1
|
Skwarecki AS, Stefaniak-Skorupa J, Nowak MG. Trimethyl Lock Based Tools for Drug Delivery and Cell Imaging - Synthesis and Properties. Chemistry 2024:e202403486. [PMID: 39494549 DOI: 10.1002/chem.202403486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Trimethyl lock (TML) systems have become increasingly important in medicinal and bioorganic chemistry, particularly for their roles in the targeted delivery of therapeutic agents and as integral components in fluorogenic probes for cellular imaging. The simplicity and efficiency of their synthesis have established TML systems as versatile platforms for the controlled release of active molecules under particular physiological conditions. This review consolidates recent advancements in the application of TML systems, with a focus on their use in drug delivery, cellular imaging, and other areas where precise molecular release is crucial. Additionally, we discuss the synthetic strategies employed to construct TML-based conjugates, underscoring their potential to enhance the specificity and efficacy of bioactive compounds in various biomedical applications.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Joanna Stefaniak-Skorupa
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Laboratory of Polymer Chemistry, Faculty of Science, Universite Libre de Bruxelles, CP 206/1, Boulevard du Triophe, 1050, Brussels, Belgium
| |
Collapse
|
2
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
3
|
Otaka A. Development of Naturally Inspired Peptide and Protein Chemistry. Chem Pharm Bull (Tokyo) 2022; 70:748-764. [DOI: 10.1248/cpb.c22-00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
4
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Shigenaga A. Development of Chemical Biology Tools Focusing on Peptide/Amide Bond Cleavage Reaction. Chem Pharm Bull (Tokyo) 2019; 67:1171-1178. [PMID: 31685746 DOI: 10.1248/cpb.c19-00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides and proteins are involved in almost all biological events. In this review, three chemical biology tools, which were developed for peptide/protein sciences from a viewpoint of peptide/amide bond cleavage, are overviewed. First, study on an artificial amino acid that enables stimulus-responsive functional control of peptides/proteins is briefly described. Two N-S acyl transfer reaction-based tools, one a linker molecule for facile identification of target proteins of bioactive compounds and the other a reagent for selective labeling of proteins of interest, are then discussed.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
6
|
Carlini AS, Touve MA, Fernández-Caro H, Thompson MP, Cassidy MF, Cao W, Gianneschi NC. UV-responsive cyclic peptide progelator bioinks. Faraday Discuss 2019; 219:44-57. [PMID: 31549115 PMCID: PMC7363176 DOI: 10.1039/c9fd00026g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe cyclic peptide progelators which cleave in response to UV light to generate linearized peptides which then self-assemble into gel networks. Cyclic peptide progelators were synthesized, where the peptides were sterically constrained, but upon UV irradiation, predictable cleavage products were generated. Amino acid sequences and formulation conditions were altered to tune the mechanical properties of the resulting gels. Characterization of the resulting morphologies and chemistry was achieved through liquid phase and standard TEM methods, combined with matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS).
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Shigenaga A. [Looking Back on Study Abroad at The Scripps Research Institute]. YAKUGAKU ZASSHI 2019; 139:221-228. [PMID: 30713231 DOI: 10.1248/yakushi.18-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Just after receiving my Ph.D. degree in 2004 from Tokushima University, under the supervision of Professor Masayuki Shibuya, I had the opportunity to work as a Research Associate in the laboratory of Professor Kim D. Janda at The Scripps Research Institute in the U.S., for about a year. Since it has already been more than 10 years since my time at Scripps, the specific research performed at that time may no longer be of interest to readers, but the benefit of working in a different research environment is timeless. Therefore, this paper describes not only details of the research conducted, but also the significance of working in a foreign country as a postdoc, and the subsequent influence those experiences at The Scripps Research Institute have had on my career.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
8
|
Mahesh S, Tang KC, Raj M. Amide Bond Activation of Biological Molecules. Molecules 2018; 23:E2615. [PMID: 30322008 PMCID: PMC6222841 DOI: 10.3390/molecules23102615] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/02/2022] Open
Abstract
Amide bonds are the most prevalent structures found in organic molecules and various biomolecules such as peptides, proteins, DNA, and RNA. The unique feature of amide bonds is their ability to form resonating structures, thus, they are highly stable and adopt particular three-dimensional structures, which, in turn, are responsible for their functions. The main focus of this review article is to report the methodologies for the activation of the unactivated amide bonds present in biomolecules, which includes the enzymatic approach, metal complexes, and non-metal based methods. This article also discusses some of the applications of amide bond activation approaches in the sequencing of proteins and the synthesis of peptide acids, esters, amides, and thioesters.
Collapse
Affiliation(s)
- Sriram Mahesh
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Kuei-Chien Tang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Monika Raj
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
9
|
Okoh OA, Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. Chembiochem 2018; 19:1668-1694. [PMID: 29888433 DOI: 10.1002/cbic.201800269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.
Collapse
Affiliation(s)
- Okoh Adeyi Okoh
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Philipp Klahn
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
10
|
Shigenaga A, Yamamoto J, Kohiki T, Inokuma T, Otaka A. Invention of stimulus-responsive peptide-bond-cleaving residue (Spr) and its application to chemical biology tools. J Pept Sci 2017; 23:505-513. [PMID: 28105728 DOI: 10.1002/psc.2961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Elucidation of biological functions of peptides and proteins is essential for understanding peptide/protein-related biological events and developing drugs. Caged peptides and proteins that release a parent active peptide/protein by photo-irradiation have successfully been employed to elucidate the functions. Whereas the usual caged peptide/protein enables conversion of an inactive form to an active form (OFF-to-ON conversion) by photo-induced deprotection, photo-triggered main chain cleavage is reported to be applicable to ON-to-OFF conversion. These peptides and proteins are photo-responsive; however, if peptides and proteins could respond to other stimuli such as disease-related environment or enzymes, their range of application should be widened. To convert the photo-responsive peptide/protein into other stimulus-responsive peptide/protein, quite laborious de novo design and synthesis of the stimulus-responsive unit are required. In this context, we designed a stimulus-responsive peptide-bond-cleaving residue (Spr) in which the stimuli available for the main chain cleavage vary according to the choice of protecting groups on the residue. In this review, design and synthesis of Spr are introduced, and challenges to apply Spr to other fields to enable, for example, functional control, localization control, delivery of cargos, labeling of a protein of interest in living cells, and identification of target proteins of bioactive ligands are discussed. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Yamamoto
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Taiki Kohiki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| |
Collapse
|
11
|
Truong VX, Li F, Ercole F, Forsythe JS. Visible-light-mediated cleavage of polymer chains under physiological conditions via quinone photoreduction and trimethyl lock. Chem Commun (Camb) 2017; 53:12076-12079. [DOI: 10.1039/c7cc07257k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We introduce a click and visible-light triggered unclick approach via thio-bromo reaction and hydroquinone photoreduction/trimethyl lock cleavage for polymer modifications.
Collapse
Affiliation(s)
- Vinh X. Truong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Fanyi Li
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Francesca Ercole
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
- 381 Royal Parade
- Parkville
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
12
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
13
|
Jung D, Sato K, Min K, Shigenaga A, Jung J, Otaka A, Kwon Y. Photo-triggered fluorescent labelling of recombinant proteins in live cells. Chem Commun (Camb) 2016; 51:9670-3. [PMID: 25977944 DOI: 10.1039/c5cc01067e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method to photo-chemically trigger fluorescent labelling of proteins in live cells is developed. The approach is based on photo-caged split-intein mediated conditional protein trans-splicing reaction and enabled background-free fluorescent labelling of target proteins with the necessary spatiotemporal control.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University-Seoul, Pildong 3-ga, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
14
|
Komiya C, Aihara K, Morishita K, Ding H, Inokuma T, Shigenaga A, Otaka A. Development of an Intein-Inspired Amide Cleavage Chemical Device. J Org Chem 2015; 81:699-707. [DOI: 10.1021/acs.joc.5b02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiaki Komiya
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keisuke Aihara
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Ko Morishita
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hao Ding
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences
and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
15
|
Kita M, Yamamoto J, Morisaki T, Komiya C, Inokuma T, Miyamoto L, Tsuchiya K, Shigenaga A, Otaka A. Design and synthesis of a hydrogen peroxide-responsive amino acid that induces peptide bond cleavage after exposure to hydrogen peroxide. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yamamoto J, Denda M, Maeda N, Kita M, Komiya C, Tanaka T, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a traceable linker containing a thiol-responsive amino acid for the enrichment and selective labelling of target proteins. Org Biomol Chem 2015; 12:3821-6. [PMID: 24806338 DOI: 10.1039/c4ob00622d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A traceable linker that is potentially applicable to identification of a target protein of bioactive compounds was developed. It enabled not only thiol-induced cleavage of the linker for enrichment of the target protein but also selective labelling to pick out the target from contaminated non-target proteins for facile identification.
Collapse
Affiliation(s)
- Jun Yamamoto
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Furutani M, Uemura A, Shigenaga A, Komiya C, Otaka A, Matsuura K. A photoinduced growth system of peptide nanofibres addressed by DNA hybridization. Chem Commun (Camb) 2015; 51:8020-2. [DOI: 10.1039/c5cc01452b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spatiotemporal control of peptide nanofibre growth was achieved by photocleavage of a DNA-conjugated β-sheet-forming peptide with a photoresponsive amino acid.
Collapse
Affiliation(s)
- Masahiro Furutani
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| | - Akihito Uemura
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| | - Akira Shigenaga
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Chiaki Komiya
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Akira Otaka
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Kazunori Matsuura
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| |
Collapse
|
18
|
Kandanapitiye MS, Gao M, Molter J, Flask CA, Huang SD. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem 2014; 53:10189-94. [PMID: 25283335 PMCID: PMC4186669 DOI: 10.1021/ic5011709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 12/12/2022]
Abstract
A unique decelerated hydrolytic procedure is developed and reported here for the preparation of ultrasmall nanoparticles (NPs) of PVP-coated BiOI with a narrow size distribution, i.e., 2.8 ± 0.5 nm. The crystal structure of this compound is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, and potential use of the PVP-coated ultrasmall BiOI NPs as a CT contrast agent are investigated. Because of the combined X-ray attenuation effect of bismuth and iodine, such NPs exhibit a CT value that is among the best of those of the inorganic nanoparticle-based CT contrast agents reported in the literature.
Collapse
Affiliation(s)
- Murthi S. Kandanapitiye
- Department
of Chemistry and Biochemistry and Liquid Crystal Institute, Kent State University, Kent, Ohio 44240, United States
| | - Min Gao
- Department
of Chemistry and Biochemistry and Liquid Crystal Institute, Kent State University, Kent, Ohio 44240, United States
| | - Joseph Molter
- Case Center for Imaging Research
at Department of Radiology, Department of Biomedical Engineering, and Department of
Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chris A. Flask
- Case Center for Imaging Research
at Department of Radiology, Department of Biomedical Engineering, and Department of
Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Songping D. Huang
- Department
of Chemistry and Biochemistry and Liquid Crystal Institute, Kent State University, Kent, Ohio 44240, United States
| |
Collapse
|
19
|
Yamamoto J, Maeda N, Komiya C, Tanaka T, Denda M, Ebisuno K, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a fluoride-responsive amide bond cleavage device that is potentially applicable to a traceable linker. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Yoshiya T, Uemura T, Maruno T, Kubo S, Kiso Y, Sohma Y, Kobayashi Y, Yoshizawa-Kumagaye K, Nishiuchi Y. O
-Acyl isopeptide method: development of an O
-acyl isodipeptide unit for Boc SPPS
and its application to the synthesis of Aβ
1-42 isopeptide. J Pept Sci 2014; 20:669-74. [DOI: 10.1002/psc.2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Takahiro Maruno
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yoshiaki Kiso
- Laboratory of Peptide Science; Nagahama Institute of Bio-Science and Technology; Shiga 526-0829 Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo 113-0033 Japan
| | - Yuji Kobayashi
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yuji Nishiuchi
- Peptide Institute, Inc.; Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Osaka 560-0043 Japan
| |
Collapse
|
21
|
Yoshiya T, Tsuda S, Mochizuki M, Hidaka K, Tsuda Y, Kiso Y, Kageyama S, Ii H, Yoshiki T, Nishiuchi Y. A Fluorogenic Probe for γ-Glutamyl Cyclotransferase: Application of an Enzyme-Triggered O-to-N Acyl Migration-Type Reaction. Chembiochem 2013; 14:2110-3. [DOI: 10.1002/cbic.201300481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 01/02/2023]
|
22
|
Abstract
O-Acyl isopeptides, in which the N-acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O-acyl linkage, generally possess superior water-solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O-acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O-to-N acyl migration. By exploiting these characteristics, researchers have applied the O-acyl isopeptide method to various peptide-synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O-acyl-isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O-acyl isopeptides and some of their applications.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
23
|
Affiliation(s)
- Hrvoje Lusic
- Boston University, Departments of Biomedical Engineering and Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Ave., Boston, MA 02215. Fax: 617-358-3186; Tel: 617-353-3871
| | - Mark W. Grinstaff
- Boston University, Departments of Biomedical Engineering and Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Ave., Boston, MA 02215. Fax: 617-358-3186; Tel: 617-353-3871
| |
Collapse
|
24
|
Shigenaga A. [Development of stimulus-responsive amino acids and their application to chemical biology use]. YAKUGAKU ZASSHI 2012; 132:1075-82. [PMID: 23023427 DOI: 10.1248/yakushi.132.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An understanding of the physiological significance of peptides and proteins is indispensable in the fields of life sciences and drug development. Recently, methods for controlling peptide and protein activities using stimuli such as UV irradiation have been attracting much attention because of their potential for clarifying the physiological roles of the peptides/proteins. In this context, we have developed a stimulus-responsive amino acid that induces peptide-bond cleavage after exposure to a stimulus. Although it has previously been reported that stimulus-responsive units can respond to a specific stimulus, our stimulus-responsive amino acid is potentially applicable to any stimulus simply by changing the protective group. In this review, the design and synthesis of stimulus-responsive amino acids are described. Their applications in chemical biology, including their use for spatiotemporal control of the activity of peptides in living cells, are also reported.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
25
|
Shigenaga A, Ogura K, Hirakawa H, Yamamoto J, Ebisuno K, Miyamoto L, Ishizawa K, Tsuchiya K, Otaka A. Development of a Reduction-Responsive Amino Acid that Induces Peptide Bond Cleavage in Hypoxic Cells. Chembiochem 2012; 13:968-71. [DOI: 10.1002/cbic.201200141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 02/04/2023]
|
26
|
Otaka A. Development of Organic and Bio-organic Methodologies for the Synthesis of Proteins. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Levine MN, Raines RT. Trimethyl lock: A trigger for molecular release in chemistry, biology, and pharmacology. Chem Sci 2012; 3:2412-2420. [PMID: 23181187 PMCID: PMC3501758 DOI: 10.1039/c2sc20536j] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trimethyl lock is an o-hydroxydihydrocinnamic acid derivative in which unfavorable steric interactions between three pendant methyl groups encourage lactonization to form a hydrocoumarin. This reaction is extremely rapid, even when the electrophile is an amide and the leaving group is an amino group of a small-molecule drug, fluorophore, peptide, or nucleic acid. O-Acylation of the phenolic hydroxyl group prevents reaction, providing a trigger for the reaction. Thus, the release of an amino group from an amide can be coupled to the hydrolysis of a designated ester (or to another chemical reaction that regenerates the hydroxyl group). Trimethyl lock conjugates are easy to synthesize, making the trimethyl lock a highly versatile module for chemical biology and related fields.
Collapse
Affiliation(s)
- Michael N. Levine
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
28
|
|
29
|
Design and synthesis of caged ceramide: UV-responsive ceramide releasing system based on UV-induced amide bond cleavage followed by O–N acyl transfer. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Self-assembly pathways of E22Δ-type amyloid β peptide mutants generated from non-aggregative O-acyl isopeptide precursors. Bioorg Med Chem 2011; 19:3787-92. [PMID: 21612934 DOI: 10.1016/j.bmc.2011.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/24/2022]
Abstract
The recently identified E22Δ-type amyloid β peptide (Aβ) mutants are reported to favor oligomerization over fibrillization and to exhibit more-potent synaptotoxicity than does wild-type (WT) Aβ. Aβ(E22Δ) mutants can thus be expected to serve as tools for clarifying the impact of Aβ oligomers in Alzheimer's disease (or Alzheimer's-type dementia). However, the biochemical and biophysical properties of Aβ(E22Δ) have not been conclusively determined. Here, we evaluated the self-assembly pathways of Aβ(E22Δ) mutants generated from water-soluble, non-aggregative O-acyl isopeptide precursors. Circular dichroism spectroscopy, Western blot analysis, and thioflavin-T fluorescence intensity and cellular toxicity assays suggest that the self-assembly pathways of Aβ(E22Δ) differed from those of Aβ(WT). Aβ1-40(E22Δ) underwent a rapid random coil→β-sheet conformational change in its monomeric or low-molecular-weight oligomeric states, whereas Aβ1-40(WT) self-assembled gradually without losing its propensity to form random coil structures. The Aβ1-42(E22Δ) monomer formed β-sheet-rich oligomers more rapidly than did Aβ1-42(WT). Additionally, the Aβ1-42(E22Δ) oligomers appear to differ from Aβ1-42(WT) oligomers in size, shape, or both. These results should provide new insights into the functions of Aβ(E22Δ) mutants.
Collapse
|
31
|
Yoshiya T, Hasegawa Y, Kawamura W, Kawashima H, Sohma Y, Kimura T, Kiso Y. S-acyl isopeptide method: Use of allyl-type protective group for improved preparation of thioester-containing S-acyl isopeptides by Fmoc-based SPPS. Biopolymers 2011; 96:228-39. [DOI: 10.1002/bip.21410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Yoshiya T, Kawashima H, Hasegawa Y, Okamoto K, Kimura T, Sohma Y, Kiso Y. Epimerization-free synthesis of cyclic peptide by use of the O-acyl isopeptide method. J Pept Sci 2010; 16:437-42. [PMID: 20623499 DOI: 10.1002/psc.1261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A head-to-tail cyclization of a protected linear hexapeptide with a C-terminal O-acyl isopeptide proceeded to give a cyclic O-acyl isopeptide without epimerization. The cyclic O-acyl isopeptide possessed different secondary structures compared with the native cyclic peptide. The isopeptide was then efficiently converted to the desired cyclic peptide via an O-to-N acyl migration reaction using a silica gel-anchored base.
Collapse
Affiliation(s)
- Taku Yoshiya
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Shigenaga A, Yamamoto J, Nishioka N, Otaka A. Enantioselective synthesis of stimulus-responsive amino acid via asymmetric α-amination of aldehyde. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Shigenaga A, Yamamoto J, Sumikawa Y, Furuta T, Otaka A. Development and photo-responsive peptide bond cleavage reaction of two-photon near-infrared excitation-responsive peptide. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Development of thiol-responsive amide bond cleavage device and its application for peptide nucleic acid-based DNA releasing system. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Eastwood AL, Blum AP, Zacharias NM, Dougherty DA. A selenide-based approach to photochemical cleavage of peptide and protein backbones at engineered backbone esters. J Org Chem 2010; 74:9241-4. [PMID: 19902952 DOI: 10.1021/jo901368g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for photochemical cleavage of peptide and protein backbones is described, which is based on a selenide-mediated cleavage of a backbone ester moiety. Studies in model systems establish the viability of the chemistry and suggest the method could be a valuable tool for chemical biology studies of proteins.
Collapse
Affiliation(s)
- Amy L Eastwood
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
37
|
Wang H, Kakizawa T, Taniguchi A, Mizuguchi T, Kimura T, Kiso Y. Synthesis of amyloid β peptide 1–42 (E22Δ) click peptide: pH-triggered in situ production of its native form. Bioorg Med Chem 2009; 17:4881-7. [DOI: 10.1016/j.bmc.2009.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 02/04/2023]
|
38
|
Taniguchi A, Sohma Y, Hirayama Y, Mukai H, Kimura T, Hayashi Y, Matsuzaki K, Kiso Y. "Click peptide": pH-triggered in situ production and aggregation of monomer Abeta1-42. Chembiochem 2009; 10:710-5. [PMID: 19222037 DOI: 10.1002/cbic.200800765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intense and uncontrollable self-assembling nature of amyloid beta peptide (Abeta) 1-42 is known to cause difficulties in preparing monomeric Abeta1-42; this results in irreproducible or discrepant study outcomes. Herein, we report novel features of a pH click peptide of Abeta1-42 that was designed to overcome these problems. The click peptide is a water-soluble precursor peptide of Abeta1-42 with an O-acyl isopeptide structure between the Gly25-Ser26 sequence. The click peptide adopts and retains a monomeric, random coil state under acidic conditions. Upon change to neutral pH (pH click), the click peptide converts to Abeta1-42 promptly (t(1/2) approximately 10 s) and quantitatively through an O-to-N intramolecular acyl migration. As a result of this quick and irreversible conversion, monomer Abeta1-42 with a random coil structure is produced in situ. Moreover, the oligomerization, amyloid fibril formation and conformational changes of the produced Abeta1-42 can be observed over time. This click peptide strategy should provide a reliable experimental system to investigate the pathological role of Abeta1-42 in Alzheimer's disease.
Collapse
Affiliation(s)
- Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshiya T, Kawashima H, Sohma Y, Kimura T, Kiso Y. O-acyl isopeptide method: efficient synthesis of isopeptide segment and application to racemization-free segment condensation. Org Biomol Chem 2009; 7:2894-904. [PMID: 19582299 DOI: 10.1039/b903624e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the establishment of the O-acyl isopeptide method-based racemization-free segment condensation reaction toward future chemical protein synthesis. Peptide segments containing C-terminal O-acyl Ser/Thr residues were successfully synthesized by use of a lower nucleophilic base cocktail for Fmoc removal, and then coupled to an amino group of a peptide-resin without side reactions or epimerization. We also succeeded in performing the segment condensation in a sequential manner and in solution phase conditions as well.
Collapse
Affiliation(s)
- Taku Yoshiya
- Department of Medicinal Chemistry, Division of Medicinal Chemical Sciences, Center for Frontier Research in Medicinal Science, 21st Century COE program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | | | | | | | | |
Collapse
|
40
|
FRET-based assay of the processing reaction kinetics of stimulus-responsive peptides: influence of amino acid sequence on reaction kinetics. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Yoshiya T, Ito N, Kimura T, Kiso Y. Isopeptide method: development of S-acyl isopeptide method for the synthesis of difficult sequence-containing peptides. J Pept Sci 2008; 14:1203-8. [PMID: 18613286 DOI: 10.1002/psc.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel strategy for a more efficient synthesis of difficult sequence-containing peptides, the S-acyl isopeptide method, was developed and successfully applied. A model pentapeptide Ac-Val-Val-Cys-Val-Val-NH2 was synthesized via its water-soluble S-acyl isopeptide using an S-acyl isodipeptide unit, Boc-Cys(Fmoc-Val)-OH. An S-acyl isopeptide possessing excellent water solubility could be readily and quantitatively converted to the native peptide via an S--N intramolecular acyl migration reaction at pH 7.4. Thus, the S-acyl isopeptide method provides a useful tool in peptide chemistry.
Collapse
Affiliation(s)
- Taku Yoshiya
- Department of Medicinal Chemistry, Division of Medicinal Chemical Sciences, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
42
|
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. Controlled Production of Amyloid β Peptide from a Photo-Triggered, Water-Soluble Precursor “Click Peptide“. Chembiochem 2008; 9:3055-65. [DOI: 10.1002/cbic.200800503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Vila-Perelló M, Hori Y, Ribó M, Muir TW. Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew Chem Int Ed Engl 2008; 47:7764-7. [PMID: 18767096 DOI: 10.1002/anie.200802502] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miquel Vila-Perelló
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
44
|
Vila-Perelló M, Hori Y, Ribó M, Muir T. Activation of Protein Splicing by Protease- or Light-Triggered O to N Acyl Migration. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Katayama K, Tsukiji S, Furuta T, Nagamune T. A bromocoumarin-based linker for synthesis of photocleavable peptidoconjugates with high photosensitivity. Chem Commun (Camb) 2008:5399-401. [PMID: 18985223 DOI: 10.1039/b812058g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new bromocoumarin-based bi-functional linker was developed for preparing photocleavable peptides and proteins with high photolytic efficiency, which have many potential applications in the study and engineering of biological systems.
Collapse
Affiliation(s)
- Kentaro Katayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|