1
|
Vargas EL, Velázquez JA, Rodrigo E, Reinecke H, Rodríguez-Hernández J, Fernández-Mayoralas A, Gallardo A, Cid MB. p Ka Modulation of Pyrrolidine-Based Catalytic Polymers Used for the Preparation of Glycosyl Hydrazides at Physiological pH and Temperature. ACS APPLIED BIO MATERIALS 2020; 3:1955-1967. [PMID: 35025318 DOI: 10.1021/acsabm.9b01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inspired by the ability of enzymes to use the surrounding hydrophobic and/or polarizable groups to modulate the pKa of a given amino acid, we designed a series of soluble polymers able to decrease the basicity of pyrrolidine (from 11.2 to 8.6 pKa units), which clearly increases its aminocatalytic activity at physiological pH in C═N bond formation reactions via ion iminium activation. Other parameters such as charge density, hydrophobic/hydrophilic balance, and aggregation state have been studied as important factors in the catalytic activity of the polymers for a given substrate. To demonstrate the utility of our approach, an optimal pyrrolidine-based catalytic polymer has been used for the formation of C-N bonds between hydrazides and free sugars as the model system for the preparation of glycoconjugates.
Collapse
Affiliation(s)
- Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - J Antonio Velázquez
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Rodrigo
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Alberto Gallardo
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Practical guide to characterize biomolecule adsorption on solid surfaces (Review). Biointerphases 2018; 13:06D303. [PMID: 30352514 DOI: 10.1116/1.5045122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The control over the adsorption or grafting of biomolecules from a liquid to a solid interface is of fundamental importance in different fields, such as drug delivery, pharmaceutics, diagnostics, and tissue engineering. It is thus important to understand and characterize how biomolecules interact with surfaces and to quantitatively measure parameters such as adsorbed amount, kinetics of adsorption and desorption, conformation of the adsorbed biomolecules, orientation, and aggregation state. A better understanding of these interfacial phenomena will help optimize the engineering of biofunctional surfaces, preserving the activity of biomolecules and avoiding unwanted side effects. The characterization of molecular adsorption on a solid surface requires the use of analytical techniques, which are able to detect very low quantities of material in a liquid environment without modifying the adsorption process during acquisition. In general, the combination of different techniques will give a more complete characterization of the layers adsorbed onto a substrate. In this review, the authors will introduce the context, then the different factors influencing the adsorption of biomolecules, as well as relevant parameters that characterize their adsorption. They review surface-sensitive techniques which are able to describe different properties of proteins and polymeric films on solid two-dimensional materials and compare these techniques in terms of sensitivity, penetration depth, ease of use, and ability to perform "parallel measurements."
Collapse
|
3
|
Choi JM, Bourassa V, Hong K, Shoga M, Lim EY, Park A, Apaydin K, Udit AK. Polyvalent Hybrid Virus-Like Nanoparticles with Displayed Heparin Antagonist Peptides. Mol Pharm 2018; 15:2997-3004. [DOI: 10.1021/acs.molpharmaceut.8b00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin M. Choi
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Valerie Bourassa
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kevin Hong
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Michael Shoga
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Elizabeth Y. Lim
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew Park
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kazim Apaydin
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew K. Udit
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
4
|
Escorihuela J, González-Martínez MÁ, López-Paz JL, Puchades R, Maquieira Á, Gimenez-Romero D. Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chem Rev 2014; 115:265-94. [DOI: 10.1021/cr5002063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jorge Escorihuela
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Miguel Ángel González-Martínez
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - José Luis López-Paz
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Rosa Puchades
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ángel Maquieira
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - David Gimenez-Romero
- Physical
Chemistry Department, Faculty of Chemistry, Universitat de València, Avenida Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
5
|
Uniewicz KA, Ori A, Ahmed YA, Yates EA, Fernig DG. Characterisation of the interaction of neuropilin-1 with heparin and a heparan sulfate mimetic library of heparin-derived sugars. PeerJ 2014; 2:e461. [PMID: 25024924 PMCID: PMC4089425 DOI: 10.7717/peerj.461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Background. Neuropilin-1 (NRP-1) is a multidomain membrane protein with soluble isoforms interacting with a complex network of other membrane receptors, their respective ligands and heparan sulfate (HS). It is involved in the development of vasculature, neural patterning, immunological responses and pathological angiogenesis. Methods. We have characterised the binding of a Fc fusion of rat NRP-1 (Fc rNRP-1) and of a soluble isoform, corresponding to the first four extracellular domains of human NRP-1, shNRP-1, using optical biosensor-based binding assays with a library of heparin derivatives. Selective labelling of lysines protected upon heparin binding allowed their identification by mass spectrometry. Results. Fc rNRP-1 bound to heparin with high affinity (2.5 nM) and fast ka (9.8 × 10(6) M(-1)s(-1)). Unusually, NRP-1 bound both highly sulfated and completely desulfated stretches of heparin and exhibited a complex pattern of preferences for chemically modified heparins possessing one or two sulfate groups, e.g., it bound heparin with just a 6-O sulfate group better than heparin with any two of N-sulfate, 6-O sulfate and 2-O sulfate. Mass-spectrometry based mapping identified that, in addition to the expected the b1 domain, the a1, and c domains and the L2 linker were also involved in the interaction. In contrast, shNRP-1 bound heparin far more weakly. This could only be shown by affinity chromatography and by differential scanning fluorimetry. Discussion. The results suggest that the interaction of NRP-1 with HS is more complex than anticipated and involving a far greater extent of the protein than just the b1-b2 domains. NRP-1's preference for binding long saccharide structures suggests it has the potential to bind large segments of HS chains and so organise their local structure. In contrast, the four domain soluble isoform, shNRP-1 binds heparin weakly and so would be expected to diffuse away rapidly from the source cell.
Collapse
Affiliation(s)
- Katarzyna A Uniewicz
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Alessandro Ori
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Yassir A Ahmed
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
6
|
DNA directed immobilization glycocluster array: applications and perspectives. Curr Opin Chem Biol 2014; 18:46-54. [DOI: 10.1016/j.cbpa.2013.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
|
7
|
Altgärde N, Nilebäck E, de Battice L, Pashkuleva I, Reis RL, Becher J, Möller S, Schnabelrauch M, Svedhem S. Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction. Acta Biomater 2013; 9:8158-66. [PMID: 23747326 DOI: 10.1016/j.actbio.2013.05.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022]
Abstract
Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.
Collapse
Affiliation(s)
- Noomi Altgärde
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eichmann SL, Meric G, Swavola JC, Bevan MA. Diffusing colloidal probes of protein-carbohydrate interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2299-2310. [PMID: 23330828 DOI: 10.1021/la304355t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.
Collapse
Affiliation(s)
- Shannon L Eichmann
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
9
|
Song HY, Sun W, Prabhakar S, Aung KMM, Su X. Study sequence rules of estrogen receptor α–DNA interactions using dual polarization interferometry and computational modeling. Anal Biochem 2013; 433:121-8. [DOI: 10.1016/j.ab.2012.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/28/2022]
|
10
|
Altgärde N, Becher J, Möller S, Weber FE, Schnabelrauch M, Svedhem S. Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins. J Colloid Interface Sci 2012; 390:258-66. [PMID: 23026301 DOI: 10.1016/j.jcis.2012.07.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) in the extracellular matrix (ECM) have multiple functions in tissues including providing support, mediating cell division and differentiation, and taking part in important interactions with proteins, e.g. growth factors. Studying GAG related interactions is inherently difficult and requires suitable interaction platforms. We show two strategies to covalently couple the GAG chondroitin sulfate (CS) to supported lipid bilayers (SLBs), either by (a) activating carboxy-functionalized phospholipids in the lipid bilayer, followed by the addition of hydrazide-functionalized CS, or by (b) activating naturally occurring carboxyl groups on CS prior to addition to an amino-functionalized SLB. Bilayer formation and subsequent immobilization was followed in real-time using the Quartz Crystal Microbalance with Dissipation monitoring, a technique that provides unique information when studying highly hydrated molecular films. The two strategies yielded thin CS films (in the nanometer range) with similar viscoelastic properties. Fluidity of the lipid bilayer was retained when CS was coupled. The application of the CS interaction platform was exemplified for type I collagen and the bone inducing growth factor bone morphogenetic protein-2 (BMP-2). The addition of collagen to immoblized CS resulted in soft layers whereas layers formed by addition of BMP-2 were denser, independent on the immobilization strategy used.
Collapse
Affiliation(s)
- Noomi Altgärde
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Song HY, Zhou X, Hobley J, Su X. Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:997-1004. [PMID: 22126088 DOI: 10.1021/la202734f] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dual polarization interferometry (DPI) is used for a detailed study of antibody immobilization with and without orientation control, using prostate specific antigen (PSA) and its antibody as model. Thiol modified DPI chips were activated by a heterobifunctional cross-linker (sulfo-GMBS). PSA antibody was either directly immobilized via covalent binding or coupled via the Fc-fragment to protein G covalently attached to the activated chip. The direct covalent binding leads to a random antibody orientation and the coupling through protein G leads to an end-on orientation. Ethanolamine (ETH) was used to block remaining active sites following the direct antibody immobilization and protein G immobilization. A homobifunctional cross-linker (BS3) was used to stabilize the antibody layer coupled on protein G. DPI provides a real-time measurement of the stepwise molecular binding processes and gives detailed geometrical and structural values of each layer, i.e., thickness, mass, and density. These values evidence the end-on orientation of closely packed antibody on protein G layer and reveal structural effects of ETH blocking/deactivation and BS3 stabilization. With the end-on immobilized antibody, PSA at 10 pg/mL can be detected by DPI through a sandwich complex that satisfies the clinical requirement (assuming <30 pg/mL as clinically safe). However, the randomly immobilized antibody failed to detect PSA at 1 ng/mL. In a parallel study using surface plasmon resonance (SPR) spectroscopy, random and end-on antibody immobilization on streptavidin-modified gold surface was evaluated to further validate the importance of antibody orientation control. With the closely packed antibody layer on protein G surface, SPR can also detect PSA at 10 pg/mL.
Collapse
Affiliation(s)
- Hong Yan Song
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602
| | | | | | | |
Collapse
|
12
|
Popplewell J, Swann M, Brown G, Lauder B. Fabrication of carbohydrate surfaces by using non-derivatised oligosaccharides. Methods Mol Biol 2012; 808:221-229. [PMID: 22057528 DOI: 10.1007/978-1-61779-373-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface-based tools, such as microarrays and optical biosensors, are being increasingly applied to the analysis of carbohydrate-protein interactions. A key to these developments is the presentation of the carbohydrate to the protein target. Dual polarisation interferometry (DPI) is a surface-based technique that permits the real-time measurement of the changes in thickness, refractive index, and mass of adsorbates 100-nm thick or less on the surface of a functionalised waveguide. DPI has been used to design and characterise a surface on which the orientation and density of the immobilised carbohydrates are suitable for studying their interactions with proteins and where non-specific binding is reduced to less than 5% of total binding. A thiol-functionalised surface was derivatised with a heterobifunctional cross-linker to yield a hydrazide surface. This was treated with oligosaccharides, derived from keratan sulphate, chondroitin sulphate, and heparin that possess a reducing end. To block the unreacted hydrazide groups, the surface was treated with an aldehyde-functionalised PEG, and the surfaces were then challenged with a variety of proteins.
Collapse
Affiliation(s)
- Jonathan Popplewell
- Farfield Group Ltd, Voyager West Wing, Level 7, Manchester Airport, Manchester, UK
| | | | | | | |
Collapse
|
13
|
Daghestani HN, Day BW. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. SENSORS (BASEL, SWITZERLAND) 2010; 10:9630-46. [PMID: 22163431 PMCID: PMC3230998 DOI: 10.3390/s101109630] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 10/28/2010] [Indexed: 11/16/2022]
Abstract
Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.
Collapse
Affiliation(s)
- Hikmat N. Daghestani
- Department of Structural Biology, University of Pittsburgh, BST3 10017, 3501 Fifth Ave, Pittsburgh PA, 15213, USA; E-Mail:
| | - Billy W. Day
- Departments of Pharmaceutical Sciences and of Chemistry, University of Pittsburgh, BST3 10017, 3501 Fifth Ave, Pittsburgh PA, 15213, USA
| |
Collapse
|
14
|
Abstract
The heparan sulfate (HS) family of glycosaminoglycans are highly complex and structurally diverse polysaccharides with information encoded within the chains that imparts the ability to bind selectively to a wide range of proteins-the "HS interactome"-and to regulate their biological activities. However, there are two key questions which need to be addressed; first, the extent of structural variation of expressed HS structures-the "heparanome"-in specific biological contexts and second, the degree of functional selectivity exerted by these structures in regulating biological processes. There is a clear need to develop more systematic and high throughput approaches in order to address these questions. Here, we describe a cohort of protocols for profiling different aspects of HS structure and activity, focusing particularly on disaccharide building blocks and larger oligosaccharide domains, the latter representing the functional units of HS chains. A range of other complementary methods in the literature are also discussed. Together these provide a new and more comprehensive toolkit to investigate HS structure and activity in a higher throughput manner in selected biological systems. The implementation of such a glycomics strategy will enable development of a systems biology view of HS structure-function relationships and help to resolve the significant puzzle of the extensive interactome of HS, which remains a key question in the glycobiology field. We anticipate that the next decade will see major advances in our understanding of the complex biology of HS.
Collapse
|
15
|
Daghestani HN, Fernig DG, Day BW. Evaluation of biosensor surfaces for the detection of microtubule perturbation. Biosens Bioelectron 2009; 25:136-41. [PMID: 19595587 DOI: 10.1016/j.bios.2009.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Dual polarization interferometry (DPI) and resonant mirror (RM) methods were used to characterize the growth of microtubules (MTs) on biosensor surfaces. The structure and dynamics of MTs play an important role in cell division and are a target for many anti-cancer drugs. Evidence from DPI demonstrated the growth of MTs on streptavidin-biotinylated-tubulin surfaces from the increase in mass and thickness, with a simultaneous decrease in density. The initial increase in thickness of 0.236 nm/min suggested the elongation of protofilaments before they join laterally to form the MT, where the rate of growth increased to 0.436 nm/min. Continuous mass increases were also observed when tubulin was added to a similar underlying RM surface. Tubulin binding to these surfaces was also temperature dependent, increasing the absolute response with MT stabilizers, while inhibiting binding with destabilizers when temperature was changed from 15 to 37 degrees C. Finally, the initial rates of tubulin assembly (mean+/-SD, n=3) with MT-stabilizer agents were significantly higher at 1.50+/-0.27 and 1.04+/-0.13 arcseconds/s, respectively, compared to 0.37+/-0.11 arcseconds/s for tubulin containing GTP only. In the presence of the MT destabilizers, colchicine and dolastatin 10, the slopes of initial rates were lower than in their absence at 0.05+/-0.01 and 0.27+/-0.08 arcseconds/s, respectively. This provides evidence for the ability of surface-based optical sensors to distinguish between MT stabilizers and destabilizers, while also paving the path to develop other methods to screen for MT-perturbing agents using the same underlying surface engineering.
Collapse
Affiliation(s)
- Hikmat N Daghestani
- Department of Structural Biology, University of Pittsburgh, BST3 10017, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|