1
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
2
|
Klochkov SG, Neganova ME, Aleksandrova YR. Promising Molecular Targets for Design of Antitumor Drugs Based on Ras Protein Signaling Cascades. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Ashok S, Hildebrandt ER, Ruiz CS, Hardgrove DS, Coreno DW, Schmidt WK, Hougland JL. Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences. Biochemistry 2020; 59:1149-1162. [PMID: 32125828 DOI: 10.1021/acs.biochem.0c00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein prenylation is a posttranslational modification involving the attachment of a C15 or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in their protein substrates, but recent studies in yeast- and mammalian-based systems have demonstrated FTase can also accept sequences that diverge in length from the canonical four-amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical assays. Strikingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these sequences. These findings expand the substrate pool of sequences that can be potentially prenylated, further refine our understanding of substrate recognition by FTase and GGTase-I, and suggest the possibility of a new class of prenylated proteins within proteomes.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Colby S Ruiz
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Daniel S Hardgrove
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - David W Coreno
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
4
|
Klochkov SG, Neganova ME, Yarla NS, Parvathaneni M, Sharma B, Tarasov VV, Barreto G, Bachurin SO, Ashraf GM, Aliev G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol 2019; 56:128-134. [DOI: 10.1016/j.semcancer.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
5
|
Elshahawi SI, Cao H, Shaaban KA, Ponomareva LV, Subramanian T, Farman ML, Spielmann HP, Phillips GN, Thorson JS, Singh S. Structure and specificity of a permissive bacterial C-prenyltransferase. Nat Chem Biol 2017; 13:366-368. [PMID: 28166207 PMCID: PMC5362326 DOI: 10.1038/nchembio.2285] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022]
Abstract
This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug.
Collapse
Affiliation(s)
- Sherif I. Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
- Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY 40536
| | - Hongnan Cao
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
- Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY 40536
| | - Larissa V. Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
- Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY 40536
| | - Thangaiah Subramanian
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Mark L. Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - H. Peter Spielmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
- Department of Chemistry, Markey Cancer Center, Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | | | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
- Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY 40536
| | - Shanteri Singh
- Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY 40536
| |
Collapse
|
6
|
Rising KA, Crenshaw CM, Koo HJ, Subramanian T, Chehade KAH, Starks C, Allen KD, Andres DA, Spielmann HP, Noel JP, Chappell J. Formation of a Novel Macrocyclic Alkaloid from the Unnatural Farnesyl Diphosphate Analogue Anilinogeranyl Diphosphate by 5-Epi-Aristolochene Synthase. ACS Chem Biol 2015; 10:1729-36. [PMID: 25897591 PMCID: PMC4570970 DOI: 10.1021/acschembio.5b00145] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of an effort to identify substrate analogs suitable for helping to resolve structural features important for terpene synthases, the inhibition of 5-epi-aristolochene biosynthesis from farnesyl diphosphate (FPP) by the tobacco 5-epi-aristolochene synthase incubated with anilinogeranyl diphosphate (AGPP) was examined. The apparent noncompetitive nature of the inhibition supported further assessment of how AGPP might be bound to crystallographic forms of the enzyme. Surprisingly, the bound form of the inhibitor appeared to have undergone a cyclization event consistent with the native mechanism associated with FPP catalysis. Biocatalytic formation of a novel 13-membered macrocyclic paracyclophane alkaloid was confirmed by high-resolution GC-MS and NMR analysis. This work provides insights into new biosynthetic means for generating novel, functionally diversified, medium-sized terpene alkaloids.
Collapse
Affiliation(s)
- Kathleen A. Rising
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - Charisse M. Crenshaw
- Howard Hughes Medical Institute, Salk Institute, La Jolla, California 92037, United States
| | - Hyun Jo Koo
- Howard Hughes Medical Institute, Salk Institute, La Jolla, California 92037, United States
| | - Thangaiah Subramanian
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - Kareem A. H. Chehade
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - Courtney Starks
- Howard Hughes Medical Institute, Salk Institute, La Jolla, California 92037, United States
| | - Keith D. Allen
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - Douglas A. Andres
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - H. Peter Spielmann
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, Lexington, Kentucky, United States
- Department of Chemistry, University of Kentucky, Lexington, Lexington, Kentucky, United States
- Center for Structural Biology, University of Kentucky, Lexington, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Lexington, Kentucky, United States
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Salk Institute, La Jolla, California 92037, United States
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Rush JS, Subramanian T, Subramanian KL, Onono FO, Waechter CJ, Spielmann HP. Novel Citronellyl-Based Photoprobes Designed to Identify ER Proteins Interacting with Dolichyl Phosphate in Yeast and Mammalian Cells. ACTA ACUST UNITED AC 2015; 9:123-141. [PMID: 27099830 DOI: 10.2174/2212796810666160216221610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dolichyl phosphate-linked mono- and oligosaccharides (DLO) are essential intermediates in protein N-glycosylation, C- and O-mannosylation and GPI anchor biosynthesis. While many membrane proteins in the endoplasmic reticulum (ER) involved in the assembly of DLOs are known, essential proteins believed to be required for the transbilayer movement (flip-flopping) and proteins potentially involved in the regulation of DLO synthesis remain to be identified. METHODS The synthesis of a series of Dol-P derivatives composed of citronellyl-based photoprobes with benzophenone groups equipped with alkyne moieties for Huisgen "click" chemistry is now described to utilize as tools for identifying ER proteins involved in regulating the biosynthesis and transbilayer movement of lipid intermediates. In vitro enzymatic assays were used to establish that the photoprobes contain the critical structural features recognized by pertinent enzymes in the dolichol pathway. ER proteins that photoreacted with the novel probes were identified by MS. RESULTS The potential of the newly designed photoprobes, m-PAL-Cit-P and p-PAL-Cit-P, for identifying previously unidentified Dol-P-interacting proteins is supported by the observation that they are enzymatically mannosylated by Man-P-Dol synthase (MPDS) from Chinese Hamster Ovary (CHO) cells at an enzymatic rate similar to that for Dol-P. MS analyses reveal that DPM1, ALG14 and several other yeast ER proteins involved in DLO biosynthesis and lipid-mediated protein O-mannosylation photoreacted with the novel probes. CONCLUSION The newly-designed photoprobes described in this paper provide promising new tools for the identification of yet to be identified Dol-P interacting ER proteins in yeast and mammalian cells, including the Dol-P flippase required for the "re-cycling" of the glycosyl carrier lipid from the lumenal monolayer of the ER to the cytoplasmic leaflet for new rounds of DLO synthesis.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Thangaiah Subramanian
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Karunai Leela Subramanian
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fredrick O Onono
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Charles J Waechter
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA; University of Kentucky College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA; Kentucky Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA; Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
8
|
Subramanian T, Ren H, Subramanian KL, Sunkara M, Onono FO, Morris AJ, Spielmann HP. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases. Bioorg Med Chem Lett 2014; 24:4414-4417. [PMID: 25150376 DOI: 10.1016/j.bmcl.2014.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022]
Abstract
An efficient, diversity oriented synthesis of homoisoprenoid α-monofluorophosphonates utilizing electrophilic fluorination is presented along with their activity as inhibitors of PPAPDC2 family integral membrane lipid phosphatases. These novel phosphatase-resistant analogues of isoprenoid monophosphates are a platform for further structure-activity relationship studies and provide access to other isoprenoid family members where the phosphate ester oxygen is replaced by a α-monofluoromethylene moiety.
Collapse
Affiliation(s)
- Thangaiah Subramanian
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Hongmei Ren
- Division of Cardiovascular Medicine UK COM, University of Kentucky, Lexington, KY 40536, USA
| | | | - Manjula Sunkara
- Division of Cardiovascular Medicine UK COM, University of Kentucky, Lexington, KY 40536, USA
| | - Fredrick O Onono
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine UK COM, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, KY 40536, USA
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Dozier JK, Khatwani SL, Wollack JW, Wang YC, Schmidt-Dannert C, Distefano MD. Engineering protein farnesyltransferase for enzymatic protein labeling applications. Bioconjug Chem 2014; 25:1203-12. [PMID: 24946229 PMCID: PMC4103756 DOI: 10.1021/bc500240p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Creating covalent protein conjugates is an active area of research due to the wide range of uses for protein conjugates spanning everything from biological studies to protein therapeutics. Protein Farnesyltransferase (PFTase) has been used for the creation of site-specific protein conjugates, and a number of PFTase substrates have been developed to facilitate that work. PFTase is an effective catalyst for protein modification because it transfers Farnesyl diphosphate (FPP) analogues to protein substrates on a cysteine four residues from the C-terminus. While much work has been done to synthesize various FPP analogues, there are few reports investigating how mutations in PFTase alter the kinetics with these unnatural analogues. Herein we examined how different mutations within the PFTase active site alter the kinetics of the PFTase reaction with a series of large FPP analogues. We found that mutating either a single tryptophan or tyrosine residue to alanine results in greatly improved catalytic parameters, particularly in kcat. Mutation of tryptophan 102β to alanine caused a 4-fold increase in kcat and a 10-fold decrease in KM for a benzaldehyde-containing FPP analogue resulting in an overall 40-fold increase in catalytic efficiency. Similarly, mutation of tyrosine 205β to alanine caused a 25-fold increase in kcat and a 10-fold decrease in KM for a coumarin-containing analogue leading to a 300-fold increase in catalytic efficiency. Smaller but significant changes in catalytic parameters were also obtained for cyclo-octene- and NBD-containing FPP analogues. The latter compound was used to create a fluorescently labeled form of Ciliary Neurotrophic Factor (CNTF), a protein of therapeutic importance. Additionally, computational modeling was performed to study how the large non-natural isoprenoid analogues can fit into the active sites enlarged via mutagenesis. Overall, these results demonstrate that PFTase can be improved via mutagenesis in ways that will be useful for protein engineering and the creation of site-specific protein conjugates.
Collapse
Affiliation(s)
- Jonathan K Dozier
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
10
|
Wollack JW, Monson BJ, Dozier JK, Dalluge JJ, Poss K, Hilderbrand SA, Distefano MD. Site-specific labeling of proteins and peptides with trans-cyclooctene containing handles capable of tetrazine ligation. Chem Biol Drug Des 2014; 84:140-7. [PMID: 24899362 DOI: 10.1111/cbdd.12303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/30/2013] [Accepted: 02/13/2014] [Indexed: 12/01/2022]
Abstract
There is a growing library of functionalized non-natural substrates for the enzyme protein farnesyltransferase (PFTase). PFTase covalently attaches these functionalized non-natural substrates to proteins ending in the sequence CAAX, where C is a cysteine that becomes alkylated, A represents an aliphatic amino acid, and X is Ser, Met, Ala, or Gln. Reported substrates include a variety of functionalities that allow modified proteins to undergo subsequent bioconjugation reactions. To date the most common strategy used in this approach has been copper catalyzed azide-alkyne cycloaddition (CuAAC). While being fast and bioorthogonal CuAAC has limited use in live cell experiments due to copper's toxicity.(1) Here, we report the synthesis of trans-cyclooctene geranyl diphosphate. This substrate can be synthesized from geraniol in six steps and be enzymatically transferred to peptides and proteins that end in a CAAX sequence. Proteins and peptides site-specially modified with trans-cyclooctene geranyl diphosphate were subsequently targeted for further modification via tetrazine ligation. As tetrazine ligation is bioorthogonal, fast, and is contingent on ring strain rather than the addition of a copper catalyst, this labeling strategy should prove useful for labeling proteins where the presence of copper may hinder solubility or biological reactivity.
Collapse
Affiliation(s)
- James W Wollack
- Department of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, Saint Paul, MN, 55105, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Srinivasan K, Subramanian T, Spielmann HP, Janetopoulos C. Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach. Mol Cell Biochem 2013; 387:177-86. [PMID: 24194124 DOI: 10.1007/s11010-013-1883-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1% of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the translocation of RBD Raf1 -GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems.
Collapse
|
12
|
Rashidian M, Kumarapperuma SC, Gabrielse K, Fegan A, Wagner CR, Distefano MD. Simultaneous dual protein labeling using a triorthogonal reagent. J Am Chem Soc 2013; 135:16388-96. [PMID: 24134212 DOI: 10.1021/ja403813b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Construction of heterofunctional proteins is a rapidly emerging area of biotherapeutics. Combining a protein with other moieties, such as a targeting element, a toxic protein or small molecule, and a fluorophore or polyethylene glycol (PEG) group, can improve the specificity, functionality, potency, and pharmacokinetic profile of a protein. Protein farnesyl transferase (PFTase) is able to site-specifically and quantitatively prenylate proteins containing a C-terminal CaaX-box amino acid sequence with various modified isoprenoids. Here, we describe the design, synthesis, and application of a triorthogonal reagent, 1, that can be used to site-specifically incorporate an alkyne and aldehyde group simultaneously into a protein. To illustrate the capabilities of this approach, a protein was enzymatically modified with compound 1 followed by oxime ligation and click reaction to simultaneously incorporate an azido-tetramethylrhodamine (TAMRA) fluorophore and an aminooxy-PEG moiety. This was performed with both a model protein [green fluorescent protein (GFP)] as well as a therapeutically useful protein [ciliary neurotrophic factor (CNTF)]. Next, a protein was enzymatically modified with compound 1 followed by coupling to an azido-bis-methotrexate dimerizer and aminooxy-TAMRA. Incubation of that construct with a dihydrofolate reductase (DHFR)-DHFR-anti-CD3 fusion protein resulted in the self-assembly of nanoring structures that were endocytosed into T-leukemia cells and visualized therein. These results highlight how complex multifunctional protein assemblies can be prepared using this facile triorthogonal approach.
Collapse
Affiliation(s)
- Mohammad Rashidian
- Department of Chemistry, and §Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
13
|
Subramanian T, Pais JE, Liu S, Troutman JM, Suzuki Y, Leela Subramanian K, Fierke CA, Andres DA, Spielmann HP. Farnesyl diphosphate analogues with aryl moieties are efficient alternate substrates for protein farnesyltransferase. Biochemistry 2012; 51:8307-19. [PMID: 22989235 DOI: 10.1021/bi3011362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesylation is an important post-translational modification essential for the proper localization and function of many proteins. Transfer of the farnesyl group from farnesyl diphosphate (FPP) to proteins is catalyzed by protein farnesyltransferase (FTase). We employed a library of FPP analogues with a range of aryl groups substituting for individual isoprene moieties to examine some of the structural and electronic properties of the transfer of an analogue to the peptide catalyzed by FTase. Analysis of steady-state kinetics for modification of peptide substrates revealed that the multiple-turnover activity depends on the analogue structure. Analogues in which the first isoprene is replaced with a benzyl group and an analogue in which each isoprene is replaced with an aryl group are good substrates. In sharp contrast with the steady-state reaction, the single-turnover rate constant for dansyl-GCVLS alkylation was found to be the same for all analogues, despite the increased chemical reactivity of the benzyl analogues and the increased steric bulk of other analogues. However, the single-turnover rate constant for alkylation does depend on the Ca(1)a(2)X peptide sequence. These results suggest that the isoprenoid transition-state conformation is preferred over the inactive E·FPP·Ca(1)a(2)X ternary complex conformation. Furthermore, these data suggest that the farnesyl binding site in the exit groove may be significantly more selective for the farnesyl diphosphate substrate than the active site binding pocket and therefore might be a useful site for the design of novel inhibitors.
Collapse
Affiliation(s)
- Thangaiah Subramanian
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Subramanian T, Parkin S, Spielmann HP. Synthesis of Farnesol Analogues Containing Triazoles in Place of Isoprenes through 'Click Chemistry'. Synlett 2012; 23:2539-2543. [PMID: 23125482 DOI: 10.1055/s-0031-1290461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A solid-phase three-component Huisgen reaction has been used to generate polar farnesol and farnesyl diphosphate analogues. The Cu(I)-catalyzed 1,3-cycloadditions of various azides with solid supported (E)-3-methylhept-2-en-6-yn-1-ol provided only the 1,4-disubstituted 1,2,3-triazole regioisomers. The organic azides were generated in situ to minimize handling of potentially explosive azides. We have employed this powerful 'click chemistry' to make farnesol analogues where both β- and γ-isoprenes were replaced by triazole and substituted aromatic rings, respectively.
Collapse
Affiliation(s)
- Thangaiah Subramanian
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | | | | |
Collapse
|
15
|
Placzek AT, Hougland JL, Gibbs RA. Synthesis of frame-shifted farnesyl diphosphate analogs. Org Lett 2012; 14:4038-41. [PMID: 22857735 DOI: 10.1021/ol300683r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A set of synthetic approaches were developed and applied to the synthesis of eight frame-shifted farnesyl diphosphate (FPP) analogs. These analogs bear increased or decreased methylene units between the double bonds and/or diphosphate moieties of the isoprenoid structure. Evaluation versus mammalian FTase revealed that small structural changes can lead to dramatic changes in substrate ability.
Collapse
Affiliation(s)
- Andrew T Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
16
|
Rashidian M, Song JM, Pricer RE, Distefano MD. Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. J Am Chem Soc 2012; 134:8455-67. [PMID: 22435540 DOI: 10.1021/ja211308s] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label, or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins, this approach for polypeptide modification could be particularly useful for large-scale production of protein conjugates for therapeutic or industrial applications.
Collapse
Affiliation(s)
- Mohammad Rashidian
- Department of Chemistry, University of Minnesota, Minneapolis, 55454, United States
| | | | | | | |
Collapse
|
17
|
Das D, Tnimov Z, Nguyen UTT, Thimmaiah G, Lo H, Abankwa D, Wu Y, Goody RS, Waldmann H, Alexandrov K. Flexible and general synthesis of functionalized phosphoisoprenoids for the study of prenylation in vivo and in vitro. Chembiochem 2012; 13:674-83. [PMID: 22351497 DOI: 10.1002/cbic.201100733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Indexed: 11/06/2022]
Abstract
Protein modification with isoprenoid lipids affects hundreds of signaling proteins in eukaryotic cells. Modification of isoprenoids with reporter groups is the main approach for the creation of probes for the analysis of protein prenylation in vitro and in vivo. Here, we describe a new strategy for the synthesis of functionalized phosphoisoprenoids that uses an aminederivatized isoprenoid scaffold as a starting point for the synthesis of functionalized phosphoisoprenoid libraries. This overcomes a long-standing problem in the field, where multistep synthesis had to be carried out for each individual isoprenoid analogue. The described approach enabled us to synthesize a range of new compounds, including two novel fluorescent isoprenoids that previously could not be generated by conventional means. The fluorescent probes that were developed using the described approach possess significant spectroscopic advantages to all previously generated fluorescent isoprenoid analogue. Using these analogues for flow cytometry and cell imaging, we analyzed the uptake of isoprenoids by mammalian cells and zebrafish embryos. Furthermore, we demonstrate that derivatization of the scaffold can be coupled in a one-pot reaction to enzymatic incorporation of the resulting isoprenoid group into proteins. This enables rapid evaluation of functional groups for compatibility with individual prenyltransferases and identification of the prenyltransferase specific substrates.
Collapse
Affiliation(s)
- Debapratim Das
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bergman JA, Hahne K, Hrycyna CA, Gibbs RA. Lipid and sulfur substituted prenylcysteine analogs as human Icmt inhibitors. Bioorg Med Chem Lett 2011; 21:5616-9. [PMID: 21782433 PMCID: PMC4037158 DOI: 10.1016/j.bmcl.2011.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/23/2022]
Abstract
Inhibition of isoprenylcysteine carboxyl methyltransferase (Icmt) offers a promising strategy for K-Ras driven cancers. We describe the synthesis and inhibitory activity of substrate-based analogs derived from several novel scaffolds. Modifications of both the prenyl group and thioether of N-acetyl-S-farnesyl-L-cysteine (AFC), a substrate for human Icmt (hIcmt), have resulted in low micromolar inhibitors of Icmt and have given insights into the nature of the prenyl binding site of hIcmt.
Collapse
Affiliation(s)
- Joel A. Bergman
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Kalub Hahne
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Christine A. Hrycyna
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Richard A. Gibbs
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Placzek AT, Krzysiak AJ, Gibbs RA. Chemical Probes of Protein Prenylation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-415922-8.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Rashidian M, Dozier JK, Lenevich S, Distefano MD. Selective labeling of polypeptides using protein farnesyltransferase via rapid oxime ligation. Chem Commun (Camb) 2010; 46:8998-9000. [PMID: 20967387 DOI: 10.1039/c0cc03305g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aldehyde-containing alternative substrate for protein farnesyltransferase was prepared and shown to be enzymatically incorporated into a peptide and a protein. The protein was subsequently immobilized onto aminooxy-functionalized agarose beads or labeled with a fluorophore. This method for protein modification provides an alternative to the commonly employed Cu(I)-catalyzed click reaction.
Collapse
Affiliation(s)
- Mohammad Rashidian
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, S. E. Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|