1
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
2
|
Wicks SL, Hargrove AE. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods 2019; 167:3-14. [PMID: 31051253 DOI: 10.1016/j.ymeth.2019.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/15/2023] Open
Abstract
Fluorescent indicator displacement (FID) assays are an advantageous approach to convert receptors into optical sensors that can detect binding of various ligands. In particular, the identification of ligands that bind to RNA receptors has become of increasing interest as the roles of RNA in cellular processes and disease pathogenesis continue to be discovered. Small molecules have been validated as tools to elucidate unknown RNA functions, underscoring the critical need to rapidly identify and quantitatively characterize RNA:small molecule interactions for the development of chemical probes. The successful application of FID assays to evaluate interactions between diverse RNA receptors and small molecules has been facilitated by the characterization of distinct fluorescent indicators that reversibly bind RNA and modulate the fluorescence signal. The utility of RNA-based FID assays to both academia and industry has been demonstrated through numerous uses in high-throughput screening efforts, structure-activity relationship studies, and in vitro target engagement studies. Furthermore, the development, optimization, and validation of a variety of RNA-based FID assays has led to general guidelines that can be utilized for facile implementation of the method with new or underexplored RNA receptors. Altogether, the use of RNA-based FID assays as a general analysis tool has provided valuable insights into small molecule affinity and selectivity, furthering the fundamental understanding of RNA:small molecule recognition. In this review, we will summarize efforts to employ FID assays using RNA receptors and describe the significant contributions of the method towards the development of chemical probes to reveal unknown RNA functions.
Collapse
Affiliation(s)
- Sarah L Wicks
- Duke University, Department of Chemistry, Durham, NC 27705, United States
| | - Amanda E Hargrove
- Duke University, Department of Chemistry, Durham, NC 27705, United States.
| |
Collapse
|
3
|
Patwardhan NN, Cai Z, Newson CN, Hargrove AE. Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org Biomol Chem 2019; 17:1778-1786. [PMID: 30468226 DOI: 10.1039/c8ob02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A prominent hurdle in developing small molecule probes against RNA is the relative scarcity of general screening methods. In this study, we demonstrate the application of a fluorescent peptide displacement assay to screen small molecule probes against four different RNA targets. The designed experimental protocol combined with statistical analysis provides a fast and convenient method to simultaneously evaluate small molecule libraries against different RNA targets and classify them based on affinity and selectivity patterns.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
4
|
Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR. Bioorg Med Chem Lett 2014; 24:5576-5580. [DOI: 10.1016/j.bmcl.2014.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/06/2023]
|
5
|
Ranjan N, Kumar S, Watkins D, Wang D, Appella DH, Arya DP. Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates. Bioorg Med Chem Lett 2013; 23:5689-93. [PMID: 24012122 PMCID: PMC4048829 DOI: 10.1016/j.bmcl.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin-benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5-23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Derrick Watkins
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| | - Deyun Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| |
Collapse
|
6
|
Desbouis D, Troitsky IP, Belousoff MJ, Spiccia L, Graham B. Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol 2011; 410:984-96. [PMID: 21763501 DOI: 10.1016/j.jmb.2011.03.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/29/2022]
Abstract
The HIV-1 transactivation response (TAR) element-Tat interaction is a potentially valuable target for treating HIV infection, but efforts to develop TAR-binding antiviral drugs have not yet yielded a successful candidate for clinical development. In this work, we describe a novel approach toward screening fragments against RNA that uses a chemical probe to target the Tat-binding region of TAR. This probe fulfills two critical roles in the screen: by locking the RNA into a conformation capable of binding other fragments, it simultaneously allows the identification of proximal binding fragments by ligand-based NMR. Using this approach, we have discovered six novel TAR-binding fragments, three of which were docked relative to the probe-RNA structure using experimental NMR restraints. The consistent orientations of functional groups in our data-driven docked structures and common electrostatic properties across all fragment leads reveal a surprising level of selectivity by our fragment-sized screening hits. These models further suggest linking strategies for the development of higher-affinity lead compounds for the inhibition of the TAR-Tat interaction.
Collapse
|
8
|
Phosphonium-mediated cyclization of N-(2-aminophenyl)thioureas: efficient synthesis of 2-aminobenzimidazoles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.05.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Palde PB, Ofori LO, Gareiss PC, Lerea J, Miller BL. Strategies for recognition of stem-loop RNA structures by synthetic ligands: application to the HIV-1 frameshift stimulatory sequence. J Med Chem 2010; 53:6018-27. [PMID: 20672840 DOI: 10.1021/jm100231t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Production of the Gag-Pol polyprotein in human immunodeficiency virus (HIV) requires a -1 ribosomal frameshift, which is directed by a highly conserved RNA stem-loop. Building on our discovery of a set of disulfide-containing peptides that bind this RNA, we describe medicinal chemistry efforts designed to begin to understand the structure-activity relationships and RNA sequence-selectivity relationships associated with these compounds. Additionally, we have prepared analogues incorporating an olefin or saturated hydrocarbon bioisostere of the disulfide moiety, as a first step toward enhancing biostability. The olefin-containing compounds exhibit affinity comparable to the lead disulfide and, importantly, have no discernible toxicity when incubated with human fibroblasts at concentrations up to 1 mM.
Collapse
Affiliation(s)
- Prakash B Palde
- Department of Dermatology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Duca M, Malnuit V, Barbault F, Benhida R. Design of novel RNA ligands that bind stem–bulge HIV-1 TAR RNA. Chem Commun (Camb) 2010; 46:6162-4. [DOI: 10.1039/c0cc00645a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wang D, Iera J, Baker H, Hogan P, Ptak R, Yang L, Hartman T, Buckheit RW, Desjardins A, Yang A, Legault P, Yedavalli V, Jeang KT, Appella DH. Multivalent binding oligomers inhibit HIV Tat-TAR interaction critical for viral replication. Bioorg Med Chem Lett 2009; 19:6893-7. [PMID: 19896372 DOI: 10.1016/j.bmcl.2009.10.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/19/2009] [Indexed: 12/11/2022]
Abstract
We describe the development of a new type of scaffold to target RNA structures. Multivalent binding oligomers (MBOs) are molecules in which multiple sidechains extend from a polyamine backbone such that favorable RNA binding occurs. We have used this strategy to develop MBO-based inhibitors to prevent the association of a protein-RNA complex, Tat-TAR, that is essential for HIV replication. In vitro binding assays combined with model cell-based assays demonstrate that the optimal MBOs inhibit Tat-TAR binding at low micromolar concentrations. Antiviral studies are also consistent with the in vitro and cell-based assays. MBOs provide a framework for the development of future RNA-targeting molecules.
Collapse
Affiliation(s)
- Deyun Wang
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ferner J, Suhartono M, Breitung S, Jonker HRA, Hennig M, Wöhnert J, Göbel M, Schwalbe H. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. Chembiochem 2009; 10:1490-4. [PMID: 19444830 DOI: 10.1002/cbic.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Target TAR by NMR: Tripeptides containing arginines as terminal residues and non-natural amino acids as central residues are good leads for drug design to target the HIV trans-activation response element (TAR). The structural characterization of the RNA-ligand complex by NMR spectroscopy reveals two specific binding sites that are located at bulge residue U23 and around the pyrimidine-stretch U40-C41-U42 directly adjacent to the bulge.
Collapse
Affiliation(s)
- Jan Ferner
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonnard V, Azoulay S, Di Giorgio A, Patino N. Polyamide amino acids: a new class of RNA ligands. Chem Commun (Camb) 2009:2302-4. [DOI: 10.1039/b815324h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Suhartono M, Weidlich M, Stein T, Karas M, Dürner G, Göbel MW. Synthesis of Non-Natural Aromatic α-Amino Acids by a Heck Reaction. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|