying aromatic hydroxylation. Faraday Discuss 2024; 252:29-51. [PMID: 38993060 DOI: 10.1039/d4fd00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Evolution of P450 BM3 is a topic of extensive research, but screening the various substrate/reaction combinations remains a time-consuming process. Indigo production has the potential to serve as a simple high-throughput method for reaction screening, as bacterial colonies expressing indigo (+) variants can be visually identified via their blue phenotype. Indigo (+) single variants, indigo (-) single variants and a combinatorial library, containing mutations that enable the blue phenotype, were screened for their ability to hydroxylate a panel of 12 aromatic compounds using the 4-aminoantipyrine colorimetric assay. Recombination of indigo (+) single variants to create a multiple-variant library is a particularly useful strategy, as all top performing P450 BM3 variants with high hydroxylation activity were either indigo (+) single variants or contained multiple substitutions. Furthermore, active variants, as determined using the 4-AAP assay, were further characterized and several variants were identified that gave more than 90% conversion with 1,3-dichlorobenzene and predominantly formed 2,6-dichlorophenol; other variants showed significant substrate selectivity. This supports the hypothesis that substitution at positions that enable the indigo (+) phenotype, or hotspot residues, is a general mechanism for increasing aromatic hydroxylation activity. Overall, this research demonstrates that indigo (+) single variants, identified via colorimetric colony-based screening, may be recombined to generate a multiply-substituted variant library containing many variants with high aromatic hydroxylation activity. The combination of colony-based screening and other screening assays greatly accelerates enzyme engineering, as readily-identified indigo (+) single variants can be recombined to create a library of active multiple variants without extensive screening of single variants.
Collapse
Affiliation(s)
- Douglas J Fansher
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
| | - Jonathan N Besna
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
3
|
Qian Z, Peng T, Huang T, Hu Z. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115922. [PMID: 36027730 DOI: 10.1016/j.jenvman.2022.115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Benzo [a]pyrene (BaP) is a type of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) with potent carcinogenicity; however, there are limited studies on its degradation mechanism. Here, a strain of Pontibacillus sp. HN14 with BaP degradation ability was isolated from mangrove sediments in Dongzhai Port, Hainan Province. Our study showed that biodegradation efficiencies reached 42.15% after Pontibacillus sp. HN14 was cultured with 20 mg L-1 BaP as the sole carbon source for 25 days and still had degradability of BaP at a 25% high salinity level. Moreover, 9,10-dihydrobenzo [a]pyrene-7(8H)-one, an intermediate metabolite, was detected during BaP degradation in the HN14 strain. Genome analysis identified a gene encoding the CYP102(HN14) enzyme. The results showed that the E. coli strain with CYP102(HN14) overexpression could transfer BaP to 9,10-dihydrobenzo [a]pyrene-7(8H)-one with a conversion rate of 43.5%, indicating that CYP102(HN14) played an essential role in BaP degradation in Pontibacillus sp. HN14. Thus, our results provide a novel BaP biodegradation molecule, which could be used in BaP bioremediation in high salinity conditions. This study is the first to show that CYP102(HN14) had the BaP oxidization ability in bacteria. CYP102(HN14) could be essential in removing PAHs in saline-alkali soil and other high salt environments through enzyme immobilization.
Collapse
Affiliation(s)
- Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, PR China.
| |
Collapse
|
4
|
Khatri P, Wally O, Rajcan I, Dhaubhadel S. Comprehensive Analysis of Cytochrome P450 Monooxygenases Reveals Insight Into Their Role in Partial Resistance Against Phytophthora sojae in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:862314. [PMID: 35498648 PMCID: PMC9048032 DOI: 10.3389/fpls.2022.862314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 monooxygenases (P450) participate in the catalytic conversion of biological compounds in a plethora of metabolic pathways, such as the biosynthesis of alkaloids, terpenoids, phenylpropanoids, and hormones in plants. Plants utilize these metabolites for growth and defense against biotic and abiotic stress. In this study, we identified 346 P450 (GmP450) enzymes encoded by 317 genes in soybean where 26 GmP450 genes produced splice variants. The genome-wide comparison of both A-type and non-A-type GmP450s for their motifs composition, gene structure, tissue-specific expression, and their chromosomal distribution were determined. Even though conserved P450 signature motifs were found in all GmP450 families, larger variation within a specific motif was observed in the non-A-type GmP450s as compared with the A-type. Here, we report that the length of variable region between two conserved motifs is exact in the members of the same family in majority of the A-type GmP450. Analyses of the transcriptomic datasets from soybean-Phytophthora sojae interaction studies, quantitative trait loci (QTL) associated with P. sojae resistance, and co-expression analysis identified some GmP450s that may be, in part, play an important role in partial resistance against P. sojae. The findings of our CYPome study provides novel insights into the functions of GmP450s and their involvements in metabolic pathways in soybean. Further experiments will elucidate their roles in general and legume-specific function.
Collapse
Affiliation(s)
- Praveen Khatri
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism. Int J Mol Sci 2021; 22:ijms222111380. [PMID: 34768811 PMCID: PMC8583553 DOI: 10.3390/ijms222111380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.
Collapse
|
6
|
Rousseau O, Ebert MCCJC, Quaglia D, Fendri A, Parisien AH, Besna JN, Iyathurai S, Pelletier JN. Indigo Formation and Rapid NADPH Consumption Provide Robust Prediction of Raspberry Ketone Synthesis by Engineered Cytochrome P450 BM3. ChemCatChem 2019. [DOI: 10.1002/cctc.201901974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Rousseau
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Maximilian C. C. J. C. Ebert
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Daniela Quaglia
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Ali Fendri
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Adem H. Parisien
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Jonathan N. Besna
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Saathanan Iyathurai
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Joelle N. Pelletier
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| |
Collapse
|
7
|
Rimal H, Lee WH, Kim KH, Park H, Oh TJ. Characterization of Two Self-Sufficient Monooxygenases, CYP102A15 and CYP102A170, as Long-Chain Fatty Acid Hydroxylases. J Microbiol Biotechnol 2019; 30:777-784. [PMID: 32482945 PMCID: PMC9728198 DOI: 10.4014/jmb.1911.11048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Self-sufficient P450s, due to their fused nature, are the most effective tools for electron transfer to activate C-H bonds. They catalyze the oxygenation of fatty acids at different omega positions. Here, two new, self-sufficient cytochrome P450s, named CYP102A15 and CYP102A170, from polar Bacillus sp. PAMC 25034 and Paenibacillus sp. PAMC 22724, respectively, were cloned and expressed in E. coli. The genes are homologues of CYP102A1 from Bacillus megaterium. They catalyzed the hydroxylation of both saturated and unsaturated fatty acids ranging in length from C12-C20, with a moderately diverse profile compared to other members of the CYP102A subfamily. CYP102A15 exhibited the highest activity toward linoleic acid with Km 15.3 μM, and CYP102A170 showed higher activity toward myristic acid with Km 17.4 μM. CYP10A170 also hydroxylated the Eicosapentaenoic acid at ω-1 position only. Various kinetic parameters of both monooxygenases were also determined.
Collapse
Affiliation(s)
- Hemraj Rimal
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 0841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 1460, Republic of Korea
- Genome-based BioIT Convergence Institute, Sunmoon University, Asan 3160, Republic of Korea
| |
Collapse
|
8
|
Child SA, Rossi VP, Bell SG. Selective ϖ-1 oxidation of fatty acids by CYP147G1 from Mycobacterium marinum. Biochim Biophys Acta Gen Subj 2019; 1863:408-417. [DOI: 10.1016/j.bbagen.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
9
|
Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2416-2427. [PMID: 29894683 DOI: 10.1016/j.bbamem.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three amphipathic cationic antimicrobial peptides (AMPs) were characterized by determining their effect on Gram-positive bacteria using Bacillus subtilis strain 168 as a model organism. These peptides were TC19 and TC84, derivatives of thrombocidin-1 (TC-1), the major AMPs of human blood platelets, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide based on human bactericidal permeability increasing protein (BPI). METHODS To elucidate the possible mode of action of the AMPs we performed a transcriptomic analysis using microarrays. Physiological analyses were performed using transmission electron microscopy (TEM), fluorescence microscopy and various B. subtilis mutants that produce essential membrane bound proteins fused to green fluorescent protein (GFP). RESULTS The transcriptome analysis showed that the AMPs induced a cell envelope stress response (cell membrane and cell wall). The cell membrane stress response was confirmed with the physiological observations that TC19, TC84 and BP2 perturb the membrane of B. subtilis. Using B. subtilis mutants, we established that the cell wall stress response is due to the delocalization of essential membrane bound proteins involved in cell wall synthesis. Other essential membrane proteins, involved in cell membrane synthesis and metabolism, were also delocalized due to alterations caused by the AMPs. CONCLUSIONS We showed that peptides TC19, TC84 and BP2 perturb the membrane causing essential proteins to delocalize, thus preventing the possible repair of the cell envelope after the initial interference with the membrane. GENERAL SIGNIFICANCE These AMPs show potential for eventual clinical application against Gram-positive bacterial cells and merit further application-oriented investigation.
Collapse
|
10
|
|
11
|
Kim J, Lee PG, Jung EO, Kim BG. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:60-67. [PMID: 28821467 DOI: 10.1016/j.bbapap.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023]
Abstract
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV-Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14±0.10min-1mM-1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.
Collapse
Affiliation(s)
- Joonwon Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pyung-Gang Lee
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ok Jung
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Gee Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Rühlmann A, Antovic D, Müller TJJ, Urlacher VB. Regioselective Hydroxylation of Stilbenes by Engineered Cytochrome P450 fromThermobifida fuscaYX. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ansgar Rühlmann
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstr.1 40225 Düsseldorf Germany
| | - Dragutin Antovic
- Institute of Macromolecular and Organic Chemistry, Chair of Organic Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institute of Macromolecular and Organic Chemistry, Chair of Organic Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstr.1 40225 Düsseldorf Germany
| |
Collapse
|
13
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
14
|
Jang HH, Shin SM, Ma SH, Lee GY, Joung YH, Yun CH. Role of Leu188 in the Fatty Acid Hydroxylase Activity of CYP102A1 from Bacillus megaterium. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Ko S, Yang YH, Choi KY, Kim BG. rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0718-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Regioselectivity-driven evolution of CYP102D1 for improved synthesis of 3′-ortho-dihydroxyisoflavone. Enzyme Microb Technol 2015; 71:20-7. [DOI: 10.1016/j.enzmictec.2015.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/07/2023]
|
17
|
Clark JM, Nimlos MR, Robichaud DJ. Comparison of Unimolecular Decomposition Pathways for Carboxylic Acids of Relevance to Biofuels. J Phys Chem A 2013; 118:260-74. [DOI: 10.1021/jp4095485] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jared M. Clark
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - David J. Robichaud
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
18
|
von Bühler C, Le-Huu P, Urlacher VB. Cluster Screening: An Effective Approach for Probing the Substrate Space of Uncharacterized Cytochrome P450s. Chembiochem 2013; 14:2189-98. [DOI: 10.1002/cbic.201300271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 11/12/2022]
|
19
|
Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke WD, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu SF, Plietker B, Laschat S. Selective Catalytic Oxidation of CH Bonds with Molecular Oxygen. ChemCatChem 2012. [DOI: 10.1002/cctc.201200266] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
21
|
Tsotsou GE, Sideri A, Goyal A, Di Nardo G, Gilardi G. Identification of mutant Asp251Gly/Gln307His of cytochrome P450 BM3 for the generation of metabolites of diclofenac, ibuprofen and tolbutamide. Chemistry 2012; 18:3582-8. [PMID: 22337118 DOI: 10.1002/chem.201102470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 12/21/2022]
Abstract
The soluble, catalytically self-sufficient cytochrome P450 BM3 from Bacillus megaterium is a good candidate as biocatalyst for the synthesis of drug metabolites. To this end, error-prone polymerase chain reaction (PCR) was used to generate a library of P450 BM3 mutants with novel activities toward drugs. The double mutant Asp251Gly/Gln307His (A2) with activities towards diclofenac, ibuprofen and tolbutamide was identified by screening with the alkali method. This is based on the detection of NADPH oxidation during enzymatic turnover on whole Escherichia coli cells heterologously expressing the P450 BM3 mutants in the presence of the target substrates. The three drugs screened are marker substrates of human liver cytochromes P450 belonging to the 2C subfamily. Interestingly the mutations Asp251Gly/Gln307His are located on the protein surface and they are not directly involved in substrate binding and turnover. Dissociation constants and K(M) values of mutant A2 for diclofenac, ibuprofen and tolbutamide are in the micromolar range. Catalysis leads to hydroxylations in specific positions, producing 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide, respectively.
Collapse
Affiliation(s)
- Georgia E Tsotsou
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13, 10123, Torino, Italy
| | | | | | | | | |
Collapse
|
22
|
Choi KY, Jung E, Jung DH, Pandey BP, Yun H, Park HY, Kazlauskas RJ, Kim BG. Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. FEBS J 2012; 279:1650-62. [PMID: 22188665 DOI: 10.1111/j.1742-4658.2011.08462.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Among 33 cytochrome P450s (CYPs) of Streptomyces avermitilis, CYP102D1 encoded by the sav575 gene is naturally a unique and self-sufficient CYP. Since the native cyp102D1 gene could not be expressed well in Escherichia coli, its expression was attempted using codon-optimized synthetic DNA. The gene was successfully overexpressed and the recombinant CYP102D1 was functionally active, showing a Soret peak at 450 nm in the reduced CO difference spectrum. FMN/FAD isolated from the reductase domain showed the same fluorescence in thin layer chromatography separation as the authentic standards. Characterization of the substrate specificity of CYP102D1 based on NADPH oxidation rate revealed that it catalysed the oxidation of saturated and unsaturated fatty acids with very good regioselectivity, similar to other CYP102A families depending on NADPH supply. In particular, CYP102D1 catalysed the rapid oxidation of myristoleic acid with a k(cat)/K(m) value of 453.4 ± 181.5 μM(-1)·min(-1). Homology models of CYP102D1 based on other members of the CYP102A family allowed us to alter substrate specificity to aromatic compounds such as daidzein. Interestingly, replacement of F96V/M246I in the active site increased catalytic activity for daidzein with a k(cat)/K(m) value of 100.9 ± 10.4 μM(-1)·min(-1) (15-fold).
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
24
|
Theurer M, El Baz Y, Koschorreck K, Urlacher VB, Rauhut G, Baro A, Laschat S. Chemoenzymatic Synthesis of the C3-C11-Fragment of Borrelidin. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem Rev 2011; 111:4141-64. [DOI: 10.1021/cr100386u] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gernot A. Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Oliver May
- DSM—Innovative Synthesis BV, Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | | |
Collapse
|
26
|
Gudiminchi RK, Smit MS. Identification and characterization of 4-hexylbenzoic acid and 4-nonyloxybenzoic acid as substrates of CYP102A1. Appl Microbiol Biotechnol 2010; 90:117-26. [DOI: 10.1007/s00253-010-3029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/30/2022]
|
27
|
Axarli I, Prigipaki A, Labrou NE. Cytochrome P450 102A2 Catalyzes Efficient Oxidation of Sodium Dodecyl Sulphate: A Molecular Tool for Remediation. Enzyme Res 2010; 2010:125429. [PMID: 21048857 PMCID: PMC2956967 DOI: 10.4061/2010/125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/11/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022] Open
Abstract
Bacterial cytochrome P450s (CYPs) constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. In the present work we report the characterization of CYP102A2 from B. subtilis with a focus on its substrate specificity. CYP102A2 is more active in oxidation of sodium dodecyl sulphate (SDS) than any other characterized CYP. The effect of SDS and NADPH concentration on reaction rate showed nonhyperbolic and hyperbolic dependence, respectively. The enzyme was found to exhibit a bell-shaped curve for plots of activity versus pH, over pH values 5.9–8.5. The rate of SDS oxidation reached the maximum value approximately at pH 7.2 and the pH transition observed controlled by two pKas in the acidic (pKa = 6.7 ± 0.08) and basic (pKa = 7.3 ± 0.06) pH range. The results are discussed in relation to the future biotechnology applications of CYPs.
Collapse
Affiliation(s)
- Irene Axarli
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | |
Collapse
|
28
|
Furuya T, Kino K. Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol 2010; 86:991-1002. [DOI: 10.1007/s00253-010-2450-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
29
|
Sawayama AM, Chen MMY, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH. A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chemistry 2009; 15:11723-9. [PMID: 19774562 PMCID: PMC3118466 DOI: 10.1002/chem.200900643] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Herein we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant.
Collapse
Affiliation(s)
- Andrew M. Sawayama
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| | - Michael M. Y. Chen
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| | - Palaniappan Kulanthaivel
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Ming-Shang Kuo
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Horst Hemmerle
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Frances H. Arnold
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| |
Collapse
|
30
|
Prior JE, Shokati T, Christians U, Gill RT. Identification and characterization of a bacterial cytochrome P450 for the metabolism of diclofenac. Appl Microbiol Biotechnol 2009; 85:625-33. [PMID: 19636551 DOI: 10.1007/s00253-009-2135-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
The bacterium Actinoplanes sp. ATCC 53771 is known to perform drug metabolism of several xenobiotics similarly to humans. We identified a cytochrome P450 enzyme from this strain, CYP107E4, and expressed it in Escherichia coli using the pET101 vector. The purified enzyme showed the characteristic reduced-CO difference spectra with a peak at 450 nm, indicating the protein is produced in the active form with proper heme incorporation. The CYP107E4 enzyme was found to bind the drug diclofenac. Using redox enzymes from spinach, the reconstituted system is able to produce hydroxylated metabolites of diclofenac. Production of the human 4'-hydroxydiclofenac metabolite by CYP107E4 was confirmed, and a second hydroxylated metabolite was also produced.
Collapse
Affiliation(s)
- Jamie E Prior
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
31
|
Dietrich M, Do TA, Schmid RD, Pleiss J, Urlacher VB. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions. J Biotechnol 2008; 139:115-7. [PMID: 18984016 DOI: 10.1016/j.jbiotec.2008.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 BM-3 monooxygenase from Bacillus megaterium (CYP102A1) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12-22 carbons. Wild-type P450 BM-3 oxidizes saturated fatty acids at subterminal positions producing a mixture of omega-1, omega-2 and omega-3 hydroxylated products. Using a rational site-directed mutagenesis approach, three new elements have been introduced into the substrate binding pocket of the monooxygenase, which greatly changed the product pattern of lauric acid hydroxylation. Particularly, substitutions at positions S72, V78 and I263 had an effect on the enzyme regioselectivity. The P450 BM-3 mutants V78A F87A I263G and S72Y V78A F87A were able to oxidize lauric acid not only at delta-position (14% and 16%, respectively), but also produced gamma- and beta-hydroxylated products. delta-Hydroxy lauric and gamma-hydroxy lauric acid are important synthons for the production of the corresponding lactones.
Collapse
Affiliation(s)
- Matthias Dietrich
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
32
|
Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 2008; 79:931-40. [DOI: 10.1007/s00253-008-1500-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
33
|
Chowdhary PK, Alemseghed M, Haines DC. Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys 2007; 468:32-43. [DOI: 10.1016/j.abb.2007.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/27/2022]
|
34
|
Hilker BL, Fukushige H, Hou C, Hildebrand D. Comparison of Bacillus monooxygenase genes for unique fatty acid production. Prog Lipid Res 2007; 47:1-14. [PMID: 17964298 DOI: 10.1016/j.plipres.2007.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activities. A few crystallographic analyses of the standard bearer enzyme P450(BM-3) are discussed to try to rationalize the common chemistries of this important enzyme family. Detailed P450(BM-3) enzyme activities toward different substrates and the unique substrate-specific primary oxidation products are examined. A few orthologs to the recurring P450(BM-3) enzyme as well as related small single-to-triple nucleotides changed mutants are also discussed. Finally, preliminary data characterizing unique in vivo-based primary and secondary products of a novel ortholog, the ALA2 strain, are presented. This later strain synthesizes several unique multi-oxidized reaction products that require additional study to further understand. It is hoped that a better understanding of these oxygenase reactions, particularly the ALA2 strain, will allow for realistically priced production of target multiple-oxygenated compounds with potential uses as specialty chemicals or as therapeutic agents.
Collapse
Affiliation(s)
- B L Hilker
- Department of Plant and Soil Sciences, University of Kentucky, 420 Plant Sciences Building, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | | | | | | |
Collapse
|
35
|
Kühnel K, Maurer S, Galeyeva Y, Frey W, Laschat S, Urlacher V. Hydroxylation of Dodecanoic Acid and (2R,4R,6R,8R)-Tetramethyldecanol on a Preparative Scale using an NADH- Dependent CYP102A1 Mutant. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Bichet A, Hannemann F, Rekowski M, Bernhardt R. A new application of the yeast two-hybrid system in protein engineering. Protein Eng Des Sel 2007; 20:117-23. [PMID: 17293371 DOI: 10.1093/protein/gzm002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochromes P450 are involved in the biosynthesis of steroid hormones in mitochondria of the adrenal gland. The electrons required for these reactions are provided via a redox chain consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). A prerequisite for a fast and efficient electron transfer as well as high catalytic activity is the formation of functional complexes between the different redox partners. To improve the protein-protein interactions by directed evolution, we developed a new in vivo selection system. This high-throughput screening method is based on the yeast two-hybrid system. It enables a background-free screening for increased protein-protein interactions between stable and functional species including cofactor-containing proteins (FAD, [2Fe-2S], heme). The method was successfully applied for the directed evolution of Adx and selected variants were analyzed biochemically and biophysically. All analyzed proteins exhibit typical characteristics of [2Fe-2S]-cluster-type ferredoxins. Adx-dependent substrate conversion assays with different cytochromes demonstrated that the improved ability of the mutants to form complexes results in an enhanced catalytic efficiency of the cytochrome P450 system.
Collapse
Affiliation(s)
- Andreas Bichet
- FR 8.3--Biochemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
37
|
|