1
|
Czescik J, Mancin F, Strömberg R, Scrimin P. The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme. Chemistry 2021; 27:8143-8148. [PMID: 33780067 PMCID: PMC8251847 DOI: 10.1002/chem.202100299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 01/08/2023]
Abstract
The cleavage of uridine 3'-phosphodiesters bearing alcohols with pKa ranging from 7.14 to 14.5 catalyzed by AuNPs functionalized with 1,4,7-triazacyclononane-Zn(II) complexes has been studied to unravel the source of catalysis by these nanosystems (nanozymes). The results have been compared with those obtained with two Zn(II) dinuclear catalysts for which the mechanism is fairly understood. Binding to the Zn(II) ions by the substrate and the uracil of uridine was observed. The latter leads to inhibition of the process and formation of less productive binding complexes than in the absence of the nucleobase. The nanozyme operates with these substrates mostly via a nucleophilic mechanism with little stabilization of the pentacoordinated phosphorane and moderate assistance in leaving group departure. This is attributed to a decrease of binding strength of the substrate to the catalytic site in reaching the transition state due to an unfavorable binding mode with the uracil. The nanozyme favors substrates with better leaving groups than the less acidic ones.
Collapse
Affiliation(s)
- Joanna Czescik
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
- Current address: School of Life and Health SciencesAston UniversityB4 7ETBirminghamUK
| | - Fabrizio Mancin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
| | | | - Paolo Scrimin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
| |
Collapse
|
2
|
Zubenko AD, Fedorova OA. Aromatic and heteroaromatic azacrown compounds: advantages and disadvantages of rigid macrocyclic ligands. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current approaches to the synthesis of aromatic and heteroaromatic azamacrocycles and their derivatives are summarized and systematized. The relationship between the structure of azacrown compounds and their complexation behaviour towards metal cations is analyzed. The diversity of practical applications of azamacrocyclic derivatives in medicine, biology and analytical and organic chemistry, as well as for the design of molecular devices is demonstrated.
The bibliography includes 307 references.
Collapse
|
3
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
4
|
Laine M, Lönnberg T, Helkearo M, Lönnberg H. Cleavage of short oligoribonucleotides by a Zn2+ binding multi-nucleating azacrown conjugate. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Chen JLY, Pezzato C, Scrimin P, Prins LJ. Chiral Nanozymes-Gold Nanoparticle-Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination. Chemistry 2016; 22:7028-32. [PMID: 26919202 DOI: 10.1002/chem.201600853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/08/2022]
Abstract
Enantioselectivity in RNA cleavage by a synthetic metalloenzyme has been demonstrated for the first time. Thiols containing chiral Zn(II) -binding head groups have been self-assembled on the surface of gold nanoparticles. This results in the spontaneous formation of chiral bimetallic catalytic sites that display different activities (kcat ) towards the enantiomers of an RNA model substrate. Substrate selectivity is observed when the nanozyme is applied to the cleavage of the dinucleotides UpU, GpG, ApA, and CpC, and remarkable differences in reactivity are observed for the cleavage of the enantiomerically pure dinucleotide UpU.
Collapse
Affiliation(s)
- Jack L-Y Chen
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Cristian Pezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
6
|
Szorcsik A, Matyuska F, Bényei A, Nagy NV, Szilágyi RK, Gajda T. A novel 1,3,5-triaminocyclohexane-based tripodal ligand forms a unique tetra(pyrazolate)-bridged tricopper(ii) core: solution equilibrium, structure and catecholase activity. Dalton Trans 2016; 45:14998-5012. [DOI: 10.1039/c6dt01228k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polydentate tripodal ligand forms a series of tricopper(ii) complexes, that feature unique pyrazolate-bridged linear core. The Cu3H−3L2 complex is an efficient catecholase mimic with a surprisingly low pH optimum at pH = 5.6.
Collapse
Affiliation(s)
- Attila Szorcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Attila Bényei
- Department of Physical Chemistry
- University of Debrecen
- Debrecen H-4032
- Hungary
| | - Nóra V. Nagy
- Institute of Organic Chemistry
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Róbert K. Szilágyi
- Department of Chemistry and Biochemistry
- Montana State University
- Bozeman
- USA
- Department of Analytical Chemistry
| | - Tamás Gajda
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
- Department of Inorganic and Analytical Chemistry
- University of Szeged
| |
Collapse
|
7
|
2,6-Bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)pyridine and Its Benzene Analog as Nonmetallic Cleaving Agents of RNA Phosphodiester Linkages. Int J Mol Sci 2015; 16:17798-811. [PMID: 26247935 PMCID: PMC4581222 DOI: 10.3390/ijms160817798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
2,6-Bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)pyridine (11a) and 1,3-bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)benzene (11b) have been shown to accelerate at 50 mmol·L−1 concentration both the cleavage and mutual isomerization of uridylyl-3′,5′-uridine and uridylyl-2′,5′-uridine by up to two orders of magnitude. The catalytically active ionic forms are the tri- (in the case of 11b) tetra- and pentacations. The pyridine nitrogen is not critical for efficient catalysis, since the activity of 11b is even slightly higher than that of 11a. On the other hand, protonation of the pyridine nitrogen still makes 11a approximately four times more efficient as a catalyst, but only for the cleavage reaction. Interestingly, the respective reactions of adenylyl-3′,5′-adenosine were not accelerated, suggesting that the catalysis is base moiety selective.
Collapse
|
8
|
Savelli C, Salvio R. Guanidine-Based Polymer Brushes Grafted onto Silica Nanoparticles as Efficient Artificial Phosphodiesterases. Chemistry 2015; 21:5856-63. [DOI: 10.1002/chem.201406526] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 12/20/2022]
|
9
|
Ferreira CMH, Pinto ISS, Soares EV, Soares HMVM. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv 2015. [DOI: 10.1039/c4ra15453c] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present work reviews, discusses and update the metal complexation characteristics of thirty one buffers commercially available. Additionally, their impact on the biological systems is also presented and discussed.
Collapse
Affiliation(s)
- Carlos M. H. Ferreira
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| | - Isabel S. S. Pinto
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| | - Eduardo V. Soares
- Bioengineering Laboratory
- Chemical Engineering Department
- ISEP-School of Engineering of Polytechnic Institute of Porto
- Porto
- Portugal
| | - Helena M. V. M. Soares
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| |
Collapse
|
10
|
Siters KE, Sander SA, Morrow JR. Selective Binding of Zn 2+Complexes to Non-Canonical Thymine or Uracil in DNA or RNA. PROGRESS IN INORGANIC CHEMISTRY: VOLUME 59 2014. [DOI: 10.1002/9781118869994.ch03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Salvio R, Cacciapaglia R, Mandolini L, Sansone F, Casnati A. Diguanidinocalix[4]arenes as effective and selective catalysts of the cleavage of diribonucleoside monophosphates. RSC Adv 2014. [DOI: 10.1039/c4ra05751a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Upper rim diguanidino-cone-calix[4]arenes catalyze the hydrolytic cleavage of diribonucleoside monophosphates in aqueous DMSO with good substrate selectivity and rate accelerations approaching 105-fold in the most favourable substrate-catalyst combinations.
Collapse
Affiliation(s)
- Riccardo Salvio
- Dipartimento di Chimica and IMC – CNR Sezione Meccanismi di Reazione
- Università La Sapienza
- 00185 Roma, Italy
| | - Roberta Cacciapaglia
- Dipartimento di Chimica and IMC – CNR Sezione Meccanismi di Reazione
- Università La Sapienza
- 00185 Roma, Italy
| | - Luigi Mandolini
- Dipartimento di Chimica and IMC – CNR Sezione Meccanismi di Reazione
- Università La Sapienza
- 00185 Roma, Italy
| | - Francesco Sansone
- Dipartimento di Chimica
- Università degli Studi di Parma
- 43124 Parma, Italy
| | - Alessandro Casnati
- Dipartimento di Chimica
- Università degli Studi di Parma
- 43124 Parma, Italy
| |
Collapse
|
12
|
Niittymäki T, Burakova E, Laitinen E, Leisvuori A, Virta P, Lönnberg H. Zn2+Complexes of 3,5-Bis[(1,5,9-triazacyclododecan-3-yloxy)methyl]phenyl Conjugates of Oligonucleotides as Artificial RNases: The Effect of Oligonucleotide Conjugation on Uridine Selectivity of the Cleaving Agent. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Laine M, Aromaa M, Virta P, Lönnberg T, Poijärvi-Virta P, Lönnberg H. The Zn(2+) complex of 1,4,7,10-tetraazacyclododecane as an artificial nucleobase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:609-18. [PMID: 21888551 DOI: 10.1080/15257770.2011.583809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
{2-Deoxy-3-O-[2-cyanoethoxy(diisopropylamino)phosphino]-5-O-(4,4'-dimethoxytrityl)-α-D- erythro-pentofuranosyl}-N-{2-[4,7,10-tris(2,2,2-trifluoroacetyl)-1,4,7,10-tetraazacyclododecan-1- yl]ethyl}acetamide (1) was prepared and incorporated into a 2'-O-methyl oligoribonucleotide. The hybridization of this oligonucleotide with complementary 2'-O-methyl oligoribonucleotides incorporating one to five uracil bases opposite to the azacrown structure was studied in the absence and presence of Zn(2+). Introduction of Zn(2+) moderately stabilized the duplex with U-bulged targets.
Collapse
Affiliation(s)
- Maarit Laine
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
14
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
15
|
Tang SP, Hu P, Chen HY, Chen S, Mao ZW, Ji LN. Carboxy and diphosphate ester hydrolysis promoted by di- or tri-nuclear zinc(II) complexes based on β-cyclodextrin. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcata.2010.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Lönnberg H. Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Org Biomol Chem 2011; 9:1687-703. [PMID: 21258754 DOI: 10.1039/c0ob00486c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNA molecules participate in many fundamental cellular processes either as a carrier of genetic information or as a catalyst, and hence, RNA has received increasing interest both as a chemotherapeutic agent and as a target of chemotherapy. In addition the dual nature of RNA has led to the RNA-world concept, i.e. an assumption that the evolution at an early stage of life was based on RNA-like oligomers that were responsible for the storage and transfer of information and as catalysts maintained primitive metabolism. Accordingly, the kinetics and mechanisms of the cleavage of RNA phosphodiester bonds have received interest and it is hoped they will shed light on the mechanisms of enzyme action and on the development of artificial enzymes. The major mechanistic findings concerning the cleavage by small molecules and ions and their significance for the development of efficient and biologically applicable artificial catalysts for RNA hydrolysis are surveyed in the present perspective.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
17
|
Guo ZF, Yan H, Li ZF, Lu ZL. Synthesis of mono- and di-[12]aneN3 ligands and study on the catalytic cleavage of RNA model 2-hydroxypropyl-p-nitrophenyl phosphate with their metal complexes. Org Biomol Chem 2011; 9:6788-96. [DOI: 10.1039/c1ob05942d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Efficient syntheses of artificial nucleases containing mono-, di- and tri-[12]aneN3 ligating units through click chemistry. INORG CHEM COMMUN 2010. [DOI: 10.1016/j.inoche.2010.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Laine M, Ketomäki K, Poijärvi-Virta P, Lönnberg H. Base moiety selectivity in cleavage of short oligoribonucleotides by di- and tri-nuclear Zn(II) complexes of azacrown-derived ligands. Org Biomol Chem 2009; 7:2780-7. [PMID: 19532995 DOI: 10.1039/b904828f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cleavage of 6-mer oligoribonucleotides by the dinuclear Zn2+ complex of 1,3-bis[(1,5,9-triazacyclododecan-3-yl)oxymethyl]benzene (L1) and the trinuclear Zn2+ complex of 1,3,5-tris[(1,5,9-triazacyclododecan-3-yl)oxymethyl]benzene (L3) has been studied. The dinuclear complex cleaves at sufficiently low concentrations ([(Zn2+)2L1] < or = 0.1 mmol L(-1)) the 5'NpU3' and 5'UpN3' bonds (N = G, C, A) much more readily than the other phosphodiester bonds, but leaves the 5'UpU3' site intact. The trinuclear (Zn2+)3L3 complex, in turn, cleaves the 5'UpU3' bond more readily than any other linkages, even faster than the 5'NpU3' and 5'UpN3' sites. Somewhat unexpectedly, the 5'UpNpU3' site is cleaved only slowly by both the di- and tri-nuclear complex. The base-moiety selectivity remains qualitatively similar, though slightly less pronounced, when the hexanucleotides are closed to hairpin loops by three additional CG-pairs of 2'-O-methylribonucleotides. Phosphodiester bonds within a double helical stem are not cleaved, not even the 5'UpU3' sites. Guanine base also becomes recognized by (Zn2+)2L1 and (Zn2+)3L3, but the affinity to G is clearly lower than to U. The trinuclear cleaving agent, however, cleaves the 5'GpG3' bond only 35% less readily than the 5'UpU3' bond.
Collapse
Affiliation(s)
- Maarit Laine
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | | | | | |
Collapse
|