1
|
Ribeiro R, Costa L, Pinto E, Sousa E, Fernandes C. Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Mar Drugs 2023; 21:609. [PMID: 38132930 PMCID: PMC10745025 DOI: 10.3390/md21120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitic diseases still compromise human health. Some of the currently available therapeutic drugs have limitations considering their adverse effects, questionable efficacy, and long treatment, which have encouraged drug resistance. There is an urgent need to find new, safe, effective, and affordable antiparasitic drugs. Marine-derived cyclic peptides have been increasingly screened as candidates for developing new drugs. Therefore, in this review, a systematic analysis of the scientific literature was performed and 25 marine-derived cyclic peptides with antiparasitic activity (1-25) were found. Antimalarial activity is the most reported (51%), followed by antileishmanial (27%) and antitrypanosomal (20%) activities. Some compounds showed promising antiparasitic activity at the nM scale, being active against various parasites. The mechanisms of action and targets for some of the compounds have been investigated, revealing different strategies against parasites.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
| | - Eugénia Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| |
Collapse
|
2
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
3
|
Huang R, Sun H, Lin R, Zhang J, Yin H, Xian S, Li M, Wang S, Li Z, Qiao Y, Jiang M, Yan P, Meng T, Huang Z. The Role of Tetraspaninsin Pan-Cancer. iScience 2022; 25:104777. [PMID: 35992081 PMCID: PMC9385710 DOI: 10.1016/j.isci.2022.104777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Hanlin Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Ruoyi Lin
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Siqiao Wang
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Zhenyu Li
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yannan Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Meiyun Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Corresponding author
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| |
Collapse
|
4
|
Zhang HW, Lv C, Zhang LJ, Guo X, Shen YW, Nagle DG, Zhou YD, Liu SH, Zhang WD, Luan X. Application of omics- and multi-omics-based techniques for natural product target discovery. Biomed Pharmacother 2021; 141:111833. [PMID: 34175822 DOI: 10.1016/j.biopha.2021.111833] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products continue to be an unparalleled source of pharmacologically active lead compounds because of their unprecedented structures and unique biological activities. Natural product target discovery is a vital component of natural product-based medicine translation and development and is required to understand and potentially reduce mechanisms that may be associated with off-target side effects and toxicity. Omics-based techniques, including genomics, transcriptomics, proteomics, metabolomics, and bioinformatics, have become recognized as effective tools needed to construct innovative strategies to discover natural product targets. Although considerable progress has been made, the successful discovery of natural product targets remains a challenging time-consuming process that has come to increasingly rely on the effective integration of multi-omics-based technologies to create emerging panomics (a.k.a., integrative omics, pan-omics, multiomics)-based strategies. This review summarizes a series of successful studies regarding the application of integrative omics-based methods in natural product target discovery. The advantages and disadvantages of each technique are discussed, with a particular focus on the systematic integration of multi-omics strategies. Further, emerging micro-scale single-cell-based techniques are introduced, especially to deal with minute natural product samples.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University-1848, MS 38677-1848, USA
| | - Yu-Dong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Design and Synthesis of Anti-Cancer Chimera Molecules Based on Marine Natural Products. Mar Drugs 2019; 17:md17090500. [PMID: 31461968 PMCID: PMC6780274 DOI: 10.3390/md17090500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
In this paper, the chemical conjugation of marine natural products with other bioactive molecules for developing an advanced anti-cancer agent is described. Structural complexity and the extraordinary biological features of marine natural products have led to tremendous research in isolation, structural elucidation, synthesis, and pharmacological evaluation. In addition, this basic scientific achievement has made it possible to hybridize two or more biologically important skeletons into a single compound. The hybridization strategy has been used to identify further opportunities to overcome certain limitations, such as structural complexity, scarcity problems, poor solubility, severe toxicity, and weak potency of marine natural products for advanced development in drug discovery. Further, well-designed marine chimera molecules can function as a platform for target discovery or degradation. In this review, the design, synthesis, and biological evaluation of recent marine chimera molecules are presented.
Collapse
|
6
|
Gotsbacher MP, Cho SM, Kim NH, Liu F, Kwon HJ, Karuso P. Reverse Chemical Proteomics Identifies an Unanticipated Human Target of the Antimalarial Artesunate. ACS Chem Biol 2019; 14:636-643. [PMID: 30840434 DOI: 10.1021/acschembio.8b01004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Artemisinins are the most potent and safe antimalarials available. Despite their clinical potential, no human target for the artemisinins is known. The unbiased interrogation of several human cDNA libraries, displayed on bacteriophage T7, revealed a single human target of artesunate; the intrinsically disordered Bcl-2 antagonist of cell death promoter (BAD). We show that artesunate inhibits the phosphorylation of BAD, thereby promoting the formation of the proapoptotic BAD/Bcl-xL complex and the subsequent intrinsic apoptotic cascade involving cytochrome c release, PARP cleavage, caspase activation, and ultimately cell death. This unanticipated role of BAD as a possible drug target of artesunate points to direct clinical exploitation of artemisinins in the Bcl-xL life/death switch and that artesunate's anticancer activity is, at least in part, independent of reactive oxygen species.
Collapse
Affiliation(s)
| | - Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Nam Hee Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Fei Liu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Daptomycin, a last-resort antibiotic, binds ribosomal protein S19 in humans. Proteome Sci 2017; 15:16. [PMID: 28680364 PMCID: PMC5494143 DOI: 10.1186/s12953-017-0124-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daptomycin is a recently introduced, last-resort antibiotic that displays a unique mode of action against Gram-positive bacteria that is not fully understood. Several bacterial targets have been proposed but no human binding partner is known. METHODS In the present study we tested daptomycin in cell viability and proliferation assays against six human cell lines, describe the synthesis of biotinylated and fluorescently labeled analogues of daptomycin. Biotinylated daptomycin was used as bait to isolate the human binding partner by the application of reverse chemical proteomics using T7 phage display of five human tumor cDNA libraries. The interaction between the rescued protein and daptomycin was validated via siRNA knockdown, DARTS assay and immunocytochemistry. RESULTS We have found that daptomycin possesses selective growth inhibition of some cancer cell lines, especially MCF7. The unbiased interrogation of human cDNA libraries, displayed on bacteriophage T7, revealed a single human target of daptomycin; ribosomal protein S19. Using a drug affinity responsive target stability (DARTS) assay in vitro, we show that daptomycin stabilizes RPS19 toward pronase. Fluorescently labeled daptomycin stained specific structures in HeLa cells and co-localized with a RPS19 antibody. CONCLUSION This study provides, for the first time, a human protein target of daptomycin and identifies RPS19 as a possible anticancer drug target for the development of new pharmacological applications and research.
Collapse
|
8
|
Chang J, Kwon HJ. Discovery of novel drug targets and their functions using phenotypic screening of natural products. ACTA ACUST UNITED AC 2016; 43:221-31. [DOI: 10.1007/s10295-015-1681-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
Abstract
Abstract
Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.
Collapse
Affiliation(s)
- Junghwa Chang
- grid.15444.30 0000000404705454 Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology Yonsei University 120-749 Seoul Republic of Korea
| | - Ho Jeong Kwon
- grid.15444.30 0000000404705454 Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology Yonsei University 120-749 Seoul Republic of Korea
- grid.15444.30 0000000404705454 Department of Internal Medicine, College of Medicine Yonsei University 120-752 Seoul Republic of Korea
| |
Collapse
|
9
|
Piggott AM, Karuso P. Identifying the cellular targets of natural products using T7 phage display. Nat Prod Rep 2016; 33:626-36. [DOI: 10.1039/c5np00128e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A description of the T7 phage biopanning procedure is provided with tips and advice suitable for setup in a chemistry laboratory.
Collapse
Affiliation(s)
- Andrew M. Piggott
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
10
|
Kim NH, Pham NB, Quinn RJ, Shim JS, Cho H, Cho SM, Park SW, Kim JH, Seok SH, Oh JW, Kwon HJ. The Small Molecule R-(-)-β-O-Methylsynephrine Binds to Nucleoporin 153 kDa and Inhibits Angiogenesis. Int J Biol Sci 2015. [PMID: 26221075 PMCID: PMC4515819 DOI: 10.7150/ijbs.10603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
R-(-)-β-O-methylsynephrine (OMe-Syn) is a naturally occurring small molecule that was identified in a previous screen as an inhibitor of angiogenesis. In this study, we conducted two animal model experiments to investigate the in vivo antiangiogenic activity of OMe-Syn. OMe-Syn significantly inhibited angiogenesis in a transgenic zebrafish model as well as in a mouse retinopathy model. To elucidate the underlying mechanisms responsible for the antiangiogenic activity of OMe-Syn, we used phage display cloning to isolate potential OMe-Syn binding proteins from human cDNA libraries and identified nucleoporin 153 kDa (NUP153) as a primary binding partner of OMe-Syn. OMe-Syn competitively inhibited mRNA binding to the RNA-binding domain of NUP153. Furthermore, depletion of NUP153 in human cells or zebrafish embryos led to an inhibition of angiogenesis, in a manner similar to that seen in response to OMe-Syn treatment. These data suggest that OMe-Syn is a promising candidate for the development of a novel antiangiogenic agent and that inhibition of NUP153 is possibly responsible for the antiangiogenic activity of OMe-Syn.
Collapse
Affiliation(s)
- Nam Hee Kim
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ngoc Bich Pham
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Ronald J Quinn
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Joong Sup Shim
- 3. Faculty of Health Sciences, University of Macau, Av. Universidade, Taipa, Macau SAR, China
| | - Hee Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Min Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Wook Park
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jeong Hun Kim
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seung Hyeok Seok
- 5. Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong-Won Oh
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ho Jeong Kwon
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea ; 6. Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
11
|
Population pharmacokinetics of kahalalide F in advanced cancer patients. Cancer Chemother Pharmacol 2015; 76:365-74. [DOI: 10.1007/s00280-015-2800-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022]
|
12
|
Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res 2015; 38:1627-41. [DOI: 10.1007/s12272-015-0618-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
|
13
|
Dorosti Z, Yousefi M, Sharafi SM, Darani HY. Mutual action of anticancer and antiparasitic drugs: are there any shared targets? Future Oncol 2014; 10:2529-39. [DOI: 10.2217/fon.14.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Parasites and cancers have some common features. It has been shown that some parasites interfere with tumor growth. In addition, they both have common antigens such as the Tn antigen. A communal action of anticancer and antiparasitic drugs has been reported. This shared action may be related to common targets for these drugs in cancers and parasites. In this paper, mutual action of anticancer and antiparasitic drugs, with the aim of discussing shared targets of these drugs, has been reviewed.
Collapse
Affiliation(s)
- Zahra Dorosti
- Department of Parasitology & Mycology, Faculty of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Morteza Yousefi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Maryam Sharafi
- Infectious Diseases & Tropical medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Jung HJ, Kwon HJ. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. MOLECULAR BIOSYSTEMS 2013; 9:930-9. [PMID: 23475074 DOI: 10.1039/c3mb25426g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive small molecules are powerful tools used to evaluate protein function under physiological and pathological conditions. Over recent decades, utilization of a variety of biologically active small molecules in basic research and clinical applications has provided tremendous benefits in understanding the molecular mechanisms of biology and accelerating drug development. This review focuses on recent advances in the identification of new small molecules and their target proteins for exploring angiogenesis at the molecular level. In particular, we focus on the oxygen-sensing role of ubiquinol-cytochrome c reductase binding protein (UQCRB) of mitochondrial Complex III through identification of the protein target and the mode of action of a natural small molecule, terpestacin. The positive feedback approach of chemistry and biology provides a new way to explore functional roles of proteins and to translate this information into practical applications.
Collapse
Affiliation(s)
- Hye Jin Jung
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | | |
Collapse
|
15
|
Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40:1181-210. [PMID: 23999966 DOI: 10.1007/s10295-013-1331-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Microbes from two of the three domains of life, the Prokarya, and Eukarya, continue to serve as rich sources of structurally complex chemical scaffolds that have proven to be essential for the development of anticancer therapeutics. This review describes only a handful of exemplary natural products and their derivatives as well as those that have served as elegant blueprints for the development of novel synthetic structures that are either currently in use or in clinical or preclinical trials together with some of their earlier analogs in some cases whose failure to proceed aided in the derivation of later compounds. In every case, a microbe has been either identified as the producer of secondary metabolites or speculated to be involved in the production via symbiotic associations. Finally, rapidly evolving next-generation sequencing technologies have led to the increasing availability of microbial genomes. Relevant examples of genome mining and genetic manipulation are discussed, demonstrating that we have only barely scratched the surface with regards to harnessing the potential of microbes as sources of new pharmaceutical leads/agents or biological probes.
Collapse
|
16
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
17
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Identifizierung der Zielproteine bioaktiver Verbindungen: Die Suche nach der Nadel im Heuhaufen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013; 52:2744-92. [PMID: 23418026 DOI: 10.1002/anie.201208749] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 01/10/2023]
Abstract
Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie, Abt. Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
19
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Takakusagi Y, Takakusagi K, Sugawara F, Sakaguchi K. Use of phage display technology for the determination of the targets for small-molecule therapeutics. Expert Opin Drug Discov 2012; 5:361-89. [PMID: 22823088 DOI: 10.1517/17460441003653155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IMPORTANCE OF THE FIELD Target discovery of drug-like small-molecules contributes to our understanding of biological phenomena at the molecular level as well as elucidating the mode of action of bioactive compounds. Research in this field is of high value because, in addition to basic observations, the data can be used to directly identify molecular targets or investigate pharmacokinetic characteristics of drugs in clinical use. AREAS COVERED IN THIS REVIEW In addition to providing a brief overview of phage display (PD) technology, we discuss screening platforms, different types of phage libraries and the application of this method to the determination of targets for small-molecule therapeutics over the past decade. WHAT THE READER WILL GAIN Readers will gain an understanding of the basis of PD technology through successful examples of the use of this method for the determination of targets for small-molecule therapeutics. They will learn what kinds of small-molecules were used to identify their binding partner, what characteristics and drawbacks are present in the use of small-molecule as bait, and what kinds of approaches were introduced in order to improve the technique to overcome the limitations of conventional strategies. TAKE HOME MESSAGE A suitable combination of diverse technologies from various different fields can act synergistically to increase throughput and enhance the efficiency of PD technology for the determination of targets for small-molecule therapeutics. The most suitable method for successful target identification of small-molecules of interest using PD technology can often be determined by referring to past examples.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Tokyo University of Science, Faculty of Science and Technology, Department of Applied Biological Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan +81 4 7124 1501 ext. 3409 ; +81 4 7123 9767 ; ;
| | | | | | | |
Collapse
|
21
|
Yao N, Chen CY, Wu CY, Motonishi K, Kung HJ, Lam KS. Novel flavonoids with antiproliferative activities against breast cancer cells. J Med Chem 2011; 54:4339-49. [PMID: 21599001 DOI: 10.1021/jm101440r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of flavone analogues were synthesized and evaluated for their antiproliferation activity against breast cancer cells. The IC(50) of compound 10 and 24 were determined to be at 5 μM. These compounds were used as baits to screen breast cancer cDNA expression phage display proteome library. DNA sequencing of the binding phages suggests that eEF1A1 is a target protein for 10 and 24. Further optimization of these compounds led to the discovery of 39 with higher cytotoxic potency (IC(50) = 1 μM) and binding to eEF1A2. Biological and biochemical data suggest that eEF1A2 might be a therapeutic target and that 39 is an excellent lead compound for further development.
Collapse
Affiliation(s)
- Nianhuan Yao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California 95817, United States
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Jiangtao Gao
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | | |
Collapse
|
23
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
24
|
Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, Kim ND, Yoon JH, Mungai PT, Schumacker PT, Kwon HJ. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem 2010; 285:11584-95. [PMID: 20145250 DOI: 10.1074/jbc.m109.087809] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular oxygen sensing is required for hypoxia-inducible factor-1alpha stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Here we find that terpestacin, a small molecule previously identified in a screen of microbial extracts, binds to the 13.4-kDa subunit (UQCRB) of mitochondrial Complex III, resulting in inhibition of hypoxia-induced reactive oxygen species generation. Consequently, such inhibition blocks hypoxia-inducible factor activation and tumor angiogenesis in vivo, without inhibiting mitochondrial respiration. Overexpression of UQCRB or its suppression using RNA interference demonstrates that it plays a crucial role in the oxygen sensing mechanism that regulates responses to hypoxia. These findings provide a novel molecular basis of terpestacin targeting UQCRB of Complex III in selective suppression of tumor progression.
Collapse
Affiliation(s)
- Hye Jin Jung
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng KW, Wong CC, Wang M, He QY, Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:126-155. [PMID: 19319922 DOI: 10.1002/mas.20235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule-targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry-based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small-molecule affinity selection combined with mass spectrometry is a successful strategy to "fish" cellular targets from the entire proteome. Mass spectrometry-based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products-protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high-throughput strategies that provide low-resolution structural information of non-covalent natural product-protein complexes. In this review, we provide an overview on the applications of mass spectrometry-based techniques in the identification and characterization of natural product-protein interactions, and we describe how these applications might revolutionize natural product-based drug discovery.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
26
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 27:165-237. [DOI: 10.1039/b906091j] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Piggott AM, Kriegel AM, Willows RD, Karuso P. Rapid isolation of novel FK506 binding proteins from multiple organisms using gDNA and cDNA T7 phage display. Bioorg Med Chem 2009; 17:6841-50. [DOI: 10.1016/j.bmc.2009.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 01/27/2023]
|
28
|
Cruz LJ, Luque-Ortega JR, Rivas L, Albericio F. Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents. Mol Pharm 2009; 6:813-24. [PMID: 19317431 DOI: 10.1021/mp8001039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is a human parasitic disease caused by infection by the protozoan Leishmania spp. Chemotherapy is currently the only treatment available, but its efficacy is increasingly challenged by the rising incidence of resistance and the frequent severe side effects associated with first-line drugs. Thus the development of leads with distinct mechanisms of action is urgently needed. A strategy often used for this purpose consists of assaying for leishmanicidal activity drugs formerly developed for other applications, such as amphotericin B (antifungal) or miltefosine (antitumor), among others, to profit from previous pharmacological and toxicological studies. Kahalalide F (KF) is a tumoricidal cyclic depsipeptide currently under phase II clinical trials for several types of cancer and psoriasis. Its mechanism of action has not been fully elucidated. Here we report the leishmanicidal activity of KF and its synthetic analogues at a micromolar range of concentrations. Its lethality is strongly linked to the alteration of the plasma membrane (PM) of the parasite based on (i) a rapid depolarization of the PM and uptake of the vital dye SYTOX Green upon its addition; (ii) evidence of severe morphological damage to the membrane of the parasite, as shown by transmission electron microscopy; and (iii) a rapid drop in the intracellular ATP levels, which correlates significantly with the leishmanicidal activity for active analogues, some of them with significant improvement of their therapeutic index with respect to the parental molecule. In addition to the basic knowledge obtained, this class of lethal mechanism is considerably less prone to the induction of resistance than classical drugs. All together, these observations foster further studies for the optimization of KF and its analogues as new anti-Leishmania leads with a new mode of action.
Collapse
Affiliation(s)
- Luis J Cruz
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Jung HJ, Shim JS, Park J, Ha HJ, Kim JH, Kim JG, Kim ND, Yoon JH, Kwon HJ. Identification and validation of calmodulin as a binding protein of an anti-proliferative small molecule 3,4-dihydroisoquinolinium salt. Proteomics Clin Appl 2009; 3:423-32. [DOI: 10.1002/prca.200800060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Indexed: 01/02/2023]
|
30
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
31
|
Auld D, Simeonov A, Thomas C. Literature Search and Review. Assay Drug Dev Technol 2008. [DOI: 10.1089/adt.2008.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Doug Auld
- National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|