1
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
2
|
Yang CL, Zhang B, Xue WW, Li W, Xu ZF, Shi J, Shen Y, Jiao RH, Tan RX, Ge HM. Discovery, Biosynthesis, and Heterologous Production of Loonamycin, a Potent Anticancer Indolocarbazole Alkaloid. Org Lett 2020; 22:4665-4669. [DOI: 10.1021/acs.orglett.0c01456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cheng Long Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Wen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Hughes RR, Shaaban KA, Ponomareva LV, Horn J, Zhang C, Zhan CG, Voss SR, Leggas M, Thorson JS. OleD Loki as a Catalyst for Hydroxamate Glycosylation. Chembiochem 2020; 21:952-957. [PMID: 31621997 PMCID: PMC7124993 DOI: 10.1002/cbic.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jamie Horn
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chunhui Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
4
|
Sheng W, Xu B, Chen S, Li Y, Liu B, Wang H. Substrate tolerance of the biosynthetic enzymes of glycosylated lanthipeptide NAI-112. Org Biomol Chem 2020; 18:6095-6099. [PMID: 32700722 DOI: 10.1039/d0ob01215g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAI-112 is a glycosylated class III lanthipeptide produced by an Actinoplanes sp. strain with potent bioactivity against nociceptive pain. It contains two labionin/methyllabionin motifs and a rare deoxyhexose modification N-linked to a tryptophan residue. In this study, we investigated the substrate tolerance of the biosynthetic machinery of NAI-112 by using a heterologous co-expression system in Escherichia coli. The results demonstrate AplKC as the first class III lanthipeptide synthetase to catalyze the formation of two labionin/methyllabionin motifs independently. As a rare Trp(N) glycosyltransferase, AplG shows the requirement of two intact ring structures in peptides for substrate recognition. Structural modelling and mutagenesis studies helped identify three residues of catalytic importance in AplG.
Collapse
Affiliation(s)
- Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Bing Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Shaoming Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Bin Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
6
|
Forget SM, Shepard SB, Soleimani E, Jakeman DL. On the Catalytic Activity of a GT1 Family Glycosyltransferase from Streptomyces venezuelae ISP5230. J Org Chem 2019; 84:11482-11492. [PMID: 31429289 DOI: 10.1021/acs.joc.9b01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GT1 family glycosyltansferase, Sv0189, from Streptomyces venezuelae ISP5230 (ATCC 10721) was characterized. The recombinantly produced protein Sv0189 possessed UDP-glycosyltransferase activity. Screening, using an assay employing unnatural nitrophenyl glycosides as activated donors, resulted in the discovery of a broad substrate scope with respect to both acceptor molecules and donor sugars. In addition to polyphenols, including anthraquinones, simple aromatics containing primary or secondary alcohols, a variety of complex natural products and synthetic drugs were glucosylated or xylosylated by Sv0189. Regioselectivity was established through the isolation and characterization of glucosylated products. Sv0189 and homologous proteins are widely distributed among Streptomyces species, and their apparent substrate promiscuity reveals potential for their development as biocatalysts for glycodiversification.
Collapse
Affiliation(s)
| | | | - Ebrahim Soleimani
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | | |
Collapse
|
7
|
Li X, Wu X, Shen Y. Identification of the Bacterial Maytansinoid Gene Cluster asc Provides Insights into the Post-PKS Modifications of Ansacarbamitocin Biosynthesis. Org Lett 2019; 21:5823-5826. [PMID: 31299158 DOI: 10.1021/acs.orglett.9b01891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new biosynthetic gene cluster for the bacterial maytansinoids, ansacarbamitocins (ASCs), was identified in Amycolatopsis alba DSM 44262. The post-PKS modifications of ASCs were elucidated on the basis of bioinformatics analysis. Specific gene disruption and heterologous expression led to the isolation of seven new bacterial maytansinoids. The 3'-O-methyltransferase and 3-O-carbamyltransferase involved in bacterial maytansinoid biosynthesis were identified for the first time. The new bacterial maytansinoids 7 and 13 showed strong antitumor activities against four human cancer cell lines.
Collapse
Affiliation(s)
- Xiaoman Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| | - Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| |
Collapse
|
8
|
Abstract
The jadomycin family of natural products was discovered from Streptomyces venezuelae ISP5230 in the 1990s. Subsequent identification of the biosynthetic gene cluster along with synthetic efforts established that incorporation of an amino acid into the polyaromatic angucycline core occurs non-enzymatically. Over two decades, the precursor-directed biosynthetic potential of the jadomycins has been heavily exploited, generating a library exceeding 70 compounds. This review compiles the jadomycins that have been isolated and characterized to date; these include jadomycins incorporating proteinogenic and non-proteinogenic amino acids, semi-synthetic derivatives, biosynthetic shunt products, compounds isolated in structural gene deletion studies, and deoxysugar sugar variant jadomycins produced by deletion or heterologous expression of sugar biosynthetic genes.
Collapse
Affiliation(s)
- Jeanna M. MacLeod
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
| | | | - David L. Jakeman
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
9
|
Ma L, Zhang W, Zhu Y, Zhang G, Zhang H, Zhang Q, Zhang L, Yuan C, Zhang C. Identification and characterization of a biosynthetic gene cluster for tryptophan dimers in deep sea-derived Streptomyces sp. SCSIO 03032. Appl Microbiol Biotechnol 2017; 101:6123-6136. [PMID: 28620687 DOI: 10.1007/s00253-017-8375-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023]
Abstract
Tryptophan dimers (TDs) are an important class of natural products with diverse bioactivities and share conserved biosynthetic pathways. We report the identification of a partial gene cluster (spm) responsible for the biosynthesis of a class of unusual TDs with non-planar skeletons including spiroindimicins (SPMs), indimicins (IDMs), and lynamicins (LNMs) from the deep-sea derived Streptomyces sp. SCSIO 03032. Bioinformatics analysis, targeted gene disruptions, and heterologous expression studies confirmed the involvement of the spm gene cluster in the biosynthesis of SPM/IDM/LNMs, and revealed the indispensable roles for the halogenase/reductase pair SpmHF, the amino acid oxidase SpmO, and the chromopyrrolic acid (CPA) synthase SpmD, as well as the positive regulator SpmR and the putative transporter SpmA. However, the spm gene cluster was unable to confer a heterologous host the ability to produce SPM/IDM/LNMs. In addition, the P450 enzyme SpmP and the monooxygenase SpmX2 were found to be non-relevant to the biosynthesis of SPM/IDM/LNMs. Sequence alignment and structure modeling suggested the lack of key conserved amino acid residues in the substrate-binding pocket of SpmP. Furthermore, feeding experiments in the non-producing ΔspmO mutant revealed several biosynthetic precursors en route to SPMs, indicating that key enzymes responsible for the biosynthesis of SPMs should be encoded by genes outside of the identified spm gene cluster. Finally, the biosynthetic pathways of SPM/IDM/LNMs are proposed to lay a basis for further insights into their intriguing biosynthetic machinery.
Collapse
Affiliation(s)
- Liang Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Guangtao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Chengshan Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
10
|
Hughes RR, Shaaban KA, Zhang J, Cao H, Phillips GN, Thorson JS. OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation. Chembiochem 2017; 18:363-367. [PMID: 28067448 PMCID: PMC5355705 DOI: 10.1002/cbic.201600676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 12/23/2022]
Abstract
We describe the ability of an engineered glycosyltransferase (OleD Loki) to catalyze the N-glycosylation of tertiary-amine-containing drugs and trichostatin hydroxamate glycosyl ester formation. As such, this study highlights the first bacterial model catalyst for tertiary-amine N-glycosylation and further expands the substrate scope and synthetic potential of engineered OleDs. In addition, this work could open the door to the discovery of similar capabilities among other permissive bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Hongnan Cao
- Department of Chemistry, Rice University, P. O. Box 1892, MS 60, Houston, TX, 77251, USA
| | - George N Phillips
- Department of Chemistry, Rice University, P. O. Box 1892, MS 60, Houston, TX, 77251, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
11
|
Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. ACTA ACUST UNITED AC 2016; 22:317-28. [PMID: 25794436 DOI: 10.1016/j.chembiol.2015.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/19/2023]
Abstract
Tryptophan, the most chemically complex and the least abundant of the 20 common proteinogenic amino acids, is a biosynthetic precursor to a large number of complex microbial natural products. Many of these molecules are promising scaffolds for drug discovery and development. The chemical features of tryptophan, including its ability to undergo enzymatic modifications at almost every atom in its structure and its propensity to undergo spontaneous, non-enzyme catalyzed chemistry, make it a unique biological precursor for the generation of chemical complexity. Here, we review the pathways that enable incorporation of tryptophan into complex metabolites in bacteria, with a focus on recently discovered, unusual metabolic transformations.
Collapse
|
12
|
Koirala N, Thuan NH, Ghimire GP, Thang DV, Sohng JK. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb Technol 2016; 86:103-16. [PMID: 26992799 DOI: 10.1016/j.enzmictec.2016.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same.
Collapse
Affiliation(s)
- Niranjan Koirala
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung Street, Haichau District, Danang City, Viet Nam.
| | - Gopal Prasad Ghimire
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Duong Van Thang
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
13
|
Kudo F, Kawamura K, Furuya T, Yamanishi H, Motegi A, Komatsubara A, Numakura M, Miyanaga A, Eguchi T. Parallel Post-Polyketide Synthase Modification Mechanism Involved in FD-891 Biosynthesis inStreptomyces graminofaciensA-8890. Chembiochem 2016; 17:233-8. [DOI: 10.1002/cbic.201500533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Koichi Kawamura
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Takashi Furuya
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Hiroto Yamanishi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Atsushi Motegi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Akiko Komatsubara
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Mario Numakura
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Akimasa Miyanaga
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
14
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS. Cytotoxic Indolocarbazoles from Actinomadura melliaura ATCC 39691. JOURNAL OF NATURAL PRODUCTS 2015; 78:1723-9. [PMID: 26091285 PMCID: PMC4515175 DOI: 10.1021/acs.jnatprod.5b00429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Actinomadura melliaura ATCC 39691, a strain isolated from a soil sample collected in Bristol Cove, California, is a known producer of the disaccharide-substituted AT2433 indolocarbazoles (6-9). Reinvestigation of this strain using new media conditions led to >40-fold improvement in the production of previously reported AT2433 metabolites and the isolation and structure elucidation of the four new analogues, AT2433-A3, A4, A5, and B3 (1-4). The availability of this broader set of compounds enabled a subsequent small antibacterial/fungal/cancer SAR study that revealed disaccharyl substitution, N-6 methylation, and C-11 chlorination as key modulators of bioactivity. The slightly improved anticancer potency of the newly reported N-6-desmethyl 1 (compared to 6) contrasts extensive SAR of monoglycosylated rebeccamycin-type topoisomerase I inhibitors where N-6 alkylation has contributed to improved potency and ADME. Complete 2D NMR assignments for the known metabolite BMY-41219 (5) and (13)C NMR spectroscopic data for the known analogue AT2433-B1 (7) are also provided for the first time.
Collapse
Affiliation(s)
- Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Madan K. Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Author:
| |
Collapse
|
16
|
Du YL, Ryan KS. Expansion of bisindole biosynthetic pathways by combinatorial construction. ACS Synth Biol 2015; 4:682-8. [PMID: 25548949 DOI: 10.1021/sb5003218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cladoniamides are indolotryptoline natural products that derive from indolocarbazole precursors. Here, we present a microbial platform to artificially redirect the cladoniamide pathway to generate unnatural bisindoles for drug discovery. Specifically, we target glycosyltransferase, halogenase, and oxidoreductase genes from the phylogenetically related indolocarbazole rebeccamycin and staurosporine pathways. We generate a series of novel compounds, reveal details about the substrate specificities of a number of enzymes, and set the stage for future efforts to develop new catalysts and compounds by engineering of bisindole genes. The strategy for structural diversification we use here could furthermore be applied to other natural product families with known biosynthetic genes.
Collapse
Affiliation(s)
- Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
17
|
Bernard SM, Akey DL, Tripathi A, Park SR, Konwerski JR, Anzai Y, Li S, Kato F, Sherman DH, Smith JL. Structural basis of substrate specificity and regiochemistry in the MycF/TylF family of sugar O-methyltransferases. ACS Chem Biol 2015; 10:1340-51. [PMID: 25692963 DOI: 10.1021/cb5009348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates, show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homologue, active site residues were identified that correlate with the 3' or 4' specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. This classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.
Collapse
Affiliation(s)
- Steffen M. Bernard
- Chemical
Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David L. Akey
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashootosh Tripathi
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sung Ryeol Park
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jamie R. Konwerski
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yojiro Anzai
- Faculty
of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shengying Li
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fumio Kato
- Faculty
of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H. Sherman
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janet L. Smith
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Hao Y, Saint-Vincent PMB, Sharma A, Mitchell DA, Nair SK. Insights into methyltransferase specificity and bioactivity of derivatives of the antibiotic plantazolicin. ACS Chem Biol 2015; 10:1209-1216. [PMID: 25635336 DOI: 10.1021/cb501042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptide antibiotics represent a class of conformationally constrained natural products of growing pharmaceutical interest. Plantazolicin (PZN) is a linear, polyheterocyclic natural product with highly selective and potent activity against the anthrax-causing bacterium, Bacillus anthracis. The bioactivity of PZN is contingent on dimethylation of its N-terminal Arg residue by an S-adenosylmethionine-dependent methyltransferase. Here, we explore the substrate tolerances of two homologous PZN methyltransferases by carrying out kinetic analyses of the enzymes against a synthetic panel of truncated PZN analogs containing the N-terminal Arg residue. X-ray cocrystal structures of the PZN methyltransferases with each of these heterocycle-containing substrates provide a rationale for understanding the strict substrate specificity of these enzymes. Kinetic studies of structure-guided, site-specific variants allowed for the assignment of residues governing catalysis and substrate scope. Microbiological testing further revealed that upon dimethylation of the N-terminal Arg, a pentaheterocyclized PZN analog retained potent anti-B. anthracis activity, nearly equal to that of full-length PZN. These studies may be useful in the biosynthetic engineering of natural product analogs with different bioactivity profiles, as demonstrated by our identification of a truncated plantazolicin derivative that is active against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
|
19
|
Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 2015; 44:8350-74. [DOI: 10.1039/c5cs00600g] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts) occur almost everywhere in the biosphere, and always play crucial roles in vital processes.
Collapse
Affiliation(s)
- Dong-Mei Liang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jia-Heng Liu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hao Wu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin-Bin Wang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hong-Ji Zhu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jian-Jun Qiao
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
20
|
Hillwig ML, Fuhrman HA, Ittiamornkul K, Sevco TJ, Kwak DH, Liu X. Identification and characterization of a welwitindolinone alkaloid biosynthetic gene cluster in the stigonematalean Cyanobacterium Hapalosiphon welwitschii. Chembiochem 2014; 15:665-9. [PMID: 24677572 DOI: 10.1002/cbic.201300794] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 11/05/2022]
Abstract
The identification of a 36 kb welwitindolinone (wel) biosynthetic gene cluster in Hapalosiphon welwitschii UTEX B1830 is reported. Characterization of the enzymes responsible for assembling the early biosynthetic intermediates geranyl pyrophosphate and 3-((Z)-2′-isocyanoethenyl)indole as well as a dedicated N-methyltransferase in the maturation of N-methylwelwitindolinone C isothiocyanate solidified the link between the wel pathway and welwitindolinone biosynthesis. Comparative analysis of the ambiguine and welwitindolinone biosynthetic pathways in two different organisms provided insights into the origins of diverse structures within hapalindole-type molecules.
Collapse
|
21
|
Chen JM, Shepherd MD, Horn J, Leggas M, Rohr J. Enzymatic methylation and structure-activity-relationship studies on polycarcin V, a gilvocarcin-type antitumor agent. Chembiochem 2014; 15:2729-35. [PMID: 25366963 PMCID: PMC4266428 DOI: 10.1002/cbic.201402426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/06/2022]
Abstract
Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity relationships of the gilvocarcin group of antitumor antibiotics due to a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2'-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important hydrogen bond donor for the interaction with histone H3, and converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two hydrogen bond donors in the sugar are necessary for optimal binding.
Collapse
Affiliation(s)
- Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Micah D. Shepherd
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
- ZuChem Inc., Next Innovation Center, 801 West Main Street, Peoria, Illinois 61606-1877, USA
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
- Center for Pharmaceutical Science and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
22
|
Zhang W, Ma L, Li S, Liu Z, Chen Y, Zhang H, Zhang G, Zhang Q, Tian X, Yuan C, Zhang S, Zhang W, Zhang C. Indimicins A-E, Bisindole Alkaloids from the Deep-Sea-Derived Streptomyces sp. SCSIO 03032. JOURNAL OF NATURAL PRODUCTS 2014; 77:1887-1892. [PMID: 25069084 DOI: 10.1021/np500362p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Five new bisindole alkaloids, indimicins A-E (1-5), bearing a unique 1',3'-dimethyl-2'-hydroindole moiety, were isolated from the marine-derived Streptomyces sp. SCSIO 03032, along with two new compounds, lynamicins F and G (6 and 7). Their planar structures were elucidated by detailed interpretation of their MS and NMR spectroscopic data, and the absolute configurations were determined by X-ray crystallographic analysis (for 1), comparison of CD spectra (for 2-4), and quantum chemical calculations (for 5). Indimicin B (2) exhibited moderate cytotoxic activity toward the MCF-7 cell line.
Collapse
Affiliation(s)
- Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Liang Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Sumei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Zhong Liu
- Guangzhoujinan Biomedicine Research and Development Center, Guangdong Key Laboratory of Bioengineering Medicine, Jinan University , 601 West Huangpu Road, Guangzhou 510632, People's Republic of China
| | - Yuchan Chen
- Guangdong Institute of Microbiology , 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Guangtao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Chengshan Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Weimin Zhang
- Guangdong Institute of Microbiology , 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, Collaborative Innovation Center of Deep Sea Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| |
Collapse
|
23
|
Biosynthesis of Indolocarbazole and Goadsporin, Two Different Heterocyclic Antibiotics Produced by Actinomycetes. Biosci Biotechnol Biochem 2014; 73:2149-55. [DOI: 10.1271/bbb.90263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-(L)-methionine analogues. Angew Chem Int Ed Engl 2014; 53:3965-9. [PMID: 24616228 PMCID: PMC4076696 DOI: 10.1002/anie.201308272] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/16/2013] [Indexed: 01/22/2023]
Abstract
A chemoenzymatic platform for the synthesis of S-adenosyl-L-methionine (SAM) analogues compatible with downstream SAM-utilizing enzymes is reported. Forty-four non-native S/Se-alkylated Met analogues were synthesized and applied to probing the substrate specificity of five diverse methionine adenosyltransferases (MATs). Human MAT II was among the most permissive of the MATs analyzed and enabled the chemoenzymatic synthesis of 29 non-native SAM analogues. As a proof of concept for the feasibility of natural product "alkylrandomization", a small set of differentially-alkylated indolocarbazole analogues was generated by using a coupled hMAT2-RebM system (RebM is the sugar C4'-O-methyltransferase that is involved in rebeccamycin biosynthesis). The ability to couple SAM synthesis and utilization in a single vessel circumvents issues associated with the rapid decomposition of SAM analogues and thereby opens the door for the further interrogation of a wide range of SAM utilizing enzymes.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Tyler D. Huber
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Katherine Hurley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53705 (USA)
| | - Randal D. Goff
- Western Wyoming Community College, 2500 College Dr. Rock Springs, WY 82902-0428
| | - Guojun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Wen Zhang
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Chunming Liu
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
25
|
Chang FY, Brady SF. Characterization of an environmental DNA-derived gene cluster that encodes the bisindolylmaleimide methylarcyriarubin. Chembiochem 2014; 15:815-21. [PMID: 24648189 DOI: 10.1002/cbic.201300756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Indexed: 01/11/2023]
Abstract
Bisindolylmaleimides represent a naturally occurring class of metabolites that are of interest because of their protein kinase inhibition activity. From a metagenomic library constructed with soil DNA, we identified the four gene mar cluster, a bisindolylmaleimide gene cluster that encodes for methylarcyriarubin (1) production. Heterologous expression of the mar gene cluster in E. coli revealed that the Rieske dioxygenase MarC facilitates the oxidative decarboxylation of a chromopyrrolic acid (CPA) intermediate to yield the bisindolylmaleimide core. The characterization of the mar cluster defines a new role for CPA in the biosynthesis of structurally diverse bacterial tryptophan dimers.
Collapse
Affiliation(s)
- Fang-Yuan Chang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | | |
Collapse
|
26
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile Chemoenzymatic Strategies for the Synthesis and Utilization ofS-Adenosyl-L-Methionine Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308272] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Chang FY, Ternei MA, Calle PY, Brady SF. Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. J Am Chem Soc 2013; 135:17906-12. [PMID: 24171465 DOI: 10.1021/ja408683p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we investigate bacterial tryptophan dimer (TD) biosynthesis by probing environmental DNA (eDNA) libraries for chromopyrrolic acid (CPA) synthase genes. Functional and bioinformatics analyses of TD clusters indicate that CPA synthase gene sequences diverge in concert with the functional output of their respective clusters, making this gene a powerful tool for guiding the discovery of novel TDs from the environment. Twelve unprecedented TD biosynthetic gene clusters that can be arranged into five groups (A-E) based on their ability to generate distinct TD core substructures were recovered from eDNA libraries. Four of these groups contain clusters from both cultured and culture independent studies, while the remaining group consists entirely of eDNA-derived clusters. The complete synthetic refactoring of a representative gene cluster from the latter eDNA specific group led to the characterization of the erdasporines, cytotoxins with a novel carboxy-indolocarbazole TD substructure. Analysis of CPA synthase genes in crude eDNA suggests the presence of additional TD gene clusters in soil environments.
Collapse
Affiliation(s)
- Fang-Yuan Chang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | | | |
Collapse
|
28
|
Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis. Proc Natl Acad Sci U S A 2013; 110:12954-9. [PMID: 23878226 DOI: 10.1073/pnas.1306101110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plantazolicin (PZN), a polyheterocyclic, N(α),N(α)-dimethylarginine-containing antibiotic, harbors remarkably specific bactericidal activity toward strains of Bacillus anthracis, the causative agent of anthrax. Previous studies demonstrated that genetic deletion of the S-adenosyl-L-methionine-dependent methyltransferase from the PZN biosynthetic gene cluster results in the formation of desmethylPZN, which is devoid of antibiotic activity. Here we describe the in vitro reconstitution, mutational analysis, and X-ray crystallographic structure of the PZN methyltransferase. Unlike all other known small molecule methyltransferases, which act upon diverse substrates in vitro, the PZN methyltransferase is uncharacteristically limited in substrate scope and functions only on desmethylPZN and close derivatives. The crystal structures of two related PZN methyltransferases, solved to 1.75 Å (Bacillus amyloliquefaciens) and 2.0 Å (Bacillus pumilus), reveal a deep, narrow cavity, putatively functioning as the binding site for desmethylPZN. The narrowness of this cavity provides a framework for understanding the molecular basis of the extreme substrate selectivity. Analysis of a panel of point mutations to the methyltransferase from B. amyloliquefaciens allowed the identification of residues of structural and catalytic importance. These findings further our understanding of one set of orthologous enzymes involved in thiazole/oxazole-modified microcin biosynthesis, a rapidly growing sector of natural products research.
Collapse
|
29
|
Xiao J, Zhang Q, Zhu Y, Li S, Zhang G, Zhang H, Saurav K, Zhang C. Characterization of the sugar-O-methyltransferase LobS1 in lobophorin biosynthesis. Appl Microbiol Biotechnol 2013; 97:9043-53. [DOI: 10.1007/s00253-013-5083-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/04/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
30
|
Flatt PM, Wu X, Perry S, Mahmud T. Genetic insights into pyralomicin biosynthesis in Nonomuraea spiralis IMC A-0156. JOURNAL OF NATURAL PRODUCTS 2013; 76:939-946. [PMID: 23607523 PMCID: PMC3684624 DOI: 10.1021/np400159a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The biosynthetic gene cluster for the pyralomicin antibiotics has been cloned and sequenced from Nonomuraea spiralis IMC A-0156. The 41 kb gene cluster contains 27 ORFs predicted to encode all of the functions for pyralomicin biosynthesis. This includes nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) required for the formation of the benzopyranopyrrole core unit, as well as a suite of tailoring enzymes (e.g., four halogenases, an O-methyltransferase, and an N-glycosyltransferase) necessary for further modifications of the core structure. The N-glycosyltransferase is predicted to transfer either glucose or a pseudosugar (cyclitol) to the aglycone. A gene cassette encoding C7-cyclitol biosynthetic enzymes was identified upstream of the benzopyranopyrrole-specific ORFs. Targeted disruption of the gene encoding the N-glycosyltransferase, prlH, abolished pyralomicin production, and recombinant expression of PrlA confirms the activity of this enzyme as a sugar phosphate cyclase involved in the formation of the C7-cyclitol moiety.
Collapse
Affiliation(s)
| | | | | | - Taifo Mahmud
- Corresponding Author Tel: 1-541-737-9679. Fax: 1-541-737-3999.
| |
Collapse
|
31
|
Biosynthetic gene cluster for the cladoniamides, bis-indoles with a rearranged scaffold. PLoS One 2011; 6:e23694. [PMID: 21876764 PMCID: PMC3158105 DOI: 10.1371/journal.pone.0023694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/22/2011] [Indexed: 01/07/2023] Open
Abstract
The cladoniamides are bis-indole alkaloids isolated from Streptomyces uncialis, a lichen-associated actinomycete strain. The cladoniamides have an unusual, indenotryptoline structure rarely observed among bis-indole alkaloids. I report here the isolation, sequencing, and annotation of the cladoniamide biosynthetic gene cluster and compare it to the recently published gene cluster for BE-54017, a closely related indenotryptoline natural product. The cladoniamide gene cluster differs from the BE-54017 gene cluster in gene organization and in the absence of one N-methyltransferase gene but otherwise contains close homologs to all genes in the BE-54017 cluster. Both gene clusters encode enzymes needed for the construction of an indolocarbazole core, as well as flavin-dependent enzymes putatively involved in generating the indenotryptoline scaffold from an indolocarbazole. These two bis-indolic gene clusters exemplify the diversity of biosynthetic routes that begin from the oxidative dimerization of two molecules of l-tryptophan, highlight enzymes for further study, and provide new opportunities for combinatorial engineering.
Collapse
|
32
|
Asamizu S, Yang J, Almabruk KH, Mahmud T. Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin a biosynthesis. J Am Chem Soc 2011; 133:12124-35. [PMID: 21766819 DOI: 10.1021/ja203574u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosyltransferases are ubiquitous in nature. They catalyze a glycosidic bond formation between sugar donors and sugar or nonsugar acceptors to produce oligo/polysaccharides, glycoproteins, glycolipids, glycosylated natural products, and other sugar-containing entities. However, a trehalose 6-phosphate synthase-like protein has been found to catalyze an unprecedented nonglycosidic C-N bond formation in the biosynthesis of the aminocyclitol antibiotic validamycin A. This dedicated 'pseudoglycosyltransferase' catalyzes a condensation between GDP-valienol and validamine 7-phosphate to give validoxylamine A 7'-phosphate with net retention of the 'anomeric' configuration of the donor cyclitol in the product. The enzyme operates in sequence with a phosphatase, which dephosphorylates validoxylamine A 7'-phosphate to validoxylamine A.
Collapse
Affiliation(s)
- Shumpei Asamizu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, USA
| | | | | | | |
Collapse
|
33
|
Niu S, Hu T, Li S, Xiao Y, Ma L, Zhang G, Zhang H, Yang X, Ju J, Zhang C. Characterization of a sugar-O-methyltransferase TiaS5 affords new Tiacumicin analogues with improved antibacterial properties and reveals substrate promiscuity. Chembiochem 2011; 12:1740-8. [PMID: 21633995 DOI: 10.1002/cbic.201100129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 12/18/2022]
Abstract
The 18-membered macrocyclic glycoside tiacumicin B, an RNA polymerase inhibitor, is of great therapeutic significance in treating Clostridium difficile infections. The recent characterization of the tiacumicin B biosynthetic gene cluster from Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085 revealed the functions of two glycosyltransferases, a C-methyltransferase, an acyltransferase, two cytochrome P450s, and a tailoring dihalogenase in tiacumicin biosynthesis. Here we report the genetic confirmation and biochemical characterization of TiaS5 as a sugar-O-methyltransferase, requisite for tiacumicin B biosynthesis. The tiaS5-inactivation mutant is capable of producing 14 tiacumicin analogues (11 of which are new), all lacking the 2'-O-methyl group on the internal rhamnose moiety. Notably, two tiacumicin analogues exhibit improved antibacterial properties. We have also biochemically verified TiaS5 as an S-adenosyl-L-methionine-dependent O-methyltransferase, requiring divalent metal ions for activity. Substrate probing revealed TiaS5 to be a promiscuous enzyme, recognizing 12 tiacumicin analogues. These findings unequivocally establish that TiaS5 functions as a 2'-O-methyltransferase and provide direct biochemical evidence that TiaS5-catalyzed methylation is a tailoring step after glycosyl coupling in tiacumicin B biosynthesis.
Collapse
Affiliation(s)
- Siwen Niu
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singh S, Chang A, Goff RD, Bingman CA, Grüschow S, Sherman DH, Phillips GN, Thorson JS. Structural characterization of the mitomycin 7-O-methyltransferase. Proteins 2011; 79:2181-8. [PMID: 21538548 DOI: 10.1002/prot.23040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/09/2011] [Accepted: 02/19/2011] [Indexed: 11/07/2022]
Abstract
Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9β- and C9α-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9and 2.3 Å, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.
Collapse
Affiliation(s)
- Shanteri Singh
- Division of Pharmaceutical Sciences, Wisconsin Center for Natural Product Research, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kalyana Sundar J, Natarajan S, Chitra S, Paul N, Manisankar P, Muthusubramanian S, Suresh J. Spectral Analysis and Crystal Structures of 4-(4-Methylphenyl)-6-Phenyl-2,3,3a, 4-Tetrahydro-1H-Pyrido[3,2,1-jk]Carbazole and 4-(4-Methoxyphenyl)-6-Phenyl-2,3,3a, 4-Tetrahydro-1H-Pyrido[3,2,1-jk]Carbazole. ISRN ORGANIC CHEMISTRY 2011; 2011:541082. [PMID: 24052824 PMCID: PMC3767200 DOI: 10.5402/2011/541082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/13/2011] [Indexed: 11/23/2022]
Abstract
The crystal structures of 4-(4-methylphenyl)-6-phenyl-2,3,3a,4-tetrahydro-1H-pyrido[3,2,1-jk]carbazole (IIa) and 4-(4-methoxyphenyl)-6-phenyl-2,3,3a,4-tetrahydro-1H-pyrido[3,2,1-jk]carbazole (IIb) were elucidated by single crystal X-ray diffraction. Compound (IIa), C28H25N, crystallizes in the triclinic system, space group P-1, with a = 8.936(2) Å, b = 10.490(1) Å, c = 11.801(1) Å, α = 102.69(5)°, β = 103.27(3)°, γ = 93.80(1)°, and Z = 2. The compound (IIb), C28H25NO, crystallizes in the monoclinic system, space group P21/a, with a = 11.376(5) Å, b = 14.139(3) Å, c = 13.237(4) Å, β = 97.41(3)°, and Z = 4. In both the structures, the pyrido ring adopts a twist boat conformation and the carbazole molecule has the twisted envelope structure with C3 and C13 at the flap. No classical hydrogen bonds are observed in the crystal structures. Details of the preparation, structures, and spectroscopic properties of the new compounds are discussed.
Collapse
Affiliation(s)
- J Kalyana Sundar
- School of Physics, Madurai Kamaraj University, Madurai 625 021, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Xiao Y, Li S, Niu S, Ma L, Zhang G, Zhang H, Zhang G, Ju J, Zhang C. Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase. J Am Chem Soc 2010; 133:1092-105. [PMID: 21186805 DOI: 10.1021/ja109445q] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RNA polymerase inhibitor tiacumicin B is currently undergoing phase III clinical trial for treatment of Clostridium difficile associated diarrhea with great promise. To understand the biosynthetic logic and to lay a foundation for generating structural analogues via pathway engineering, the tiacumicin B biosynthetic gene cluster was identified and characterized from the producer Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085. Sequence analysis of a 110,633 bp DNA region revealed the presence of 50 open reading frames (orfs). Functional investigations of 11 orfs by in vivo inactivation experiments, preliminarily outlined the boundaries of the tia-gene cluster and suggested that 31 orfs were putatively involved in tiacumicin B biosynthesis. Functions of a halogenase (TiaM), two glycosyltransferases (TiaG1 and TiaG2), a sugar C-methyltransferase (TiaS2), an acyltransferase (TiaS6), and two cytochrome P450s (TiaP1 and TiaP2) were elucidated by isolation and structural characterization of the metabolites from the corresponding gene-inactivation mutants. Accumulation of 18 tiacumicin B analogues from 7 mutants not only provided experimental evidence to confirm the proposed functions of individual biosynthetic enzymes, but also set an example of accessing microbial natural product diversity via genetic approach. More importantly, biochemical characterization of the FAD-dependent halogenase TiaM reveals a sequentially acting dihalogenation step tailoring tiacumicin B biosynthesis.
Collapse
Affiliation(s)
- Yi Xiao
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Green KD, Porter VR, Zhang Y, Garneau-Tsodikova S. Redesign of Cosubstrate Specificity and Identification of Important Residues for Substrate Binding to hChAT. Biochemistry 2010; 49:6219-27. [DOI: 10.1021/bi1007996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Vanessa R. Porter
- Department of Medicinal Chemistry
- Life Sciences Institute, 210 Washtenaw Avenue
| | - Yaru Zhang
- Life Sciences Institute, 210 Washtenaw Avenue
- Chemical Biology Doctoral Program
| | - Sylvie Garneau-Tsodikova
- Department of Medicinal Chemistry
- Life Sciences Institute, 210 Washtenaw Avenue
- Chemical Biology Doctoral Program
| |
Collapse
|
39
|
Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:105-48. [DOI: 10.1007/128_2010_78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Ryan KS, Drennan CL. Divergent pathways in the biosynthesis of bisindole natural products. ACTA ACUST UNITED AC 2009; 16:351-64. [PMID: 19389622 DOI: 10.1016/j.chembiol.2009.01.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 12/25/2022]
Abstract
Two molecules of the amino acid L-tryptophan are the biosynthetic precursors to a class of natural products named the "bisindoles." Hundreds of these bisindole molecules have been isolated from natural sources, and many of these molecules have potent medicinal properties. Recent studies have clarified the biosynthetic construction of six bisindole molecules, revealing novel enzymatic mechanisms and leading to combinatorial synthesis of new bisindole compounds. Collectively, these results provide a vantage point for understanding how much of the diversity of the bisindole class is generated from a small number of diverging pathways from L-tryptophan, as well as enabling identification of bisindoles that are likely derived via completely distinct biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine S Ryan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
41
|
Salas JA, Méndez C. Indolocarbazole antitumour compounds by combinatorial biosynthesis. Curr Opin Chem Biol 2009; 13:152-60. [DOI: 10.1016/j.cbpa.2009.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/13/2009] [Accepted: 02/01/2009] [Indexed: 10/21/2022]
|
42
|
Chiu HT, Lin YC, Lee MN, Chen YL, Wang MS, Lai CC. Biochemical characterization and substrate specificity of the gene cluster for biosyntheses of K-252a and its analogs by in vitro heterologous expression system of Escherichia coli. MOLECULAR BIOSYSTEMS 2009; 5:1192-203. [DOI: 10.1039/b912395b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Gantt RW, Goff RD, Williams GJ, Thorson JS. Probing the aglycon promiscuity of an engineered glycosyltransferase. Angew Chem Int Ed Engl 2008; 47:8889-92. [PMID: 18924204 DOI: 10.1002/anie.200803508] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard W Gantt
- UW National Cooperative Drug Discovery Group, Laboratory for Biosynthetic Chemistry, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
44
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Gantt R, Goff R, Williams G, Thorson J. Probing the Aglycon Promiscuity of an Engineered Glycosyltransferase. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG. Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. ACTA ACUST UNITED AC 2008; 15:863-74. [PMID: 18721757 DOI: 10.1016/j.chembiol.2008.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Ansamitocins are potent antitumor maytansinoids produced by Actinosynnema pretiosum. Their biosynthesis involves the initial assembly of a macrolactam polyketide, followed by a series of postpolyketide synthase (PKS) modifications. Three ansamitocin glycosides were isolated from A. pretiosum and fully characterized structurally as novel ansamitocin derivatives, carrying a beta-D-glucosyl group attached to the macrolactam amide nitrogen in place of the N-methyl group. By gene inactivation and complementation, asm25 was identified as the N-glycosyltransferase gene responsible for the macrolactam amide N-glycosylation of ansamitocins. Soluble, enzymatically active Asm25 protein was obtained from asm25-expressing E. coli by solubilization from inclusion bodies. Its optimal reaction conditions, including temperature, pH, metal ion requirement, and Km/Kcat, were determined. Asm25 also showed broad substrate specificity toward other ansamycins and synthetic indolin-2-ones. To the best of our knowledge, this represents the first in vitro characterization of a purified antibiotic N-glycosyltransferase.
Collapse
Affiliation(s)
- Peiji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Janosik T, Wahlström N, Bergman J. Recent progress in the chemistry and applications of indolocarbazoles. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.06.101] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Singh S, McCoy JG, Zhang C, Bingman CA, Phillips GN, Thorson JS. Structure and mechanism of the rebeccamycin sugar 4'-O-methyltransferase RebM. J Biol Chem 2008; 283:22628-36. [PMID: 18502766 PMCID: PMC2504894 DOI: 10.1074/jbc.m800503200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/11/2008] [Indexed: 11/06/2022] Open
Abstract
The 2.65-angstroms crystal structure of the rebeccamycin 4'-O-methyltransferase RebM in complex with S-adenosyl-l-homocysteine revealed RebM to adopt a typical S-adenosylmethionine-binding fold of small molecule O-methyltransferases (O-MTases) and display a weak dimerization domain unique to MTases. Using this structure as a basis, the RebM substrate binding model implicated a predominance of nonspecific hydrophobic interactions consistent with the reported ability of RebM to methylate a wide range of indolocarbazole surrogates. This model also illuminated the three putative RebM catalytic residues (His140/141 and Asp166) subsequently found to be highly conserved among sequence-related natural product O-MTases from GC-rich bacteria. Interrogation of these residues via site-directed mutagenesis in RebM demonstrated His140 and Asp166 to be most important for catalysis. This study reveals RebM to be a member of the general acid/base-dependent O-MTases and, as the first crystal structure for a sugar O-MTase, may also present a template toward the future engineering of natural product MTases for combinatorial applications.
Collapse
Affiliation(s)
- Shanteri Singh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
49
|
Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ. Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 2008; 10:3501-4. [PMID: 18646774 DOI: 10.1021/ol801274c] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cladoniamides A-G (3- 9) have been isolated from cultures of Streptomyces uncialis, and their structures have been elucidated by a combination of spectroscopic analysis and an X-ray diffraction analysis of cladoniamide A (3). The cladoniamides have unprecedented rearranged and degraded alkaloid skeletons with putative biogenetic origins from indolocarbazole precursors. Cladoniamide G (9) is cytotoxic to MCF-7 cells in vitro at 10 microg/mL.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth & Ocean Sciences, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Luo Y, Lin S, Zhang J, Cooke HA, Bruner SD, Shen B. Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin. J Biol Chem 2008; 283:14694-702. [PMID: 18387946 DOI: 10.1074/jbc.m802206200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation into the neocarzinostatin chromophore are catalyzed by five enzymes NcsB, NcsB1, NcsB2, NcsB3, and NcsB4. Here we report the biochemical characterization of NcsB1, unveiling that: (i) NcsB1 is an S-adenosyl-L-methionine-dependent O-methyltransferase; (ii) NcsB1 catalyzes regiospecific methylation at the 7-hydroxy group of its native substrate, 2,7-dihydroxy-5-methyl-1-naphthoic acid; (iii) NcsB1 also recognizes other dihydroxynaphthoic acids as substrates and catalyzes regiospecific O-methylation; and (iv) the carboxylate and its ortho-hydroxy groups of the substrate appear to be crucial for NcsB1 substrate recognition and binding, and O-methylation takes place only at the free hydroxy group of these dihydroxynaphthoic acids. These findings establish that NcsB1 catalyzes the third step in the biosynthesis of the naphthoic acid moiety of the neocarzinostatin chromophore and further support the early proposal for the biosynthesis of the naphthoic acid and its incorporation into the neocarzinostatin chromophore with free naphthoic acids serving as intermediates. NcsB1 represents another opportunity that can now be exploited to produce novel neocarzinostatin analogs by engineering neocarzinostatin biosynthesis or applying directed biosynthesis strategies.
Collapse
Affiliation(s)
- Yinggang Luo
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|