1
|
Li J, Yuan B, Li C, Zhao Z, Guo J, Zhang P, Qu G, Sun Z. Stereoselective Synthesis of Oxetanes Catalyzed by an Engineered Halohydrin Dehalogenase. Angew Chem Int Ed Engl 2024:e202411326. [PMID: 39252480 DOI: 10.1002/anie.202411326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Although biocatalysis has garnered widespread attention in both industrial and academic realms, the enzymatic synthesis of chiral oxetanes remains an underdeveloped field. Halohydrin dehalogenases (HHDHs) are industrially relevant enzymes that have been engineered to accomplish the reversible transformation of epoxides. In this study, a biocatalytic platform was constructed for the stereoselective kinetic resolution of chiral oxetanes and formation of 1,3-disubstituted alcohols. HheC from Agrobacterium radiobacter AD1 was engineered to identify key variants capable of catalyzing the dehalogenation of γ-haloalcohols (via HheC M1-M3) and ring opening of oxetanes (via HheC M4-M5) to access both (R)- and (S)-configured products with high stereoselectivity and remarkable catalytic activity, yielding up to 49 % with enantioselectivities exceeding 99 % ee and E>200. The current strategy is broadly applicable as demonstrated by expansion of the substrate scope to include up to 18 examples for dehalogenation and 16 examples for ring opening. Additionally, the functionalized products are versatile building blocks for pharmaceutical applications. To shed light on the molecular recognition mechanisms for the relevant variants, molecular dynamic (MD) simulations were performed. The current strategy expands the scope of HHDH-catalyzed chiral oxetane ring construction, offering efficient access to both enantiomers of chiral oxetanes and 1,3-disubstituted alcohols.
Collapse
Affiliation(s)
- Junkuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Zhouzhou Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Jiaxin Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Pengpeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| |
Collapse
|
2
|
Staar M, Schallmey A. Performance of cross-linked enzyme crystals of engineered halohydrin dehalogenase HheG in different chemical reactor systems. Biotechnol Bioeng 2023; 120:3210-3223. [PMID: 37593803 DOI: 10.1002/bit.28528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Halohydrin dehalogenase HheG is an industrially interesting biocatalyst for the preparation of different β-substituted alcohols starting from bulky internal epoxides. We previously demonstrated that the immobilization of different HheG variants in the form of cross-linked enzyme crystals (CLECs) yielded stable and reusable enzyme immobilizes with increased resistance regarding temperature, pH, and the presence of organic solvents. Now, to further establish their preparative applicability, HheG D114C CLECs cross-linked with bis-maleimidoethane have been successfully produced on a larger scale using a stirred crystallization approach, and their application in different chemical reactor types (stirred tank reactor, fluidized bed reactor, and packed bed reactor) was systematically studied and compared for the ring opening of cyclohexene oxide with azide. This revealed the highest obtained space-time yield of 23.9 kgproduct gCLEC -1 h-1 Lreactor volume -1 along with the highest achieved product enantiomeric excess [64%] for application in a packed-bed reactor. Additionally, lyophilization of those CLECs yielded a storage-stable HheG preparation that still retained 67% of initial activity (after lyophilization) after 6 months of storage at room temperature.
Collapse
Affiliation(s)
- Marcel Staar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Wang ZX, Fu HK, Da XY, Wang HH, Cui BD, Han WY, Chen YZ, Wan NW. Biocatalytic Synthesis of Metaxalone and Its Analogues. Org Lett 2023; 25:5049-5054. [PMID: 37405417 DOI: 10.1021/acs.orglett.3c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
A biocatalytic approach for the synthesis of metaxalone and its analogues was developed based on the reaction of epoxides and cyanate catalyzed by halohydrin dehalogenase. Gram-scale synthesis of chiral and racemic metaxalone was achieved with 44% (98% ee) and 81% yields, respectively, by protein engineering of the halohydrin dehalogenase HHDHamb from Acidimicrobiia bacterium. Additionally, various metaxalone analogues were synthesized at 28-40% yields (90-99% ee) for chiral forms and 77-92% yields for racemic forms.
Collapse
Affiliation(s)
- Zhu-Xiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Hong-Kang Fu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Xin-Yu Da
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
4
|
Milčić N, Švaco P, Sudar M, Tang L, Findrik Blažević Z, Majerić Elenkov M. Impact of organic solvents on the catalytic performance of halohydrin dehalogenase. Appl Microbiol Biotechnol 2023; 107:2351-2361. [PMID: 36881116 DOI: 10.1007/s00253-023-12450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Biocatalytic transformations in organic synthesis often require the use of organic solvents to improve substrate solubility and promote the product formation. Halohydrin dehalogenases (HHDHs) are enzymes that catalyze the formation and conversion of epoxides, important synthetic class of compounds that are often sparingly soluble in water and prone to hydrolysis. In this study, the activity, stability, and enantioselectivity of HHDH from Agrobacterium radiobacter AD1 (HheC) in form of cell-free extract were evaluated in various aqueous-organic media. A correlation was discovered between the enzyme activity in the ring-closure reaction and logP of the solvent. Knowledge of such a relationship makes biocatalysis with organic solvents more predictable, which may reduce the need to experiment with a variety of solvents in the future. The results revealed a high enzyme compatibility with hydrophobic solvents (e.g., n-heptane) in terms of activity and stability. Regarding the HHDH applicability in an organic medium, inhibitions by a number of solvents (e.g., THF, toluene, chloroform) proved to be a more challenging problem than the protein stability, especially in the ring-opening reaction, thus suggesting which solvents should be avoided. In addition, solvent tolerance of the thermostable variant ISM-4 was also evaluated, revealing increased stability and to a lesser extent enantioselectivity compared to the wild-type. This is the first time such a systematic analysis has been reported, giving insight into the behavior of HHDHs in nonconventional media and opening new opportunities for the future biocatalytic applications. KEY POINTS: • HheC performs better in the presence of hydrophobic than hydrophilic solvents. • Enzyme activity in the PNSHH ring-closure reaction is a function of the logP. • Thermostability of ISM-4 variant is accompanied by superior solvent tolerance.
Collapse
Affiliation(s)
- Nevena Milčić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c, 16, Zagreb, Croatia
| | - Petra Švaco
- Ruđer Bošković Institute, Bijenička c, 54, Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c, 16, Zagreb, Croatia
| | - Lixia Tang
- University of Electronic Science and Technology, No. 4, Section 2, North Jianshe Road, Chengdu, China
| | | | | |
Collapse
|
5
|
Solarczek J, Kaspar F, Bauer P, Schallmey A. G-type Halohydrin Dehalogenases Catalyze Ring Opening Reactions of Cyclic Epoxides with Diverse Anionic Nucleophiles. Chemistry 2022; 28:e202202343. [PMID: 36214160 PMCID: PMC10099379 DOI: 10.1002/chem.202202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/07/2022]
Abstract
Halohydrin dehalogenases are promiscuous biocatalysts, which enable asymmetric ring opening reactions of epoxides with various anionic nucleophiles. However, despite the increasing interest in such asymmetric transformations, the substrate scope of G-type halohydrin dehalogenases toward cyclic epoxides has remained largely unexplored, even though this subfamily is the only one known to display activity with these sterically demanding substrates. Herein, we report on the exploration of the substrate scope of the two G-type halohydrin dehalogenases HheG and HheG2 and a newly identified, more thermostable member of the family, HheG3, with a variety of sterically demanding cyclic epoxides and anionic nucleophiles. This work shows that, in addition to azide and cyanide, these enzymes facilitate ring-opening reactions with cyanate, thiocyanate, formate, and nitrite, significantly expanding the known repertoire of accessible transformations.
Collapse
Affiliation(s)
- Jennifer Solarczek
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Felix Kaspar
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Pia Bauer
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Amedes Genetics, MVZ for Laboratory Medicine, Georgstraße 50, 30159, Hannover, Germany
| | - Anett Schallmey
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| |
Collapse
|
6
|
Ma R, Hua X, He CL, Wang HH, Wang ZX, Cui BD, Han WY, Chen YZ, Wan NW. Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angew Chem Int Ed Engl 2022; 61:e202212589. [PMID: 36328962 DOI: 10.1002/anie.202212589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/06/2022]
Abstract
Expanding the enzymatic toolbox for the green synthesis of valuable molecules is still of high interest in synthetic chemistry and the pharmaceutical industry. Chiral thiiranes are valuable sulfur-containing heterocyclic compounds, but relevant methods for their enantioselective synthesis are limited. Herein, we report a biocatalytic thionation strategy for the enantioselective synthesis of thiiranes, which was developed based on the halohydrin dehalogenase (HHDH)-catalyzed enantioselective ring-opening reaction of epoxides with thiocyanate and a subsequent nonenzymatic rearrangement process. A novel HHDH was identified and engineered for enantioselective biocatalytic thionation of various aryl- and alkyl-substituted epoxides on a preparative scale, affording the corresponding thiiranes in up to 43 % isolated yield and 98 % ee. Large-scale synthesis and useful transformations of chiral thiiranes were also performed to demonstrate the utility and scalability of the biocatalytic thionation strategy.
Collapse
Affiliation(s)
- Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xia Hua
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Cheng-Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu-Xiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Dokli I, Brkljača Z, Švaco P, Tang L, Stepanić V, Majerić Elenkov M. Biocatalytic approach to chiral fluoroaromatic scaffolds. Org Biomol Chem 2022; 20:9734-9741. [PMID: 36440739 DOI: 10.1039/d2ob01955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ten different fluorinated aromatic epoxides have been tested as potential substrates for halohydrin dehalogenase (HHDH) HheC. The majority of investigated epoxides are useful building blocks in synthetic chemistry applications, with a number of them being polysubstituted. Moderate to high enantioselectivities (ER = 15 → 200) were observed in azidolysis, allowing the synthesis of enantioenriched (R)-azido alcohols containing fluorine in the molecule. In the case where a reaction runs over 50% conversion, enantiopure (S)-epoxides are also available. While o-F-styrene oxide was easily converted into a product, a sterically challenging o-CF3-derivative was not accepted by HheC. In silico probing of the binding site indicates that, in order to accommodate an o-CF3-derivative in the HheC active site, it is necessary to eliminate steric hindrance. Hence, we extended our research by probing several available HheC variants containing relevant modifications in the active site. The active mutant P84V/F86P/T134A/N176A (named HheC-M4) was identified, showing not only high activity towards o-CF3-styrene oxide, but also inverted enantioselectivity (ES = 27). Since (S)-enantioselective HHDHs are rare and therefore valuable for their synthetic application, this enzyme was screened on the initial panel of substrates. The observed (S)-enantioselectivity (ES = 1-111) is ascribed to the formation of the additional space by introduced mutations in HheC-M4, which is also confirmed by classical MD simulations. Successive molecular docking demonstrated that this newly formed tunnel located close to the protein surface is a critical feature of HheC-M4, representing a novel binding site.
Collapse
Affiliation(s)
- Irena Dokli
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Zlatko Brkljača
- Selvita Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Petra Švaco
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Lixia Tang
- University of Electronic Science and Technology, No. 4, Section 2, North Jianshe Road, Chengdu, China
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | | |
Collapse
|
8
|
Crystal Contact Engineering for Enhanced Cross-Linking Efficiency of HheG Crystals. Catalysts 2022. [DOI: 10.3390/catal12121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The generation of cross-linked enzyme crystals is a very attractive method for immobilization of enzymes displaying high crystalizability. However, the commonly used cross-linker glutaraldehyde is not always compatible with enzyme activity. Therefore, we previously reported the engineering of halohydrin dehalogenase HheG from Ilumatobacter coccineus to enable thiol-specific cross-linking during CLEC generation by insertion of cysteine residues in the crystal contact. To broaden the applicability of this approach, herein crystal contact engineering of HheG has been performed to incorporate additional lysine residues as defined cross-linking sites for CLEC generation. Using the primary amine-specific cross-linker dithiobis(succinimidyl propionate) (DSP), CLECs of HheG variant V46K were obtained that displayed a high gain in thermal stability compared to wild-type HheG, while using only a low cross-linker concentration. Moreover, respective V46K CLECs exhibited a 10 K higher reaction temperature optimum as well as significantly improved activity and stability at acidic pH and in the presence of organic co-solvents. Overall, our study demonstrates that lysine-specific cross-linkers can also be used as an alternative to glutaraldehyde for stable CLEC generation of halohydrin dehalogenases, and that cross-linking efficiency is significantly improved upon crystal contact engineering.
Collapse
|
9
|
Milčić N, Stepanić V, Crnolatac I, Findrik Blažević Z, Brkljača Z, Majerić Elenkov M. Inhibitory Effect of DMSO on Halohydrin Dehalogenase: Experimental and Computational Insights into the Influence of an Organic Co‐solvent on the Structural and Catalytic Properties of a Biocatalyst. Chemistry 2022; 28:e202201923. [DOI: 10.1002/chem.202201923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Nevena Milčić
- Faculty of Chemical Engineering and Technology University of Zagreb Savska c. 16 10000 Zagreb Croatia
| | - Višnja Stepanić
- Laboratory for Machine Learning and Knowledge Representation Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | | | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Maja Majerić Elenkov
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| |
Collapse
|
10
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
11
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
12
|
Mehić E, Hok L, Wang Q, Dokli I, Svetec Miklenić M, Findrik Blažević Z, Tang L, Vianello R, Majerić Elenkov M. Expanding the Scope of Enantioselective Halohydrin Dehalogenases – Group B. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Qian Wang
- University of Electronic Science and Technology of China CHINA
| | | | | | | | - Lixia Tang
- University of Electronic Science and Technology of China CHINA
| | | | | |
Collapse
|
13
|
Xu Q, Huang KS, Wang YF, Wang HH, Cui BD, Han WY, Chen YZ, Wan NW. Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Kai-Shun Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Fei Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
14
|
Deng GZ, Zhou X, Yu QX, Mou XQ, An M, Cui HB, Zhou XJ, Wan NW, Li Z, Chen YZ. Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral β-Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Zhong Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Quan-Xiang Yu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
15
|
Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, Ricci P, Christensen KE, Pathak TP, Claridge TDW, Lloyd-Jones GC, Paton RS, Gouverneur V. Asymmetric Azidation under Hydrogen Bonding Phase-Transfer Catalysis: A Combined Experimental and Computational Study. J Am Chem Soc 2022; 144:4572-4584. [PMID: 35230845 PMCID: PMC8931729 DOI: 10.1021/jacs.1c13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Asymmetric catalytic
azidation has increased in importance to access
enantioenriched nitrogen containing molecules, but methods that employ
inexpensive sodium azide remain scarce. This encouraged us to undertake
a detailed study on the application of hydrogen bonding phase-transfer
catalysis (HB-PTC) to enantioselective azidation with sodium azide.
So far, this phase-transfer manifold has been applied exclusively
to insoluble metal alkali fluorides for carbon–fluorine bond
formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from β-chloroamines
with sodium azide in the presence of a chiral bisurea catalyst. The
structure of novel hydrogen bonded azide complexes was analyzed computationally,
in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of
azide in a tripodal fashion to all three NH bonds is energetically
favorable, an arrangement reminiscent of the corresponding dynamically
more rigid trifurcated hydrogen-bonded fluoride complex. Computational
analysis informs that the most stable transition state leading to
the major enantiomer displays attack from the hydrogen-bonded end
of the azide anion. All three H-bonds are retained in the transition
state; however, as seen in asymmetric HB-PTC fluorination, the H-bond
between the nucleophile and the monodentate urea lengthens most noticeably
along the reaction coordinate. Kinetic studies corroborate with the
turnover rate limiting event resulting in a chiral ion pair containing
an aziridinium cation and a catalyst-bound azide anion, along with
catalyst inhibition incurred by accumulation of NaCl. This study demonstrates
that HB-PTC can serve as an activation mode for inorganic salts other
than metal alkali fluorides for applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Jimmy Wang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Francesco Ibba
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuan Gao
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Paolo Ricci
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Tejas P Pathak
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
16
|
Staar M, Henke S, Blankenfeldt W, Schallmey A. Biocatalytically active and stable cross‐linked enzyme crystals of halohydrin dehalogenase HheG by protein engineering. ChemCatChem 2022. [DOI: 10.1002/cctc.202200145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Staar
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics GERMANY
| | - Steffi Henke
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Anett Schallmey
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics Spielmannstr. 7 38106 Braunschweig GERMANY
| |
Collapse
|
17
|
Batch and Flow Nitroaldol Synthesis Catalysed by Granulicella tundricola Hydroxynitrile Lyase Immobilised on Celite R-633. Catalysts 2022. [DOI: 10.3390/catal12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Granulicella tundricola hydroxynitrile lyase (GtHNL) catalyses the synthesis of chiral (R)-cyanohydrins and (R)-β-nitro alcohols. The triple variant GtHNL-A40H/V42T/Q110H (GtHNL-3V) was immobilised on Celite R-633 and used in monophasic MTBE saturated with 100 mM KPi buffer pH 7 for the synthesis of (R)-2-nitro-1-phenylethanol (NPE) in batch and continuous flow systems. Nitromethane was used as a nucleophile. A total of 82% of (R)-NPE and excellent enantioselectivity (>99%) were achieved in the batch system after 24 hours of reaction time. GtHNL-3V on Celite R-633 was successfully recycled five times. During more recycling steps a significant decrease in yield was observed while the enantioselectivity remained excellent over eight cycles. The use of a flow system enabled the continuous synthesis of (R)-NPE. A total of 15% formation of (R)-NPE was reached using a flow rate of 0.1 mL min−1; unfortunately, the enzyme was not stable, and the yield decreased to 4% after 4 hours on stream. A similar yield was observed during 15 hours at a rate of 0.01 mL min−1. Surprisingly the use of a continuous flow system did not facilitate the process intensification. In fact, the batch system displayed a space-time-yield (STY/mgenzyme) of 0.10 g L−1 h−1 mgenzyme−1 whereas the flow system displayed 0.02 and 0.003 g L−1 h−1 mgenzyme−1 at 0.1 and 0.01 mL min−1, respectively. In general, the addition of 1 M nitromethane potentially changed the polarity of the reaction mixture affecting the stability of Celite-GtHNL-3V. The nature of the batch system maintained the reaction conditions better than the flow system. The higher yield and productivity observed for the batch system show that it is a superior system for the synthesis of (R)-NPE compared with the flow approach.
Collapse
|
18
|
Wu JF, Wan NW, Li YN, Wang QP, Cui BD, Han WY, Chen YZ. Regiodivergent and stereoselective hydroxyazidation of alkenes by biocatalytic cascades. iScience 2021; 24:102883. [PMID: 34401667 PMCID: PMC8353479 DOI: 10.1016/j.isci.2021.102883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Asymmetric functionalization of alkenes allows the direct synthesis of a wide range of chiral compounds. Vicinal hydroxyazidation of alkenes provides a desirable path to 1,2-azidoalcohols; however, existing methods are limited by the control of stereoselectivity and regioselectivity. Herein, we describe a dual-enzyme cascade strategy for regiodivergent and stereoselective hydroxyazidation of alkenes, affording various enantiomerically pure 1,2-azidoalcohols. The biocatalytic cascade process is designed by combining styrene monooxygenase-catalyzed asymmetric epoxidation of alkenes and halohydrin dehalogenase-catalyzed regioselective ring opening of epoxides with azide. Additionally, a one-pot chemo-enzymatic route to chiral β-hydroxytriazoles from alkenes is developed via combining the biocatalytic cascades and Cu-catalyzed azide-alkyne cycloaddition.
Collapse
Affiliation(s)
- Jing-Fei Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Ying-Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Qing-Ping Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| |
Collapse
|
19
|
Martínez-Montero L, Tischler D, Süss P, Schallmey A, Franssen MCR, Hollmann F, Paul CE. Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade. Catal Sci Technol 2021; 11:5077-5085. [PMID: 34381590 PMCID: PMC8328376 DOI: 10.1039/d1cy00855b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Lía Martínez-Montero
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
20
|
Zhou X, Wan N, Li Y, Ma R, Cui B, Han W, Chen Y. Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Ying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ying‐Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| |
Collapse
|
21
|
Zhang FR, Wan NW, Ma JM, Cui BD, Han WY, Chen YZ. Enzymatic Kinetic Resolution of Bulky Spiro-Epoxyoxindoles via Halohydrin Dehalogenase-Catalyzed Enantio- and Regioselective Azidolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fang-Rui Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jin-Mei Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
22
|
Dokli I, Milčić N, Marin P, Miklenić MS, Sudar M, Tang L, Blažević ZF, Elenkov MM. Halohydrin dehalogenase-catalysed synthesis of fluorinated aromatic chiral building blocks. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Wessel J, Petrillo G, Estevez-Gay M, Bosch S, Seeger M, Dijkman WP, Iglesias-Fernández J, Hidalgo A, Uson I, Osuna S, Schallmey A. Insights into the molecular determinants of thermal stability in halohydrin dehalogenase HheD2. FEBS J 2021; 288:4683-4701. [PMID: 33605544 DOI: 10.1111/febs.15777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
Halohydrin dehalogenases (HHDHs) are promising enzymes for application in biocatalysis due to their promiscuous epoxide ring-opening activity with various anionic nucleophiles. So far, seven different HHDH subtypes A to G have been reported with subtype D containing the by far largest number of enzymes. Moreover, several characterized members of subtype D have been reported to display outstanding characteristics such as high catalytic activity, broad substrate spectra or remarkable thermal stability. Yet, no structure of a D-type HHDH has been reported to date that could be used to investigate and understand those features on a molecular level. We therefore solved the crystal structure of HheD2 from gamma proteobacterium HTCC2207 at 1.6 Å resolution and used it as a starting point for targeted mutagenesis in combination with molecular dynamics (MD) simulation, in order to study the low thermal stability of HheD2 in comparison with other members of subtype D. This revealed a hydrogen bond between conserved residues Q160 and D198 to be connected with a high catalytic activity of this enzyme. Moreover, a flexible surface region containing two α-helices was identified to impact thermal stability of HheD2. Exchange of this surface region by residues of HheD3 yielded a variant with 10 °C higher melting temperature and reaction temperature optimum. Overall, our results provide important insights into the structure-function relationship of HheD2 and presumably for other D-type HHDHs. DATABASES: Structural data are available in PDB database under the accession number 7B73.
Collapse
Affiliation(s)
- Julia Wessel
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Giovanna Petrillo
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain
| | - Miquel Estevez-Gay
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Sandra Bosch
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Margarita Seeger
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Willem P Dijkman
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Javier Iglesias-Fernández
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Aurelio Hidalgo
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Isabel Uson
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain.,ICREA, Barcelona, Spain
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| |
Collapse
|
24
|
Rao DHS, Chatterjee A, Padhi SK. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Org Biomol Chem 2021; 19:322-337. [PMID: 33325956 DOI: 10.1039/d0ob02019b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral β-nitroalcohols find significant application in organic synthesis due to the versatile reactivity of hydroxyl and nitro functionalities attached to one or two vicinal asymmetric centers. They are key building blocks of several important pharmaceuticals, bioactive molecules, and fine chemicals. With the growing demand to develop clean and green methods for their synthesis, biocatalytic methods have gained tremendous importance among the existing asymmetric synthesis routes. Over the years, different biocatalytic strategies for the asymmetric synthesis of β-nitroalcohol stereoisomers have been developed. They can be majorly classified as (a) kinetic resolution, (b) dynamic kinetic resolution, (c) Henry reaction, (d) retro-Henry reaction, (e) asymmetric reduction, and (f) enantioselective epoxide ring-opening. This review aims to provide an overview of the above biocatalytic strategies, and their comparison along with future prospects. Essentially, it presents an enzyme-toolbox for the asymmetric synthesis of β-nitroalcohol enantiomers and diastereomers.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| |
Collapse
|
25
|
Conformational Landscapes of Halohydrin Dehalogenases and Their Accessible Active Site Tunnels. Catalysts 2020. [DOI: 10.3390/catal10121403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Halohydrin dehalogenases (HHDH) are industrially relevant biocatalysts exhibiting a promiscuous epoxide-ring opening reactivity in the presence of small nucleophiles, thus giving access to novel carbon–carbon, carbon–oxygen, carbon–nitrogen, and carbon–sulfur bonds. Recently, the repertoire of HHDH has been expanded, providing access to some novel HHDH subclasses exhibiting a broader epoxide substrate scope. In this work, we develop a computational approach based on the application of linear and non-linear dimensionality reduction techniques to long time-scale Molecular Dynamics (MD) simulations to study the HHDH conformational landscapes. We couple the analysis of the conformational landscapes to CAVER calculations to assess their impact on the active site tunnels and potential ability towards bulky epoxide ring opening reaction. Our study indicates that the analyzed HHDHs subclasses share a common breathing motion of the halide binding pocket, but present large deviations in the loops adjacent to the active site pocket and N-terminal regions. Such conformational differences affect the available tunnels for epoxide binding to the active site. The superior activity of the HHDH G subclass towards bulkier substrates is explained by the additional structural elements delimiting the active site region, its rich conformational heterogeneity, and the substantially wider and frequently observed active site tunnels. This study therefore provides key information for HHDH promiscuity and engineering.
Collapse
|
26
|
Findrik Blažević Z, Milčić N, Sudar M, Majerić Elenkov M. Halohydrin Dehalogenases and Their Potential in Industrial Application – A Viewpoint of Enzyme Reaction Engineering. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | | |
Collapse
|
27
|
Gul I, Fantaye Bogale T, Deng J, Wang L, Feng J, Tang L. A high-throughput screening assay for the directed evolution-guided discovery of halohydrin dehalogenase mutants for epoxide ring-opening reaction. J Biotechnol 2020; 311:19-24. [DOI: 10.1016/j.jbiotec.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
|
28
|
Heterologous overexpression of a novel halohydrin dehalogenase from Pseudomonas pohangensis and modification of its enantioselectivity by semi-rational protein engineering. Int J Biol Macromol 2020; 146:80-88. [DOI: 10.1016/j.ijbiomac.2019.12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
29
|
Synthesis of Chiral 5‐Aryl‐2‐oxazolidinones via Halohydrin Dehalogenase‐Catalyzed Enantio‐ and Regioselective Ring‐Opening of Styrene Oxides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
31
|
Wang X, Xie Z, Yan J, He X, Liu W, Sun Y. Enhancement of the thermostability of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by constructing a combinatorial smart library. Int J Biol Macromol 2019; 130:19-23. [DOI: 10.1016/j.ijbiomac.2019.02.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/17/2022]
|
32
|
|
33
|
Solarczek J, Klünemann T, Brandt F, Schrepfer P, Wolter M, Jacob CR, Blankenfeldt W, Schallmey A. Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and enantioselectivity. Sci Rep 2019; 9:5106. [PMID: 30911023 PMCID: PMC6434027 DOI: 10.1038/s41598-019-41498-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral β-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications. In an attempt to thermostabilize HheG by protein engineering, several single mutants at position 123 were identified which displayed up to 14 °C increased apparent melting temperatures and up to three-fold higher activity. Aromatic amino acids at position 123 resulted even in a slightly higher enantioselectivity. Crystal structures of variants T123W and T123G revealed a flexible loop opposite to amino acid 123. In variant T123G, this loop adopted two different positions resulting in an open or partially closed active site. Classical molecular dynamics simulations confirmed a high mobility of this loop. Moreover, in variant T123G this loop adopted a position much closer to residue 123 resulting in denser packing and increased buried surface area. Our results indicate an important role for position 123 in HheG and give first structural and mechanistic insight into the thermostabilizing effect of mutations T123W and T123G.
Collapse
Affiliation(s)
- Jennifer Solarczek
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
34
|
Calderini E, Wessel J, Süss P, Schrepfer P, Wardenga R, Schallmey A. Selective Ring‐Opening of Di‐Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019. [DOI: 10.1002/cctc.201900103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elia Calderini
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Julia Wessel
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| |
Collapse
|
35
|
Zhang XJ, Deng HZ, Liu N, Gong YC, Liu ZQ, Zheng YG. Molecular modification of a halohydrin dehalogenase for kinetic regulation to synthesize optically pure (S)-epichlorohydrin. BIORESOURCE TECHNOLOGY 2019; 276:154-160. [PMID: 30623870 DOI: 10.1016/j.biortech.2018.12.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Asymmetric synthesis of chiral epichlorohydrin (ECH) from 1,3-dichloro-2-propanol (1,3-DCP) using halohydrin dehalogenases (HHDHs) is of great value due to the 100% theoretical yield and high enantioselectivity. The vital problem in the asymmetric synthesis is to prepare optically pure ECH. In this study, key amino acid residues located at halide ion channels of HheC (P175S/W249P) (HheCPS) were modified to regulate the kinetic parameters. HheCPS I81W, F86N and V94R were constructed with the corresponding halide ion channels destroyed. The catalytically efficiencies (kcat/Km) of the three mutants exhibited 0.38-, 0.23- and 0.23-fold decrease toward (S)-ECH and the reverse reaction was significantly inhibited. As the results, (S)-ECH was synthesized with >99% enantiomeric excess (e.e.) and 63.42%, 67.08% and 57.01% yields, respectively, under 20 mM 1,3-DCP as substrate. To our knowledge, this is the first investigation of the molecule kinetic modification of HHDHs and also the first report for the biosynthesis of optically pure (S)-ECH from 1,3-DCP using HHDHs.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Han-Zhong Deng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Nan Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Chuan Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
36
|
Cho I, Prier CK, Jia Z, Zhang RK, Görbe T, Arnold FH. Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812968] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Inha Cho
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| | - Christopher K. Prier
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
- Current address: Merck Research Laboratories, Merck & Co. P.O. Box 2000 Rahway NJ 07065 USA
| | - Zhi‐Jun Jia
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| | - Ruijie K. Zhang
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| | - Tamás Görbe
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
- Current address: School of Engineering Sciences in Chemistry Biotechnology, and Health KTH Royal Institute of Technology, Science for Life Laboratory 23 Tomtebodavägen 17165 Solna Sweden
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering MC 210-41 California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| |
Collapse
|
37
|
Cho I, Prier CK, Jia ZJ, Zhang RK, Görbe T, Arnold FH. Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein. Angew Chem Int Ed Engl 2019; 58:3138-3142. [PMID: 30600873 DOI: 10.1002/anie.201812968] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 12/14/2022]
Abstract
Chiral 1,2-amino alcohols are widely represented in biologically active compounds from neurotransmitters to antivirals. While many synthetic methods have been developed for accessing amino alcohols, the direct aminohydroxylation of alkenes to unprotected, enantioenriched amino alcohols remains a challenge. Using directed evolution, we have engineered a hemoprotein biocatalyst based on a thermostable cytochrome c that directly transforms alkenes to amino alcohols with high enantioselectivity (up to 2500 TTN and 90 % ee) under anaerobic conditions with O-pivaloylhydroxylamine as an aminating reagent. The reaction is proposed to proceed via a reactive iron-nitrogen species generated in the enzyme active site, enabling tuning of the catalyst's activity and selectivity by protein engineering.
Collapse
Affiliation(s)
- Inha Cho
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Christopher K Prier
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA.,Current address: Merck Research Laboratories, Merck & Co., P.O. Box 2000, Rahway, NJ, 07065, USA
| | - Zhi-Jun Jia
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Ruijie K Zhang
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Tamás Görbe
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA.,Current address: School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Science for Life Laboratory 23, Tomtebodavägen, 17165, Solna, Sweden
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| |
Collapse
|
38
|
Xue F, Ya X, Xiu Y, Tong Q, Wang Y, Zhu X, Huang H. Exploring the Biocatalytic Scope of a Novel Enantioselective Halohydrin Dehalogenase from an Alphaproteobacterium. Catal Letters 2019. [DOI: 10.1007/s10562-019-02659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
40
|
An M, Liu W, Zhou X, Ma R, Wang H, Cui B, Han W, Wan N, Chen Y. Highly α-position regioselective ring-opening of epoxides catalyzed by halohydrin dehalogenase from Ilumatobacter coccineus: a biocatalytic approach to 2-azido-2-aryl-1-ols. RSC Adv 2019; 9:16418-16422. [PMID: 35516406 PMCID: PMC9064361 DOI: 10.1039/c9ra03774h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Halohydrin dehalogenases are usually recognized as strict β-position regioselective enzymes in the nucleophile-mediated ring-opening of epoxides. Here we found the HheG from Ilumatobacter coccineus exhibited excellent α-position regioselectivity in the azide-mediated ring-opening of styrene oxide derivatives 1a–1k, producing the corresponding 2-azido-2-aryl-1-ols 2a–2k with the yields up to 96%. Biocatalytic synthesis of 2-azido-2-aryl-1-ols was achieved via HheG-catalyzed α-position regioselective ring-opening of styrene oxide derivatives.![]()
Collapse
Affiliation(s)
- Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Wanyi Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Xiaoying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Huihui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
41
|
Xue F, Ya X, Tong Q, Xiu Y, Huang H. Heterologous overexpression of Pseudomonas umsongensis halohydrin dehalogenase in Escherichia coli and its application in epoxide asymmetric ring opening reactions. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
43
|
Abstract
In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
44
|
|
45
|
Abstract
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | | |
Collapse
|
46
|
Gupta P, Mahajan N. Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. NEW J CHEM 2018. [DOI: 10.1039/c8nj00485d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The global need for clean manufacturing technologies and the management of hazardous chemicals and waste present new research challenges to both chemistry and biotechnology.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| | - Neha Mahajan
- Department of Biotechnology
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| |
Collapse
|
47
|
|
48
|
Koopmeiners J, Diederich C, Solarczek J, Voß H, Mayer J, Blankenfeldt W, Schallmey A. HheG, a Halohydrin Dehalogenase with Activity on Cyclic Epoxides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Koopmeiners
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christina Diederich
- Structure
and
Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jennifer Solarczek
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Hauke Voß
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Janine Mayer
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
- Structure
and
Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Anett Schallmey
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
49
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
50
|
Roiban GD, Sutton PW, Splain R, Morgan C, Fosberry A, Honicker K, Homes P, Boudet C, Dann A, Guo J, Brown KK, Ihnken LAF, Fuerst D. Development of an Enzymatic Process for the Production of (R)-2-Butyl-2-ethyloxirane. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Cyril Boudet
- Biotechnology
and Environmental Shared Service, Global Manufacturing and Supply, GlaxoSmithKline, Dominion Way, Worthing BN14 8PB, United Kingdom
| | - Alison Dann
- Biotechnology
and Environmental Shared Service, Global Manufacturing and Supply, GlaxoSmithKline, Dominion Way, Worthing BN14 8PB, United Kingdom
| | | | - Kristin K. Brown
- Molecular
Design, Computational and Modeling Sciences, GlaxoSmithKline, 1250
S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | | |
Collapse
|