1
|
Courtney TM, Darrah KE, Horst TJ, Tsang M, Deiters A. Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in Cells and Zebrafish Embryos. ACS Chem Biol 2021; 16:2434-2443. [PMID: 34609839 DOI: 10.1021/acschembio.1c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapamycin-induced dimerization of FKBP and FRB is the most commonly utilized chemically induced protein dimerization system. It has been extensively used to conditionally control protein localization, split-enzyme activity, and protein-protein interactions in general by simply fusing FKBP and FRB to proteins of interest. We have developed a new aminonitrobiphenylethyl caging group and applied it to the generation of a caged rapamycin analog that can be photoactivated using blue light. Importantly, the caged rapamycin analog shows minimal background activity with regard to protein dimerization and can be directly interfaced with a wide range of established (and often commercially available) FKBP/FRB systems. We have successfully demonstrated its applicability to the optical control of enzymatic function, protein stability, and protein subcellular localization. Further, we also showcased its applicability toward optical regulation of cell signaling, specifically mTOR signaling, in cells and aquatic embryos.
Collapse
Affiliation(s)
- Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kristie E. Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Trevor J. Horst
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Wu HD, Kikuchi M, Dagliyan O, Aragaki AK, Nakamura H, Dokholyan NV, Umehara T, Inoue T. Rational design and implementation of a chemically inducible heterotrimerization system. Nat Methods 2020; 17:928-936. [PMID: 32747768 PMCID: PMC9936427 DOI: 10.1038/s41592-020-0913-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Chemically inducible dimerization (CID) uses a small molecule to induce binding of two different proteins. CID tools such as the FK506-binding protein-FKBP-rapamycin-binding- (FKBP-FRB)-rapamycin system have been widely used to probe molecular events inside and outside cells. While various CID tools are available, chemically inducible trimerization (CIT) does not exist, due to inherent challenges in designing a chemical that simultaneously binds three proteins with high affinity and specificity. Here, we developed CIT by rationally splitting FRB and FKBP. Cellular and structural datasets showed efficient trimerization of split pairs of FRB or FKBP with full-length FKBP or FRB, respectively, by rapamycin. CIT rapidly induced tri-organellar junctions and perturbed intended membrane lipids exclusively at select membrane contact sites. By conferring one additional condition to what is achievable with CID, CIT expands the types of manipulation in single live cells to address cell biology questions otherwise intractable and engineer cell functions for future synthetic biology applications.
Collapse
Affiliation(s)
- Helen D. Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Adam K. Aragaki
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hideki Nakamura
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Present address: Kyoto University Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Katsura Int’tech Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8530, Japan
| | - Nikolay V. Dokholyan
- Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania,Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan.
| | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc Natl Acad Sci U S A 2020; 117:14926-14935. [PMID: 32554495 PMCID: PMC7334647 DOI: 10.1073/pnas.1911154117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.
Collapse
|
5
|
Duong MT, Collinson-Pautz MR, Morschl E, Lu A, Szymanski SP, Zhang M, Brandt ME, Chang WC, Sharp KL, Toler SM, Slawin KM, Foster AE, Spencer DM, Bayle JH. Two-Dimensional Regulation of CAR-T Cell Therapy with Orthogonal Switches. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:124-137. [PMID: 30740516 PMCID: PMC6357218 DOI: 10.1016/j.omto.2018.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
Use of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow in vivo elimination of CAR-T cells. iMC costimulation induced by systemic rimiducid administration enhanced CAR-T cell proliferation, cytokine secretion, and antitumor efficacy in both in vitro assays and xenograft tumor models. Conversely, rapamycin-mediated iRC9 dimerization rapidly induced apoptosis in a dose-dependent fashion as an approach to mitigate therapy-related toxicity. This novel, regulatable dual-switch system may promote greater CAR-T cell expansion and prolonged persistence in a drug-dependent manner while providing a safety switch to mitigate toxicity concerns.
Collapse
Affiliation(s)
- MyLinh T Duong
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | | | - Eva Morschl
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - An Lu
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Slawomir P Szymanski
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Ming Zhang
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Mary E Brandt
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Wei-Chun Chang
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Kelly L Sharp
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Steven M Toler
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Kevin M Slawin
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Aaron E Foster
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - David M Spencer
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - J Henri Bayle
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| |
Collapse
|
6
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Verhelst J, Van Hoecke L, Spitaels J, De Vlieger D, Kolpe A, Saelens X. Chemical-controlled Activation of Antiviral Myxovirus Resistance Protein 1. J Biol Chem 2016; 292:2226-2236. [PMID: 28011636 DOI: 10.1074/jbc.m116.748806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components. Here, we describe a conditionally active mouse MX1 variant that only exerts antiviral activity in the presence of a small molecule drug. Once activated, this MX1 construct phenocopies the antiviral and NP binding activity of wild type MX1. The interaction between PB2 and NP is disrupted within minutes after the addition of the small molecule activator. These findings support a model in which mouse MX1 interacts with the incoming influenza A vRNPs and inhibits their activity by disrupting the PB2-NP interaction.
Collapse
Affiliation(s)
- Judith Verhelst
- From the Medical Biotechnology Center, VIB, 9052 Ghent and.,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lien Van Hoecke
- From the Medical Biotechnology Center, VIB, 9052 Ghent and.,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jan Spitaels
- From the Medical Biotechnology Center, VIB, 9052 Ghent and.,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dorien De Vlieger
- From the Medical Biotechnology Center, VIB, 9052 Ghent and.,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Annasaheb Kolpe
- From the Medical Biotechnology Center, VIB, 9052 Ghent and.,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Saelens
- From the Medical Biotechnology Center, VIB, 9052 Ghent and .,the Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
9
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
10
|
Guan S, Trnka MJ, Bushnell DA, Robinson PJJ, Gestwicki JE, Burlingame AL. Deconvolution method for specific and nonspecific binding of ligand to multiprotein complex by native mass spectrometry. Anal Chem 2015; 87:8541-6. [PMID: 26189511 DOI: 10.1021/acs.analchem.5b02258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In native mass spectrometry, it has been difficult to discriminate between specific bindings of a ligand to a multiprotein complex target from the nonspecific interactions. Here, we present a deconvolution model that consists of two levels of data reduction. At the first level, the apparent association binding constants are extracted from the measured intensities of the target/ligand complexes by varying ligand concentration. At the second level, two functional forms representing the specific and nonspecific binding events are fit to the apparent binding constants obtained from the first level of modeling. Using this approach, we found that a power-law distribution described nonspecific binding of α-amanitin to yeast RNA polymerase II. Moreover, treating the concentration of the multiprotein complex as a fitting parameter reduced the impact of inaccuracies in this experimental measurement on the apparent association constants. This model improves upon current methods for separating specific and nonspecific binding to large, multiprotein complexes in native mass spectrometry, by modeling nonspecific binding with a power-law function.
Collapse
Affiliation(s)
- Shenheng Guan
- †Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States.,‡Institute for Neurodegenerative Diseases and Department of Neurology, University of California, San Francisco, California 94143-0518, United States
| | - Michael J Trnka
- †Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States
| | - David A Bushnell
- §Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Philip J J Robinson
- §Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jason E Gestwicki
- †Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States.,‡Institute for Neurodegenerative Diseases and Department of Neurology, University of California, San Francisco, California 94143-0518, United States
| | - Alma L Burlingame
- †Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
11
|
Sekar TV, Foygel K, Devulapally R, Paulmurugan R. Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals. ACS Chem Biol 2015; 10:165-74. [PMID: 25489787 PMCID: PMC4301175 DOI: 10.1021/cb5008037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lysine
methylation of histone H3 and H4 has been identified as
a promising therapeutic target in treating various cellular diseases.
The availability of an in vivo assay that enables
rapid screening and preclinical evaluation of drugs that potentially
target this cellular process will significantly expedite the pace
of drug development. This study is the first to report the development
of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation
status of a specific histone lysine methylation mark (H3-K9) in live
animals. The sensitivity of this sensor was assessed in various cell
lines, in response to down-regulation of methyltransferase EHMT2 by
specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase
inhibitors BIX01294 and Chaetocin in mice reveals the potential of
this sensor for preclinical drug evaluation. This biosensor thus has
demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development.
Collapse
Affiliation(s)
- Thillai V. Sekar
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Kira Foygel
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Rammohan Devulapally
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
12
|
Hoeller O, Gong D, Weiner OD. How to understand and outwit adaptation. Dev Cell 2014; 28:607-616. [PMID: 24697896 DOI: 10.1016/j.devcel.2014.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022]
Abstract
Adaptation is the ability of a system to respond and reset itself even in the continuing presence of a stimulus. On one hand, adaptation is a physiological necessity that enables proper neuronal signaling and cell movement. On the other hand, adaptation can be a source of annoyance, as it can make biological systems resistant to experimental perturbations. Here we speculate where adaptation might live in eukaryotic chemotaxis and how it can be encoded in the signaling network. We then discuss tools and strategies that can be used to both understand and outwit adaptation in a wide range of cellular contexts.
Collapse
Affiliation(s)
- Oliver Hoeller
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Delquin Gong
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
13
|
Lin YH, Pratt MR. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells. Chembiochem 2014; 15:805-9. [PMID: 24615791 PMCID: PMC4038124 DOI: 10.1002/cbic.201400006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/08/2022]
Abstract
One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology.
Collapse
Affiliation(s)
- Yu Hsuan Lin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Coutinho-Budd JC, Snider SB, Fitzpatrick BJ, Rittiner JE, Zylka MJ. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons. J Negat Results Biomed 2013; 12:13. [PMID: 24010830 PMCID: PMC3844522 DOI: 10.1186/1477-5751-12-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. RESULTS We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. CONCLUSIONS Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
15
|
Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey PD, Hughson FM, Glick BS. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell 2013; 24:3406-19. [PMID: 24006484 PMCID: PMC3814151 DOI: 10.1091/mbc.e13-04-0185] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.
Collapse
Affiliation(s)
- Nike Bharucha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Putyrski M, Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett 2012; 586:2097-105. [DOI: 10.1016/j.febslet.2012.04.061] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 01/08/2023]
|
17
|
Chang-Ileto B, Frere SG, Di Paolo G. Acute manipulation of phosphoinositide levels in cells. Methods Cell Biol 2012; 108:187-207. [PMID: 22325604 DOI: 10.1016/b978-0-12-386487-1.00010-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositides are membrane-bound signaling phospholipids that function in a myriad of cellular processes, including membrane trafficking, cytoskeletal dynamics, ion channel and transporter function, and signal transduction. In order to better understand the role of phosphoinositides in cellular processes, different approaches to study the effects of the presence or absence of these lipids must be devised. Conventional approaches of manipulating phosphoinositide levels such as over-expression or genetic ablation of lipid enzymes cause prolonged exposure of the cells to changes in lipid levels that could result in compensatory actions by the cell or downstream alterations in cell physiology. In this chapter we present an approach used recently by various laboratories, including our own, to acutely manipulate phosphoinositide levels at target locations using chemically induced dimerization (CID) that can be spatially and temporally controlled. We discuss considerations when designing expression constructs for targeting specific cellular compartment membranes and present examples from the literature on different ways of perturbing phosphoinositide levels at particular organelle membranes using CID. In addition, we provide details on image acquisition, data collection, and data interpretation. CID technology can be applied to many lipid enzymes to broaden the understanding of the role lipid signaling plays in cell physiology.
Collapse
Affiliation(s)
- Belle Chang-Ileto
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
18
|
Lau HD, Yaegashi J, Zaro BW, Pratt MR. Precise control of protein concentration in living cells. Angew Chem Int Ed Engl 2011; 49:8458-61. [PMID: 20878685 DOI: 10.1002/anie.201003073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hubert D Lau
- Department of Chemistry, University of Southern California, 840 Downey Way, LJS 250, Los Angeles, CA 90089-0744, USA
| | | | | | | |
Collapse
|
19
|
Xu T, Johnson CA, Gestwicki JE, Kumar A. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nat Protoc 2010; 5:1831-43. [PMID: 21030958 PMCID: PMC4976631 DOI: 10.1038/nprot.2010.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
20
|
Lau HD, Yaegashi J, Zaro BW, Pratt MR. Precise Control of Protein Concentration in Living Cells. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Fegan A, White B, Carlson JCT, Wagner CR. Chemically controlled protein assembly: techniques and applications. Chem Rev 2010; 110:3315-36. [PMID: 20353181 DOI: 10.1021/cr8002888] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrian Fegan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
22
|
Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat Methods 2010; 7:206-8. [PMID: 20154678 PMCID: PMC2860863 DOI: 10.1038/nmeth.1428] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/18/2010] [Indexed: 01/13/2023]
Abstract
Using a series of novel chemically-inducible dimerization probes, we generated a system in which proteins were rapidly targeted to individual intracellular organelles. We demonstrated that a Ras GTPase can be activated at distinct intracellular locations and that membranes from two organelles, ER and mitochondria, can be inducibly tethered. Innovative techniques to rapidly perturb molecular activities and organelle-organelle communications at precise locations and timing will provide powerful strategies to dissect spatio-temporally complex biological processes.
Collapse
|
23
|
FK506-binding protein (FKBP) partitions a modified HIV protease inhibitor into blood cells and prolongs its lifetime in vivo. Proc Natl Acad Sci U S A 2009; 106:1336-41. [PMID: 19164520 DOI: 10.1073/pnas.0805375106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV protease inhibitors are a key component of anti-retroviral therapy, but their susceptibility to cytochrome P(450) metabolism reduces their systemic availability and necessitates repetitive dosing. Importantly, failure to maintain adequate inhibitor levels is believed to provide an opportunity for resistance to emerge; thus, new strategies to prolong the lifetime of these drugs are needed. Toward this goal, numerous prodrug approaches have been developed, but these methods involve creating inactive precursors that require enzymatic processing. Using an alternative strategy inspired by the natural product FK506, we have synthetically modified an HIV protease inhibitor such that it acquires high affinity for the abundant, cytoplasmic chaperone, FK506-binding protein (FKBP). This modified protease inhibitor maintains activity against HIV-1 protease (IC(50) = 19 nM) and, additionally, it is partitioned into the cellular component of whole blood via binding to FKBP. Interestingly, redistribution into this protected niche reduces metabolism and improves its half-life in mice by almost 20-fold compared with the unmodified compound. Based on these findings, we propose that addition of FKBP-binding groups might partially overcome the poor pharmacokinetic properties of existing HIV protease inhibitors and, potentially, other drug classes.
Collapse
|
24
|
Capul AA, de la Torre JC. A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding. Virology 2008; 382:107-14. [PMID: 18929379 DOI: 10.1016/j.virol.2008.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/28/2022]
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans for which there are no licensed vaccines, and current therapy is limited to the use of ribavirin (Rib) that is only partially effective and associated with significant side effects. In addition, compelling evidence indicates that the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Therefore, it is important to develop novel and effective anti-arenaviral drugs. The arenavirus Z protein is the driving force of arenavirus budding, and PPPY and PTAP late (L) domain motifs within Z are critical for Z-mediated budding, which involves the interaction of Z with a variety of host cellular factors. Compounds capable of inhibiting these virus-host cell interactions represent candidate anti-arenaviral drugs. The identification of these candidate compounds would be facilitated by the availability of a Z budding assay amenable to high-throughput screens (HTS). To this end, we have developed a novel assay that allows for rapid and quantitative assessment of Z-mediated budding. We provide evidence that this novel assay is amenable to HTS to identify small molecule inhibitors of Z-mediated budding, as well as to uncover cellular genes contributing to arenavirus budding.
Collapse
Affiliation(s)
- Althea A Capul
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, IMM-6, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Geda P, Patury S, Ma J, Bharucha N, Dobry CJ, Lawson SK, Gestwicki JE, Kumar A. A small molecule-directed approach to control protein localization and function. Yeast 2008; 25:577-94. [DOI: 10.1002/yea.1610] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Marinec PS, Lancia JK, Gestwicki JE. Bifunctional molecules evade cytochrome P(450) metabolism by forming protective complexes with FK506-binding protein. MOLECULAR BIOSYSTEMS 2008; 4:571-8. [PMID: 18493655 DOI: 10.1039/b720011k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite their large size and complexity, the macrolide natural products rapamycin and FK506 have excellent pharmacological characteristics. We hypothesize that these unexpected properties may arise from protective, high affinity interactions with the cellular FK506-binding protein, FKBP. In this model, the drug-FKBP complex might sequester the small molecule and limit its degradation by restricting access to metabolic enzymes. In support of this idea, we found that adding FKBP blocks binding of FK506 to the common cytochrome P(450) enzyme CYP3A4 in vitro. To further test this idea, we have systematically modified a small collection of otherwise unrelated compounds, such that they acquire affinity for FKBP. Strikingly, we found that many of these synthetic derivatives, but not the unmodified parent compounds, are also protected from CYP3A4-mediated metabolism. Depending on the properties of the linker, the bifunctional molecules exhibited up to a 3.5-fold weaker binding to CYP3A4, and this protective effect was observed in the presence of either purified FKBP or FKBP-expressing cells. Together, these results suggest that the surprising pharmacology of rapamycin and FK506 might arise, in part, from binding to their abundant, intracellular target, FKBP. Furthermore, these findings provide a framework by which other small molecules might be systematically modified to impart this protective effect.
Collapse
Affiliation(s)
- Paul S Marinec
- University of Michigan, Department of Pathology and the Life Sciences Institute, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | | | | |
Collapse
|
27
|
Stankunas K, Crabtree GR. Exploiting protein destruction for constructive use. Proc Natl Acad Sci U S A 2007; 104:11511-2. [PMID: 17606901 PMCID: PMC1913851 DOI: 10.1073/pnas.0704762104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kryn Stankunas
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Gerald R. Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, CA 94305
- To whom correspondence should be addressed at:
Departments of Developmental Biology and Pathology, B211 Beckman Center, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5323. E-mail:
| |
Collapse
|