1
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
2
|
Zhang H, Wang X, Wan Y, Liu L, Zhou J, Li P, Xu B. Discovery of N-Arylsulfonyl-Indole-2-Carboxamide Derivatives as Galectin-3 and Galectin-8 C-Terminal Domain Inhibitors. ACS Med Chem Lett 2023; 14:1257-1265. [PMID: 37736168 PMCID: PMC10510525 DOI: 10.1021/acsmedchemlett.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Both galectin-3 and galectin-8 are involved in cell adhesion, migration, apoptosis, angiogenesis, and inflammatory processes by recognizing galactose-containing glycoproteins. Inhibiting galectin-3/8 activities is a potential treatment for cancer and tissue fibrosis. Herein, a series of novel N-arylsulfonyl-5-aryloxy-indole-2-carboxamide derivatives was disclosed as dual inhibitors toward galectin-3 and galectin-8 C-terminal domain with Kd values of low micromolar level (Cpd53, gal-3: Kd= 4.12 μM, gal-8C: Kd= 6.04 μM; Cpd57, gal-3: Kd= 12.8 μM, gal-8C: Kd= 2.06 μM), which are the most potent and selective noncarbohydrate-based inhibitors toward gal-3/8 isoforms to date. The molecular docking investigations suggested that the unique amino acids Arg144 in galectin-3 and Ser213 in galectin-8C could contribute to their potency and selectivity. The scratch wound assay demonstrated that Cpd53 and Cpd57 were able to inhibit the MRC-5 lung fibroblast cells migration as well. This class of inhibitors could serve as a new starting point for further discovering structurally distinct gal-3 and gal-8C inhibitors to be used in cancer and tissue fibrosis treatment.
Collapse
Affiliation(s)
- Haoming Zhang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanjun Wan
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Liheng Liu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Jie Zhou
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Bailing Xu
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
4
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
5
|
Munson MJ, O'Driscoll G, Silva AM, Lázaro-Ibáñez E, Gallud A, Wilson JT, Collén A, Esbjörner EK, Sabirsh A. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun Biol 2021; 4:211. [PMID: 33594247 PMCID: PMC7887203 DOI: 10.1038/s42003-021-01728-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticles (LNPs), are impeded by limited screening methods to probe the intracellular processing of LNPs in sufficient detail. We have developed a high-throughput imaging-based endosomal escape assay utilising a Galectin-9 reporter and fluorescently labelled mRNA to probe correlations between nanoparticle-mediated uptake, endosomal escape frequency, and mRNA translation. Furthermore, this assay has been integrated within a screening platform for optimisation of lipid nanoparticle formulations. We show that Galectin-9 recruitment is a robust, quantitative reporter of endosomal escape events induced by different mRNA delivery nanoparticles and small molecules. We identify nanoparticles with superior escape properties and demonstrate cell line variances in endosomal escape response, highlighting the need for fine-tuning of delivery formulations for specific applications.
Collapse
Affiliation(s)
- Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gwen O'Driscoll
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
6
|
Dussouy C, Téletchéa S, Lambert A, Charlier C, Botez I, De Ceuninck F, Grandjean C. Access to Galectin-3 Inhibitors from Chemoenzymatic Synthons. J Org Chem 2020; 85:16099-16114. [PMID: 33200927 DOI: 10.1021/acs.joc.0c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemoenzymatic strategies are useful for providing both regio- and stereoselective access to bioactive oligosaccharides. We show herein that a glycosynthase mutant of a Thermus thermophilus α-glycosidase can react with unnatural glycosides such as 6-azido-6-deoxy-d-glucose/glucosamine to lead to β-d-galactopyranosyl-(1→3)-d-glucopyranoside or β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucopyranoside derivatives bearing a unique azide function. Taking advantage of the orthogonality between the azide and the hydroxyl functional groups, the former was next selectively reacted to give rise to a library of galectin-3 inhibitors. Combining enzyme substrate promiscuity and bioorthogonality thus appears as a powerful strategy to rapidly access to sugar-based ligands.
Collapse
Affiliation(s)
- Christophe Dussouy
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Stéphane Téletchéa
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Annie Lambert
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| | - Cathy Charlier
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France.,Université de Nantes, CNRS, Plateforme IMPACT, UMR 6286, F-44000 Nantes, France
| | - Iuliana Botez
- Institut de Recherches Servier, Croissy-sur-Seine, 78290 Croissy, France
| | | | - Cyrille Grandjean
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 628, F-44000 Nantes, France
| |
Collapse
|
7
|
Sethi A, Sanam S, Munagalasetty S, Jayanthi S, Alvala M. Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies. RSC Adv 2020; 10:29873-29884. [PMID: 35518264 PMCID: PMC9056307 DOI: 10.1039/d0ra04795c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Galectin 3 have the potential to inhibit the SARS-CoV-2 spike protein. We validated the studies by docking, MD and MM/GBSA calculations.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Swetha Sanam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Sharon Munagalasetty
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab
- School of Bio Sciences and Technology
- Vellore Institute of Technology
- Vellore
- India
| | - Mallika Alvala
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research-Hyderabad
- Balanagar
- India
- MARS Training Academy
| |
Collapse
|
8
|
New clues arising from hunt of saccharides binding to galectin 3 via 3D QSAR and docking studies. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Zahorska E, Kuhaudomlarp S, Minervini S, Yousaf S, Lepsik M, Kinsinger T, Hirsch AKH, Imberty A, Titz A. A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from d-galactose pentaacetate. Chem Commun (Camb) 2020; 56:8822-8825. [DOI: 10.1039/d0cc03490h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Design and four step synthesis of simple, readily accessible low-nanomolar divalent LecA ligands with selectivity over human galectin-1.
Collapse
Affiliation(s)
- Eva Zahorska
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | | | - Saverio Minervini
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Sultaan Yousaf
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Martin Lepsik
- Université Grenoble Alpes
- CNRS
- CERMAV
- 38000 Grenoble
- France
| | - Thorsten Kinsinger
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Anna K. H. Hirsch
- Deutsches Zentrum für Infektionsforschung (DZIF)
- Standort Hannover-Braunschweig
- 38124 Braunschweig
- Germany
- Department of Pharmacy
| | - Anne Imberty
- Université Grenoble Alpes
- CNRS
- CERMAV
- 38000 Grenoble
- France
| | - Alexander Titz
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| |
Collapse
|
10
|
Goud NS, Soukya PSL, Ghouse M, Komal D, Alvala R, Alvala M. Human Galectin-1 and Its Inhibitors: Privileged Target for Cancer and HIV. Mini Rev Med Chem 2019; 19:1369-1378. [PMID: 30834831 DOI: 10.2174/1389557519666190304120821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
Galectin 1(Gal-1), a β-galactoside binding mammalian lectin of 14KDa, is implicated in many signalling pathways, immune responses associated with cancer progression and immune disorders. Inhibition of human Gal-1 has been regarded as one of the potential therapeutic approaches for the treatment of cancer, as it plays a major role in tumour development and metastasis by modulating various biological functions viz. apoptosis, angiogenesis, migration, cell immune escape. Gal-1 is considered as a biomarker in diagnosis, prognosis and treatment condition. The overexpression of Gal-1 is well established and seen in many types of cancer progression like osteosarcoma, breast, lung, prostate, melanoma, etc. Gal-1 greatly accelerates the binding kinetics of HIV-1 to susceptible cells, leading to faster viral entry and a more robust viral replication by specific binding of CD4 cells. Hence, the Gal-1 is considered a promising molecular target for the development of new therapeutic drugs for cancer and HIV. The present review laid emphasis on structural insights and functional role of Gal-1 in the disease, current Gal-1 inhibitors and future prospects in the design of specific Gal-1 inhibitors.
Collapse
Affiliation(s)
- Narella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - P S Lakshmi Soukya
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Daipule Komal
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Ravi Alvala
- G. Pulla Reddy College of pharmacy, Hyderabad, 500028, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| |
Collapse
|
11
|
Gimeno A, Delgado S, Valverde P, Bertuzzi S, Berbís MA, Echavarren J, Lacetera A, Martín‐Santamaría S, Surolia A, Cañada FJ, Jiménez‐Barbero J, Ardá A. Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Blood‐Group Antigens by Human Galectin‐3. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Sandra Delgado
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Pablo Valverde
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Sara Bertuzzi
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | | | - Javier Echavarren
- Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alessandra Lacetera
- Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | | | | | | | - Jesus Jiménez‐Barbero
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
- IkerbasqueBasque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
- Department of Organic Chemistry, II Faculty of Science and TechnologyUniversity of the Basque Country, EHU-UPV Leioa Spain
| | - Ana Ardá
- CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| |
Collapse
|
12
|
Gimeno A, Delgado S, Valverde P, Bertuzzi S, Berbís MA, Echavarren J, Lacetera A, Martín-Santamaría S, Surolia A, Cañada FJ, Jiménez-Barbero J, Ardá A. Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Blood-Group Antigens by Human Galectin-3. Angew Chem Int Ed Engl 2019; 58:7268-7272. [PMID: 30942512 PMCID: PMC6619289 DOI: 10.1002/anie.201900723] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Ligand conformational entropy plays an important role in carbohydrate recognition events. Glycans are characterized by intrinsic flexibility around the glycosidic linkages, thus in most cases, loss of conformational entropy of the sugar upon complex formation strongly affects the entropy of the binding process. By employing a multidisciplinary approach combining structural, conformational, binding energy, and kinetic information, we investigated the role of conformational entropy in the recognition of the histo blood‐group antigens A and B by human galectin‐3, a lectin of biomedical interest. We show that these rigid natural antigens are pre‐organized ligands for hGal‐3, and that restriction of the conformational flexibility by the branched fucose (Fuc) residue modulates the thermodynamics and kinetics of the binding process. These results highlight the importance of glycan flexibility and provide inspiration for the design of high‐affinity ligands as antagonists for lectins.
Collapse
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Sara Bertuzzi
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Manuel Alvaro Berbís
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Echavarren
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alessandra Lacetera
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | - Jesus Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
13
|
Liang MY, Banwell MG, Wang Y, Lan P. Effect of Variations in the Fatty Acid Residue of Lactose Monoesters on Their Emulsifying Properties and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12594-12603. [PMID: 30395455 DOI: 10.1021/acs.jafc.8b05794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lactose fatty acid esters are high-value-added derivatives of lactose and represent a class of biodegradable, non-ionic, low-molecular-weight surfactants (emulsifiers) that have considerable potential in the food, cosmetic, and pharmaceutical industries. Certain lactose esters have also garnered attention for their biological activities. In this work, we detail syntheses of a homologous series of 6'- O-acyllactose esters of varying alkyl chain length (from 6 to 18 carbons) and report on their activities as surfactants as well as their antimicrobial and cytotoxic properties. The structure-property profiles established in this work revealed that while the medium-chain esters displayed excellent emulsifying properties and moderate antimicrobial activities, their longer chain congeners exhibited the highest cytotoxicities. As such, we have established that certain 6'- O-acyllactose esters are superior to their sucrose-derived and commercially exploited counterparts. These results will serve as a useful guide for the development of lactose esters as, inter alia, emulsifiers in the food industry.
Collapse
Affiliation(s)
- Min-Yi Liang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Yong Wang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
| | - Ping Lan
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
| |
Collapse
|
14
|
Peterson K, Collins PM, Huang X, Kahl-Knutsson B, Essén S, Zetterberg FR, Oredsson S, Leffler H, Blanchard H, Nilsson UJ. Aromatic heterocycle galectin-1 interactions for selective single-digit nM affinity ligands. RSC Adv 2018; 8:24913-24922. [PMID: 35542159 PMCID: PMC9082524 DOI: 10.1039/c8ra04389b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
A series of 3-triazole-thiogalactosides and 3,3′-triazole-thiodigalactosides substituted with different five-membered heterocycles at the C-4 triazole position were found to have high selectivity for galectin-1. Initial studies on the 3-triazole-thiogalactosides indicated that five membered heterocycles in general gave increased affinity for galectin-1 and improved selectivity over galectin-3. The selectivity profile was similar for thiodigalactosides exemplified by 3,3′ substituted thien-3-yltriazole and thiazol-2-yltriazole, both having single-digit nM galectin-1 affinity and almost 10-fold galectin-1 selectivity. The binding interactions of a thiodigalactoside based galectin-1 inhibitor with two thien-3-yltriazole moieties were studied with X-ray crystallography. One of the thiophene moieties was positioned deeper into the pocket than previously reported phenyltriazoles and formed close contacts with Val31, Ser29, Gly124, and Asp123. The affinity and structural analysis thus revealed that steric and electronic optimization of five-membered aromatic heterocycle binding in a narrow galectin-1 subsite confers high affinity and selectivity. A series of 3-triazole-thiogalactosides and 3,3′-triazole-thiodigalactosides substituted with different five-membered heterocycles at the C-4 triazole position were found to have high selectivity for galectin-1.![]()
Collapse
Affiliation(s)
- Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University POB 124 SE-221 00 Lund Sweden
| | - Patrick M Collins
- Institute for Glycomics, Griffith University Gold Coast Campus Queensland 4222 Australia
| | - Xiaoli Huang
- Department of Biology, Lund University SE-223 62 Lund Sweden
| | - Barbro Kahl-Knutsson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28 SE-221 84 Lund Sweden
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University POB 124 SE-221 00 Lund Sweden
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park Medicinaregatan 8 A SE-413 46 Gothenburg Sweden
| | - Stina Oredsson
- Department of Biology, Lund University SE-223 62 Lund Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28 SE-221 84 Lund Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University Gold Coast Campus Queensland 4222 Australia
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University POB 124 SE-221 00 Lund Sweden
| |
Collapse
|
15
|
Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Int J Mol Sci 2018; 19:ijms19020392. [PMID: 29382172 PMCID: PMC5855614 DOI: 10.3390/ijms19020392] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
Galectins are β-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.
Collapse
|
16
|
Zetterberg FR, Peterson K, Johnsson RE, Brimert T, Håkansson M, Logan DT, Leffler H, Nilsson UJ. Monosaccharide Derivatives with Low-Nanomolar Lectin Affinity and High Selectivity Based on Combined Fluorine-Amide, Phenyl-Arginine, Sulfur-π, and Halogen Bond Interactions. ChemMedChem 2018; 13:133-137. [PMID: 29194992 DOI: 10.1002/cmdc.201700744] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/20/2022]
Abstract
The design of small and high-affinity lectin inhibitors remains a major challenge because the natural ligand binding sites of lectin are often shallow and have polar character. Herein we report that derivatizing galactose with un-natural structural elements that form multiple non-natural lectin-ligand interactions (orthogonal multipolar fluorine-amide, phenyl-arginine, sulfur-π, and halogen bond) can provide inhibitors with extraordinary affinity (low nanomolar) for the model lectin, galectin-3, which is more than five orders of magnitude higher than the parent galactose; moreover, is selective over other galectins.
Collapse
Affiliation(s)
- Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46, Gothenburg, Sweden
| | - Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | | | - Thomas Brimert
- Red Glead Discovery AB, Medicon Village, 223 63, Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, 223 63, Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, 223 63, Lund, Sweden.,Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| |
Collapse
|
17
|
Denavit V, Lainé D, Tremblay T, St-Gelais J, Giguère D. Synthetic Inhibitors of Galectins: Structures and Syntheses. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1729.1se] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Vincent Denavit
- Département de Chimie, 1045 av. De la Médecine, Université Laval, PROTEO, RQRM
| | - Danny Lainé
- Département de Chimie, 1045 av. De la Médecine, Université Laval, PROTEO, RQRM
| | - Thomas Tremblay
- Département de Chimie, 1045 av. De la Médecine, Université Laval, PROTEO, RQRM
| | - Jacob St-Gelais
- Département de Chimie, 1045 av. De la Médecine, Université Laval, PROTEO, RQRM
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, PROTEO, RQRM
| |
Collapse
|
18
|
Noresson AL, Aurelius O, Öberg CT, Engström O, Sundin AP, Håkansson M, Stenström O, Akke M, Logan DT, Leffler H, Nilsson UJ. Designing interactions by control of protein-ligand complex conformation: tuning arginine-arene interaction geometry for enhanced electrostatic protein-ligand interactions. Chem Sci 2017; 9:1014-1021. [PMID: 29675148 PMCID: PMC5883865 DOI: 10.1039/c7sc04749e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023] Open
Abstract
3-Benzamido-2-O-sulfo-galactosides can be designed to control protein conformation into forming entropically favourable galectin-3-arginine salt bridges with ligand sulfates.
We investigated galectin-3 binding to 3-benzamido-2-O-sulfo-galactoside and -thiodigalactoside ligands using a combination of site-specific mutagenesis, X-ray crystallography, computational approaches, and binding thermodynamics measurements. The results reveal a conformational variability in a surface-exposed arginine (R144) side chain in response to different aromatic C3-substituents of bound galactoside-based ligands. Fluorinated C3-benzamido substituents induced a shift in the side-chain conformation of R144 to allow for an entropically favored electrostatic interaction between its guanidine group and the 2-O-sulfate of the ligand. By contrast, binding of ligands with non-fluorinated substituents did not trigger a conformational change of R144. Hence, a sulfate–arginine electrostatic interaction can be tuned by the choice of ligand C3-benzamido structures to favor specific interaction modes and geometries. These results have important general implications for ligand design, as the proper choice of arginine–aromatic interacting partners opens up for ligand-controlled protein conformation that in turn may be systematically exploited in ligand design.
Collapse
Affiliation(s)
- A-L Noresson
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - O Aurelius
- Section for Biochemistry and Structural Biology , Center for Molecular Protein Science , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden
| | - C T Öberg
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - O Engström
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - A P Sundin
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - M Håkansson
- SARomics Biostructures AB , Medicon Village , SE-223 81 Lund , Sweden
| | - O Stenström
- Biophysical Chemistry , Center for Molecular Protein Science , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden
| | - M Akke
- Biophysical Chemistry , Center for Molecular Protein Science , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden
| | - D T Logan
- Section for Biochemistry and Structural Biology , Center for Molecular Protein Science , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden.,SARomics Biostructures AB , Medicon Village , SE-223 81 Lund , Sweden
| | - H Leffler
- Department of Laboratory Medicine , Section MIG , Lund University , Sölvegatan 23, SE-223 62 , Lund , Sweden
| | - U J Nilsson
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| |
Collapse
|
19
|
Dion J, Advedissian T, Storozhylova N, Dahbi S, Lambert A, Deshayes F, Viguier M, Tellier C, Poirier F, Téletchéa S, Dussouy C, Tateno H, Hirabayashi J, Grandjean C. Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor. Chembiochem 2017; 18:2428-2440. [DOI: 10.1002/cbic.201700544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Johann Dion
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Tamara Advedissian
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Nataliya Storozhylova
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Samir Dahbi
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Annie Lambert
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Frédérique Deshayes
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Mireille Viguier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Charles Tellier
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Françoise Poirier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Stéphane Téletchéa
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Christophe Dussouy
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery; Cellular Glycome-Targeted Technology Group; National Institute of Advanced Industrial Science and Technology (AIST); Central 2 1-1-1 Umezuno Tsukuba Ibaraki 305-8568 Japan
| | - Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery; Cellular Glycome-Targeted Technology Group; National Institute of Advanced Industrial Science and Technology (AIST); Central 2 1-1-1 Umezuno Tsukuba Ibaraki 305-8568 Japan
| | - Cyrille Grandjean
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2, chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
20
|
Staroń J, Dąbrowski JM, Cichoń E, Guzik M. Lactose esters: synthesis and biotechnological applications. Crit Rev Biotechnol 2017; 38:245-258. [PMID: 28585445 DOI: 10.1080/07388551.2017.1332571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.e. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.
Collapse
Affiliation(s)
- Jakub Staroń
- a Institute of Pharmacology of the Polish Academy of Sciences , Kraków , Poland
| | | | - Ewelina Cichoń
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| | - Maciej Guzik
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
21
|
Biophysical and structural characterization of mono/di-arylated lactosamine derivatives interaction with human galectin-3. Biochem Biophys Res Commun 2017; 489:281-286. [PMID: 28554839 DOI: 10.1016/j.bbrc.2017.05.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
Combination of biophysical and structural techniques allowed characterizing and uncovering the mechanisms underlying increased binding affinity of lactosamine derivatives for galectin 3. In particular, complementing information gathered from X-ray crystallography, native mass spectrometry and isothermal microcalorimetry showed favorable enthalpic contribution of cation-π interaction between lactosamine aryl substitutions and arginine residues from the carbohydrate recognition domain, which resulted in two log increase in compound binding affinity. This incrementing strategy allowed individual contribution of galectin inhibitor moieties to be dissected. Altogether, our results suggest that core and substituents of these saccharide-based inhibitors can be optimized separately, providing valuable tools to study the role of galectins in diseases.
Collapse
|
22
|
Dion J, Deshayes F, Storozhylova N, Advedissian T, Lambert A, Viguier M, Tellier C, Dussouy C, Poirier F, Grandjean C. Lactosamine-Based Derivatives as Tools to Delineate the Biological Functions of Galectins: Application to Skin Tissue Repair. Chembiochem 2017; 18:782-789. [DOI: 10.1002/cbic.201600673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Johann Dion
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Frédérique Deshayes
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Nataliya Storozhylova
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Tamara Advedissian
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Annie Lambert
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Mireille Viguier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Charles Tellier
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Christophe Dussouy
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| | - Françoise Poirier
- Université Paris Diderot-Paris 7 Sorbonne Paris Cité; Institut Jacques Monod; UMR CNRS 7592; 15 rue Hélène Brion 75205 Paris Cedex 13 France
| | - Cyrille Grandjean
- Faculté des Sciences et des Techniques; Unité Fonctionnalité et Ingénierie des Protéines (UFIP); Université de Nantes; UMR CNRS 6286; 2 chemin de la Houssinière B. P. 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
23
|
Mandal S, Rajput VK, Sundin AP, Leffler H, Mukhopadhyay B, Nilsson UJ. Galactose-amidine derivatives as selective antagonists of galectin-9. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The family of galectin proteins involved in adhesion, growth regulation, immunity, and inflammatory events are important targets for development of small molecule antagonists. Here, N-sulfonyl amidine galactopyranoside derivatives obtained via a multicomponent reaction between galactose alkyne derivatives, sulfonyl azides, and amines were evaluated as antagonists of galectin-1, -2, -3, -4N (N-terminal domain), -4C (C-terminal domain), -8N, -9N, and -9C in a competitive fluorescence polarization assay. Highly selective compounds against galectin-9N with up to 30-fold improved affinity compared to the reference methyl β-d-galactopyranoside were identified. Molecular dynamics simulation suggested that the selectivity and affinity for galectin-9N originate from the N-sulfonyl amidine moieties forming tridentate hydrogen bonds to two asparagine side chains and one phenyl stacking edge-to-face to an arginine side chain. These selective galectin-9N antagonists are of significant value as chemical tools for studying galectin-9 biology and chemistry as well as possible starting structures for the discovery of galectin-9-targeting drugs influencing, e.g., immune regulation.
Collapse
Affiliation(s)
- Santanu Mandal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia 741252, India
| | - Vishal K. Rajput
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia 741252, India
| | - Anders P. Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Balaram Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia 741252, India
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden
| |
Collapse
|
24
|
Heyl KA, Karsten CM, Slevogt H. Galectin-3 binds highly galactosylated IgG1 and is crucial for the IgG1 complex mediated inhibition of C5aReceptor induced immune responses. Biochem Biophys Res Commun 2016; 479:86-90. [PMID: 27620493 DOI: 10.1016/j.bbrc.2016.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022]
Abstract
Changes in the glycosylation of immunoglobulins have been shown to modulate immune homeostasis and disease pathology. In this sense it has been shown that highly galactosylated but not agalactosylated IgG1 immune complexes (ICs) inhibit C5aR-mediated pro-inflammatory immune responses via the assembly of FcγRIIB-Dectin-1 receptor complexes. In this study we demonstrated that Galectin-3, a galactose-binding lectin that is known to cross-link proteins on cell-surfaces via binding their N-glycans, bound to highly-galactosylated, but not agalactosylated IgG1. Further, Galectin-3 was essential for the IC-mediated inhibition of C5a-induced neutrophil chemotaxis in vitro. Taken together our results indicate that Galectin-3 mediates the interaction of ICs with the FcγRIIB-Dectin-1 receptor complex for delivering immunoregulatory signals to inhibit C5aR-mediated immune responses.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/immunology
- Antigen-Antibody Complex/metabolism
- Blotting, Western
- Cell Movement/immunology
- Cells, Cultured
- Chemotaxis, Leukocyte/immunology
- Galactose/metabolism
- Galectin 3/genetics
- Galectin 3/immunology
- Galectin 3/metabolism
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mediator Complex/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Protein Binding/immunology
- Receptor, Anaphylatoxin C5a/immunology
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kerstin A Heyl
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Str. 10, D-07745 Jena, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Str. 10, D-07745 Jena, Germany.
| |
Collapse
|
25
|
Saberinasab M, Salehzadeh S, Solimannejad M. The effect of a strong cation⋯π interaction on a weak selenium⋯π interaction: A theoretical study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Rajput VK, MacKinnon A, Mandal S, Collins P, Blanchard H, Leffler H, Sethi T, Schambye H, Mukhopadhyay B, Nilsson UJ. A Selective Galactose-Coumarin-Derived Galectin-3 Inhibitor Demonstrates Involvement of Galectin-3-glycan Interactions in a Pulmonary Fibrosis Model. J Med Chem 2016; 59:8141-7. [PMID: 27500311 DOI: 10.1021/acs.jmedchem.6b00957] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Synthesis of doubly 3-O-coumarylmethyl-substituted thiodigalactosides from bis-3-O-propargyl-thiodigalactoside resulted in highly selective and high affinity galectin-3 inhibitors. Mutant studies, structural analysis, and molecular modeling revealed that the coumaryl substituents stack onto arginine side chains. One inhibitor displayed efficacy in a murine model of bleomycin-induced lung fibrosis similar to that of a known nonselective galectin-1/galectin-3 inhibitor, which strongly suggests that blocking galectin-3 glycan recognition is an important antifibrotic drug target.
Collapse
Affiliation(s)
- Vishal K Rajput
- Indian Institute of Science Education and Research-Kolkata (IISER) Kolkata , Mohanpur Campus, P.O. BCKV Campus Main Office, Mohanpur, Nadia 741246, India.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University , POB 124, SE-221 00 Lund, Sweden
| | - Alison MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh EH16 4TJ, U.K
| | - Santanu Mandal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , POB 124, SE-221 00 Lund, Sweden
| | - Patrick Collins
- Institute for Glycomics, Griffith University , Gold Coast Campus, Parklands Southport, Queensland 4222, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University , Gold Coast Campus, Parklands Southport, Queensland 4222, Australia
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University , BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Tariq Sethi
- Department of Respiratory Medicine and Allergy, Kings College , Denmark Hill Campus, Bessemer Road, London SE5 9RS, U.K
| | - Hans Schambye
- Galecto Biotech ApS, COBIS , Ole Maaloes vej 3, Copenhagen N, DK-2200, Denmark
| | - Balaram Mukhopadhyay
- Indian Institute of Science Education and Research-Kolkata (IISER) Kolkata , Mohanpur Campus, P.O. BCKV Campus Main Office, Mohanpur, Nadia 741246, India
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , POB 124, SE-221 00 Lund, Sweden
| |
Collapse
|
27
|
Delaine T, Collins P, MacKinnon A, Sharma G, Stegmayr J, Rajput VK, Mandal S, Cumpstey I, Larumbe A, Salameh BA, Kahl-Knutsson B, van Hattum H, van Scherpenzeel M, Pieters RJ, Sethi T, Schambye H, Oredsson S, Leffler H, Blanchard H, Nilsson UJ. Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. Chembiochem 2016; 17:1759-70. [PMID: 27356186 DOI: 10.1002/cbic.201600285] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/12/2022]
Abstract
Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.
Collapse
Affiliation(s)
- Tamara Delaine
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Patrick Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Alison MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Sharma
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - John Stegmayr
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Vishal K Rajput
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Santanu Mandal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Ian Cumpstey
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Amaia Larumbe
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Bader A Salameh
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden.,Chemistry Department, The Hashemite University, P. O. Box 150459, Zarka, 13115, Jordan
| | - Barbro Kahl-Knutsson
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Hilde van Hattum
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands
| | - Monique van Scherpenzeel
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands.,Translational Metabolic Laboratory, 51 Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands
| | - Tariq Sethi
- Department of Respiratory Medicine and Allergy, Kings College, 41 Denmark Hill Campus, Bessemer Road, London, SE5 9RJ, UK
| | - Hans Schambye
- Galecto Biotech ApS, COBIS, Ole Maaloes vej 3, Copenhagen N, 2200, Denmark
| | - Stina Oredsson
- Department of Biology, Lund University, P. O. Box 118, 221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
28
|
Hsieh TJ, Lin HY, Tu Z, Lin TC, Wu SC, Tseng YY, Liu FT, Hsu STD, Lin CH. Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 2016; 6:29457. [PMID: 27416897 PMCID: PMC4945863 DOI: 10.1038/srep29457] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
Human galectins are promising targets for cancer immunotherapeutic and fibrotic disease-related drugs. We report herein the binding interactions of three thio-digalactosides (TDGs) including TDG itself, TD139 (3,3'-deoxy-3,3'-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside, recently approved for the treatment of idiopathic pulmonary fibrosis), and TAZTDG (3-deoxy-3-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside) with human galectins-1, -3 and -7 as assessed by X-ray crystallography, isothermal titration calorimetry and NMR spectroscopy. Five binding subsites (A-E) make up the carbohydrate-recognition domains of these galectins. We identified novel interactions between an arginine within subsite E of the galectins and an arene group in the ligands. In addition to the interactions contributed by the galactosyl sugar residues bound at subsites C and D, the fluorophenyl group of TAZTDG preferentially bound to subsite B in galectin-3, whereas the same group favored binding at subsite E in galectins-1 and -7. The characterised dual binding modes demonstrate how binding potency, reported as decreased Kd values of the TDG inhibitors from μM to nM, is improved and also offer insights to development of selective inhibitors for individual galectins.
Collapse
Affiliation(s)
- Tung-Ju Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Chien Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.,The Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
29
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
30
|
Saberinasab M, Salehzadeh S, Maghsoud Y, Bayat M. The significant effect of electron donating and electron withdrawing substituents on nature and strength of an intermolecular Se⋯π interaction. A theoretical study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Glycodendrimers and Modified ELISAs: Tools to Elucidate Multivalent Interactions of Galectins 1 and 3. Molecules 2015; 20:7059-96. [PMID: 25903363 PMCID: PMC4513649 DOI: 10.3390/molecules20047059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Multivalent protein-carbohydrate interactions that are mediated by sugar-binding proteins, i.e., lectins, have been implicated in a myriad of intercellular recognition processes associated with tumor progression such as galectin-mediated cancer cellular migration/metastatic processes. Here, using a modified ELISA, we show that glycodendrimers bearing mixtures of galactosides, lactosides, and N-acetylgalactosaminosides, galectin-3 ligands, multivalently affect galectin-3 functions. We further demonstrate that lactose functionalized glycodendrimers multivalently bind a different member of the galectin family, i.e., galectin-1. In a modified ELISA, galectin-3 recruitment by glycodendrimers was shown to directly depend on the ratio of low to high affinity ligands on the dendrimers, with lactose-functionalized dendrimers having the highest activity and also binding well to galectin-1. The results depicted here indicate that synthetic multivalent systems and upfront assay formats will improve the understanding of the multivalent function of galectins during multivalent protein carbohydrate recognition/interaction.
Collapse
|
32
|
Chang G, Yang L, Liu S, Lin R, You J. Rational design of a fluorescent poly(N-aryleneindole ether sulfone) switch by cation–π interactions. Polym Chem 2015. [DOI: 10.1039/c4py01472c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescence emission on–off switch is achieved by adjusting the assembly of poly(N-aryleneindole ether sulfone) (PESIN) and pyridine hydrochloride via the cation–π interactions.
Collapse
Affiliation(s)
- Guanjun Chang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Li Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Shenye Liu
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Runxiong Lin
- Engineering Research Center of High Performance Polymer and Molding Technology
- Ministry of Education
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
33
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
34
|
Blanchard H, Yu X, Collins PM, Bum-Erdene K. Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 2014; 24:1053-65. [DOI: 10.1517/13543776.2014.947961] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Rajput VK, Leffler H, Nilsson UJ, Mukhopadhyay B. Synthesis and evaluation of iminocoumaryl and coumaryl derivatized glycosides as galectin antagonists. Bioorg Med Chem Lett 2014; 24:3516-20. [DOI: 10.1016/j.bmcl.2014.05.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/03/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
36
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
37
|
Blanchard H, Bum-Erdene K, Hugo MW. Inhibitors of Galectins and Implications for Structure-Based Design of Galectin-Specific Therapeutics. Aust J Chem 2014. [DOI: 10.1071/ch14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.
Collapse
|
38
|
Carlsson MC, Bengtson P, Cucak H, Leffler H. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms. J Biol Chem 2013; 288:28398-408. [PMID: 23926108 PMCID: PMC3784757 DOI: 10.1074/jbc.m113.487793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/06/2013] [Indexed: 11/06/2022] Open
Abstract
Transferrin internalization via clathrin-mediated endocytosis and subsequent recycling after iron delivery has been extensively studied. Here we demonstrate a previously unrecognized parameter regulating this recycling, the binding of galectin-3 to particular glycoforms of transferrin. Two fractions of transferrin, separated by affinity chromatography based on their binding or not to galectin-3, are targeted to kinetically different endocytic pathways in HFL-1 cells expressing galectin-3 but not in SKBR3 cells lacking galectin-3; the SKBR3 cells, however, can acquire the ability to target these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3-bound glycoform increased in cancer, suggesting a pathophysiological regulation. These are novel aspects of transferrin cell biology, which has previously considered only a degree of iron loading, but not other forms of heterogeneity.
Collapse
Affiliation(s)
- Michael C. Carlsson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Per Bengtson
- the Division of Clinical Chemistry and Pharmacology, 221 00 Lund University, Lund, Sweden
| | - Helena Cucak
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| |
Collapse
|
39
|
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E, Faivre S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev 2013; 40:307-19. [PMID: 23953240 DOI: 10.1016/j.ctrv.2013.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
Galectins belong to a family of carbohydrate-binding proteins with an affinity for β-galactosides. Galectin-1 is differentially expressed by various normal and pathologic tissues and displays a wide range of biological activities. In oncology, galectin-1 plays a pivotal role in tumor growth and in the multistep process of invasion, angiogenesis, and metastasis. Evidence indicates that galectin-1 exerts a variety of functions at different steps of tumor progression. Moreover, it has been demonstrated that galectin-1 cellular localization and galectin-1 binding partners depend on tumor localization and stage. Recently, galectin-1 overexpression has been extensively documented in several tumor types and/or in the stroma of cancer cells. Its expression is thought to reflect tumor aggressiveness in several tumor types. Galectin-1 has been identified as a promising drug target using synthetic and natural inhibitors. Preclinical data suggest that galectin-1 inhibition may lead to direct antiproliferative effects in cancer cells as well as antiangiogenic effects in tumors. We provide an up-to-date overview of available data on the role of galectin-1 in different molecular and biochemical pathways involved in human malignancies. One of the major challenges faced in targeting galectin-1 is the translation of current knowledge into the design and development of effective galectin-1 inhibitors in cancer therapy.
Collapse
|
40
|
Bum-Erdene K, Gagarinov IA, Collins PM, Winger M, Pearson AG, Wilson JC, Leffler H, Nilsson UJ, Grice ID, Blanchard H. Investigation into the Feasibility of Thioditaloside as a Novel Scaffold for Galectin-3-Specific Inhibitors. Chembiochem 2013; 14:1331-42. [DOI: 10.1002/cbic.201300245] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Indexed: 01/02/2023]
|
41
|
Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, Blanchard H, Ralph SJ. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 2013; 31:763-78. [PMID: 22706847 DOI: 10.1007/s10555-012-9388-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Koichi Ito
- School of Medical Science, Griffith Health Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 739] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
43
|
Leffler H, Nilsson UJ. Low-Molecular Weight Inhibitors of Galectins. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62, Lund, Sweden
- Center for Analysis and Synthesis, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Section MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62, Lund, Sweden
- Center for Analysis and Synthesis, Lund University, POB 124, SE-221 00 Lund, Sweden
| |
Collapse
|
44
|
Salonen LM, Ellermann M, Diederich F. Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007560] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed Engl 2011; 50:4808-42. [PMID: 21538733 DOI: 10.1002/anie.201007560] [Citation(s) in RCA: 1174] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Indexed: 12/12/2022]
Abstract
This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.
Collapse
Affiliation(s)
- Laura M Salonen
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Hönggerberg, HCI, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
46
|
Ito K, Scott SA, Cutler S, Dong LF, Neuzil J, Blanchard H, Ralph SJ. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis 2011; 14:293-307. [PMID: 21523436 PMCID: PMC3155035 DOI: 10.1007/s10456-011-9213-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/16/2011] [Indexed: 12/21/2022]
Abstract
Cancer cells produce galectin-1 as a tumor promoting protein. Thiodigalactoside (TDG) as a non-metabolised small drug, is shown to suppress tumor growth by inhibiting multiple cancer enhancing activities of galectin-1, including immune cell dysregulation, angiogenesis and protection against oxidative stress. Thus, using B16F10 melanoma and 4T1 orthotopic breast cancer models, intratumoral injection of TDG significantly raised the levels of tumor-infiltrating CD8+ lymphocytes and reduced CD31+ endothelial cell content, reducing tumor growth. TDG treatment of tumors in Balb/c nude mice (defective in T cell immunity) reduced angiogenesis and slowed tumor growth by a third less than in immunocompetent mice. Knocking down galectin-1 expression (G1KD) in both cancer cell types significantly impeded tumor growth and the sensitivity of the G1KD tumors to TDG was severely reduced, highlighting a specific role for galectin-1. Endothelial cells were protected by galectin-1 from oxidative stress-induced apoptosis induced by H2O2, but TDG inhibited this antioxidant protective effect of galectin-1 and reduced tube forming activity in angiogenic assays. We show for the first time that the single agent, TDG, concurrently prevents many tumor promoting effects of galectin-1 on angiogenesis, immune dysregulation and protection against oxidative stress, providing a potent and novel small molecule as an anti-cancer drug.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacokinetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Galectin 1/antagonists & inhibitors
- Galectin 1/genetics
- Galectin 1/immunology
- Galectin 1/metabolism
- Gene Knockdown Techniques
- Immunity, Cellular/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Oxidative Stress/drug effects
- Thiogalactosides/pharmacology
Collapse
Affiliation(s)
- Koichi Ito
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| | - Stacy A. Scott
- Institute for Glycomics, Griffith University, Southport, QLD Australia
| | - Samuel Cutler
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| | - Lan-Feng Dong
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Southport, QLD Australia
| | - Stephen J. Ralph
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| |
Collapse
|
47
|
André S, Grandjean C, Gautier FM, Bernardi S, Sansone F, Gabius HJ, Ungaro R. Combining carbohydrate substitutions at bioinspired positions with multivalent presentation towards optimising lectin inhibitors: case study with calixarenes. Chem Commun (Camb) 2011; 47:6126-8. [PMID: 21523264 DOI: 10.1039/c1cc11163a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carbohydrate derivatisation and glycocluster formation are both known to enhance avidity for lectin binding. Using a plant toxin and human adhesion/growth-regulatory lectins (inter- and intrafamily comparisons) the effect of their combination is examined. In detail, aromatic substituents were introduced at the 2-N or 3'-positions of N-acetyllactosamine and the products conjugated to two types of calix[n]arenes (n = 4, 6) via thiourea-linker chemistry.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 München, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Diehl C, Engström O, Delaine T, Håkansson M, Genheden S, Modig K, Leffler H, Ryde U, Nilsson UJ, Akke M. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J Am Chem Soc 2010; 132:14577-89. [PMID: 20873837 PMCID: PMC2954529 DOI: 10.1021/ja105852y] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Indexed: 02/08/2023]
Abstract
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Collapse
|
49
|
Salameh BA, Cumpstey I, Sundin A, Leffler H, Nilsson UJ. 1H-1,2,3-triazol-1-yl thiodigalactoside derivatives as high affinity galectin-3 inhibitors. Bioorg Med Chem 2010; 18:5367-78. [PMID: 20538469 DOI: 10.1016/j.bmc.2010.05.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 01/23/2023]
Abstract
Galactose C3-triazole derivatives were synthesized by Cu(I)-catalyzed cycloaddition between acetylenes and galactose C3-azido derivatives. Evaluation against galectin-3, 7, 8N (N-terminal) and 9N (N-terminal) revealed 1,4-disubstituted triazoles to be high-affinity inhibitors of galectin-3 with selectivity over galectin-7, 8N, and 9N. Conformational analysis of 1,4-di- and 1,4,5-tri-substituted galactose C3-triazoles suggested that a triazole C5-substituent interfered sterically with the galectin proteins, which explained their poor affinities compared to the corresponding 1,4-disubstituted triazoles. Introduction of two 1,4-disubstituted triazole moieties onto thiodigalactoside resulted in affinities down to 29 nM for galectin-3.
Collapse
Affiliation(s)
- Bader A Salameh
- Chemistry Department, The Hashemite University, PO Box 150459, Zarka 13115, Jordan
| | | | | | | | | |
Collapse
|
50
|
Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, Sansonetti P. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 2009; 12:530-44. [PMID: 19951367 DOI: 10.1111/j.1462-5822.2009.01415.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Shigella bacteria invade macrophages and epithelial cells and following internalization lyse the phagosome and escape to the cytoplasm. Galectin-3, an abundant protein in macrophages and epithelial cells, belongs to a family of beta-galactoside-binding proteins, the galectins, with many proposed functions in immune response, development, differentiation, cancer and infection. Galectins are synthesized as cytosolic proteins and following non-classical secretion bind extracellular beta-galactosides. Here we analysed the localization of galectin-3 following entry of Shigella into the cytosol and detected a striking phenomenon. Very shortly after bacterial invasion, intracellular galectin-3 accumulated in structures in vicinity to internalized bacteria. By using immuno-electron microscopy analysis we identified galectin-3 in membranes localized in the phagosome and in tubules and vesicles that derive from the endocytic pathway. We also demonstrated that the binding of galectin-3 to host N-acetyllactosamine-containing glycans, was required for forming the structures. Accumulation of the structures was a type three secretion system-dependent process. More specifically, existence of structures was strictly dependent upon lysis of the phagocytic vacuole and could be shown also by Gram-positive Listeria and Salmonella sifA mutant. We suggest that galectin-3-containing structures may serve as a potential novel tool to spot vacuole lysis.
Collapse
Affiliation(s)
- Irit Paz
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|