1
|
Steiner T, Schanbacher F, Lorenzen W, Enke H, Janssen EML, Niedermeyer TH, Gademann K. UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra for the two cyanobacterial metabolites anabaenopeptin A and anabaenopeptin B. Data Brief 2024; 57:110914. [PMID: 39381007 PMCID: PMC11460485 DOI: 10.1016/j.dib.2024.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
The UV-vis absorbance spectra, molar extinction coefficients and circular dichroism spectra, as well as NMR and high resolution tandem mass spectrometry spectra were determined for two prominent secondary metabolites from cyanobacteria, namely anabaenopeptin A and anabaenopeptin B. The compounds were extracted from the cyanobacterium Planktothrix rubescens CBT929 and purified by flash chromatography and HPLC. Exact amounts of isolated compounds were assessed by quantitative 1H-NMR with internal calibrant ethyl 4-(dimethylamino)benzoate in DMSO‑d6 at 298 K with a recycle delay (d1) of 120 s. UV-vis absorbance spectra were recorded in methanol at room temperature. Molar extinction coefficients were determined at 278 nm as 4190 M-1 cm-1 and 2300 M-1 cm-1 in methanol for anabaenopeptin A and anabaenopeptin B, respectively. Circular dichroism spectra and secondary fragmentation mass spectra are also reported.
Collapse
Affiliation(s)
- Till Steiner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Franziska Schanbacher
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | | | - Heike Enke
- Simris Biologics GmbH, Magnusstrasse 11, 12489 Berlin, Germany
| | - Elisabeth M.-L. Janssen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Düberndorf, Switzerland
| | - Timo H.J. Niedermeyer
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
3
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
5
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
6
|
Junk L, Kazmaier U. Total Synthesis and Configurational Revision of Mozamide A, a Hydroxy-Brunsvicamide. J Org Chem 2019; 84:2489-2500. [DOI: 10.1021/acs.joc.8b02836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Junk
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Xue Y, Zhao P, Quan C, Zhao Z, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018; 107:17-24. [PMID: 30077717 DOI: 10.1016/j.peptides.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
Members of cyanobacteria, including Moorea spp., Okeania spp., Lyngbya spp., Schizothrix spp., Leptolyngbya spp., Microcystis spp., Symploca spp., Hassallia sp., Anabaena spp., Planktothrix sp., Tychonema spp., Oscillatoria spp., Tolypothrix sp., Nostoc sp., and Hapalosiphon sp. produce an enormously diverse range of peptide antibiotics with huge potential as pharmaceutical drugs and biocontrol agents following screening of structural analogues and analysis of structure-activity relationships (SAR). The need for novel antibiotic lead compounds is urgent, and this review summarizes 78 cyanobacteria-derived compounds reported since 2000, including 32 depsipeptides, 18 cyclic lipopeptides, 13 linear lipopeptides, 14 cyclamides, and one typical cyclic peptide. The current and potential therapeutic applications of these peptides are discussed, including for SAR, antituberculotic, antifungal, antibacterial, antiviral, and antiparasitic (anti-plasmodial, antitrypanosomal and antileishmanial) activities.
Collapse
Affiliation(s)
- Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
8
|
Junk L, Kazmaier U. Total Synthesis of Keramamides A and L from a Common Precursor by Late-Stage Indole Synthesis and Configurational Revision. Angew Chem Int Ed Engl 2018; 57:11432-11435. [PMID: 30019808 DOI: 10.1002/anie.201806657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 01/27/2023]
Abstract
The marine natural products keramamide A and L, members of the class of anabaenopeptin-type peptides, were synthesized for the first time by a convergent and flexible route. The installation of the substituted tryptophan moieties was accomplished at the very end of the synthesis on the cyclic peptides, and thus enabled the synthesis of both natural products from one common precursor. The preparation of several epimers clearly indicates that the originally proposed relative configurations of both Keramamides A and L were not correct.
Collapse
Affiliation(s)
- Lukas Junk
- Institut für Organische Chemie, Universität des Saarlandes, Campus C4.2, 66123, Saarbrücken, Germany
| | - Uli Kazmaier
- Institut für Organische Chemie, Universität des Saarlandes, Campus C4.2, 66123, Saarbrücken, Germany
| |
Collapse
|
9
|
Junk L, Kazmaier U. Totalsynthese der Keramamide A und L aus einer gemeinsamen Vorstufe durch späte Indolsynthese und Revision ihrer Konfiguration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lukas Junk
- Institut für Organische Chemie; Universität des Saarlandes; Campus C4.2 66123 Saarbrücken Deutschland
| | - Uli Kazmaier
- Institut für Organische Chemie; Universität des Saarlandes; Campus C4.2 66123 Saarbrücken Deutschland
| |
Collapse
|
10
|
Huang F, Tang J, He L, Ding X, Huang S, Zhang Y, Sun Y, Xia L. Heterologous expression and antitumor activity analysis of syringolin from Pseudomonas syringae pv. syringae B728a. Microb Cell Fact 2018; 17:31. [PMID: 29482589 PMCID: PMC6389232 DOI: 10.1186/s12934-018-0859-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background Syringolin, synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase in Pseudomonas syringae pv. syringae (Pss) B728a, is a novel eukaryotic proteasome inhibitor. Meanwhile, directly modifying large fragments in the PKS/NRPS gene cluster through traditional DNA engineering techniques is very difficult. In this study, we directly cloned the syl gene cluster from Pss B301D-R via Red/ET recombineering to effectively express syringolin in heterologous hosts. Results A 22 kb genomic fragment containing the sylA–sylE gene cluster was cloned into the pASK vector, and the obtained recombinant plasmid was transferred into Streptomyces coelicolor and Streptomyces lividans for the heterologous expression of syringolin. Transcriptional levels of recombinant syl gene in S. coelicolor M145 and S. lividans TK24 were evaluated via RT-PCR and the production of syringolin compounds was detected via LC–MS analysis. The extracts of the engineered bacteria showed cytotoxic activity to B16, 4T1, Meth-A, and HeLa tumor cells. It is noteworthy that the syringolin displayed anticancer activity against C57BL/6 mice with B16 murine melanoma tumor cells. Together, our results herein demonstrate the potential of syrinolin as effective antitumor agent that can treat various cancers without apparent adverse effects. Conclusions This present study is the first to report the heterologous expression of the entire syl gene cluster in Streptomyces strains and the successful expression of syringolin in both S. coelicolor M145 and S. lividans TK24. Syringolin derivatives demonstrated high cytotoxicity in vitro and in vivo. Hence, this paper provided an important foundation for the discovery and production of new antitumor compounds.
Collapse
Affiliation(s)
- Fan Huang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jianli Tang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lian He
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shaoya Huang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
11
|
Shishido TK, Jokela J, Fewer DP, Wahlsten M, Fiore MF, Sivonen K. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543. ACS Chem Biol 2017; 12:2746-2755. [PMID: 28933529 DOI: 10.1021/acschembio.7b00570] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.
Collapse
Affiliation(s)
- Tânia K. Shishido
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Matti Wahlsten
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Marli F. Fiore
- Center
for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Kaarina Sivonen
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Entfellner E, Frei M, Christiansen G, Deng L, Blom J, Kurmayer R. Evolution of Anabaenopeptin Peptide Structural Variability in the Cyanobacterium Planktothrix. Front Microbiol 2017; 8:219. [PMID: 28261178 PMCID: PMC5311044 DOI: 10.3389/fmicb.2017.00219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Cyanobacteria are frequently involved in the formation of harmful algal blooms wherein, apart from the toxic microcystins, other groups of bioactive peptides are abundant as well, such as anabaenopeptins (APs). The APs are synthesized nonribosomally as cyclic hexapeptides with various amino acids at the exocyclic position. We investigated the presence and recombination of the AP synthesis gene cluster (apnA-E) through comparing 125 strains of the bloom-forming cyanobacterium Planktothrix spp., which were isolated from numerous shallow and deep water habitats in the temperate and tropical climatic zone. Ten ecologically divergent strains were purified and genome sequenced to compare their entire apnA-E gene cluster. In order to quantify apn gene distribution patterns, all the strains were investigated by PCR amplification of 2 kbp portions of the entire apn gene cluster without interruption. Within the 11 strains assigned to P. pseudagardhii, P. mougeotii, or P. tepida (Lineage 3), neither apnA-E genes nor remnants were observed. Within the P. agardhii/P. rubescens strains from shallow waters (Lineage 1, 52 strains), strains both carrying and lacking apn genes occurred, while among the strains lacking the apnA-E genes, the presence of the 5'end flanking region indicated a gene cluster deletion. Among the strains of the more derived deep water ecotype (Lineage 2, 62 strains), apnA-E genes were always present. A high similarity of apn genes of the genus Planktothrix when compared with strains of the genus Microcystis suggested its horizontal gene transfer during the speciation of P. agardhii/P. rubescens. Genetic analysis of the first (A1-) domain of the apnA gene, encoding synthesis of the exocyclic position of the AP molecule, revealed four genotype groups that corresponded with substrate activation. Groups of genotypes were either related to Arginine only, the coproduction of Arginine and Tyrosine or Arginine and Lysine, or even the coproduction of Arginine, Tyrosine, and Lysine in the exocyclic position of the AP-molecule. The increased structural diversity resulted from the evolution of apnA A1 genotypes through a small number of positively selected point mutations that occurred repeatedly and independently from phylogenetic association.
Collapse
Affiliation(s)
| | - Mark Frei
- Research Institute for Limnology, University of InnsbruckMondsee, Austria
| | - Guntram Christiansen
- Research Institute for Limnology, University of InnsbruckMondsee, Austria
- Miti Biosystems GmbH, Max F Perutz LaboratoriesWien, Austria
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum MünchenMünchen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-UniversityGiessen, Germany
| | - Rainer Kurmayer
- Research Institute for Limnology, University of InnsbruckMondsee, Austria
| |
Collapse
|
13
|
Allen SE, Dokholyan NV, Bowers AA. Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chem Biol 2016; 11:10-24. [PMID: 26575401 DOI: 10.1021/acschembio.5b00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry.
Collapse
Affiliation(s)
- Scott E. Allen
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Spoof L, Błaszczyk A, Meriluoto J, Cegłowska M, Mazur-Marzec H. Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Mar Drugs 2015; 14:8. [PMID: 26729139 PMCID: PMC4728505 DOI: 10.3390/md14010008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
Anabaenopeptins, bioactive cyclic hexapeptides, were isolated by preparative reversed-phase high performance liquid chromatography from an extract of Baltic Sea cyanobacterial bloom material composed of Nodularia spumigena (50%), Aphanizomenon flos-aquae (40%) and Dolichospermum spp. (10%). Five new anabaenopeptins and nine previously known anabaenopeptins were isolated, and their putative structures were determined by tandem mass spectrometry. The activity of the peptides against carboxypeptidase A and protein phosphatase 1 as well as chymotrypsin, trypsin and thrombin was tested. All anabaenopeptins inhibited carboxypeptidase A (apart from one anabaenopeptin variant) and protein phosphatase 1 with varying potency, but no inhibition against chymotrypsin, trypsin and thrombin was observed.
Collapse
Affiliation(s)
- Lisa Spoof
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Marta Cegłowska
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
15
|
Sanz M, Andreote APD, Fiore MF, Dörr FA, Pinto E. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry. Mar Drugs 2015; 13:3892-919. [PMID: 26096276 PMCID: PMC4483662 DOI: 10.3390/md13063892] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).
Collapse
Affiliation(s)
- Miriam Sanz
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ana Paula Dini Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ernani Pinto
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Condurso HL, Bruner SD. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat Prod Rep 2012; 29:1099-110. [PMID: 22729219 PMCID: PMC3442147 DOI: 10.1039/c2np20023f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural biology has provided significant insights into the complex chemistry and macromolecular organization of nonribosomal peptide synthetases. In addition, novel pathways are continually described, expanding the knowledge of known biosynthetic chemistry.
Collapse
Affiliation(s)
- Heather L. Condurso
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA. Fax: 352 392 8758; Tel: 352 392 0525
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA. Fax: 352 392 8758; Tel: 352 392 0525
| |
Collapse
|
17
|
Cheruku P, Plaza A, Lauro G, Keffer J, Lloyd JR, Bifulco G, Bewley CA. Discovery and synthesis of namalide reveals a new anabaenopeptin scaffold and peptidase inhibitor. J Med Chem 2012; 55:735-42. [PMID: 22168797 DOI: 10.1021/jm201238p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The discovery, structure elucidation, and solid-phase synthesis of namalide, a marine natural product, are described. Namalide is a cyclic tetrapeptide; its macrocycle is formed by only three amino acids, with an exocyclic ureido phenylalanine moiety at its C-terminus. The absolute configuration of namalide was established, and analogs were generated through Fmoc-based solid phase peptide synthesis. We found that only natural namalide and not its analogs containing l-Lys or l-allo-Ile inhibited carboxypeptidase A at submicromolar concentrations. In parallel, an inverse virtual screening approach aimed at identifying protein targets of namalide selected carboxypeptidase A as the third highest scoring hit. Namalide represents a new anabaenopeptin-type scaffold, and its protease inhibitory activity demonstrates that the 13-membered macrolactam can exhibit similar activity as the more common hexapeptides.
Collapse
Affiliation(s)
- Pradeep Cheruku
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
van der Linden WA, Willems LI, Shabaneh TB, Li N, Ruben M, Florea BI, van der Marel GA, Kaiser M, Kisselev AF, Overkleeft HS. Discovery of a potent and highly β1 specific proteasome inhibitor from a focused library of urea-containing peptide vinyl sulfones and peptide epoxyketones. Org Biomol Chem 2011; 10:181-94. [PMID: 22105930 DOI: 10.1039/c1ob06554h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Syringolins, a class of natural products, potently and selectively inhibit the proteasome and show promising antitumour activity. To gain insight in the mode of action of syringolins, the ureido structural element present in syringolins is incorporated in oligopeptide vinyl sulfones and peptide epoxyketones yielding a focused library of potent new proteasome inhibitors. The distance of the ureido linkage with respect to the electrophilic trap strongly influences subunit selectivity within the proteasome. Compounds 13 and 15 are β5 selective and their potency exceeds that of syringolin A. In contrast, 5 may well be the most potent β1 selective compound active in living cells reported to date.
Collapse
|
19
|
|
20
|
Wetzel S, Bon RS, Kumar K, Waldmann H. Biology-Oriented Synthesis. Angew Chem Int Ed Engl 2011; 50:10800-26. [DOI: 10.1002/anie.201007004] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Indexed: 12/22/2022]
|
21
|
Walsh CT, Zhang W. Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics. ACS Chem Biol 2011; 6:1000-7. [PMID: 21851099 DOI: 10.1021/cb200284p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptidyl nucleoside antibiotics are a group of natural products targeting MraY, a bacterial translocase involved in the lipid-linked cycle in peptidoglycan biosynthesis. In this Perspective, we explore how Nature builds complex peptidyl nucleoside antibiotics scaffolds from simple nucleoside and amino acid building blocks. We discuss the current stage of research on biosynthetic pathways for peptidyl nucleoside antibiotics, primarily focusing on chemical logic and enzymatic machinery for uridine transformation and coupling to peptides. We further survey the nonribosomal biosynthetic paradigm for a subgroup of uridyl peptide antibiotics represented by pacidamycins, concluded by diversification opportunities for antibiotic optimization.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Chlipala GE, Mo S, Orjala J. Chemodiversity in freshwater and terrestrial cyanobacteria - a source for drug discovery. Curr Drug Targets 2011; 12:1654-73. [PMID: 21561419 PMCID: PMC3244969 DOI: 10.2174/138945011798109455] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/02/2011] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are considered a promising source for new pharmaceutical lead compounds and a large number of chemically diverse and bioactive metabolites have been obtained from cyanobacteria over the last few decades. This review highlights the structural diversity of natural products from freshwater and terrestrial cyanobacteria. The review is divided into three areas: cytotoxic metabolites, protease inhibitors, and antimicrobial metabolites. The first section discusses the potent cytotoxins cryptophycin and tolytoxin. The second section covers protease inhibitors from freshwater and terrestrial cyanobacteria and is divided in five subsections according to structural class: aeruginosins, cyanopeptolins, microviridins, anabaenopeptins, and microginins. Structure activity relationships are discussed within each protease inhibitor class. The third section, antimicrobial metabolites from freshwater and terrestrial cyanobacteria, is divided by chemical class in three subsections: alkaloids, peptides and terpenoids. These examples emphasize the structural diversity and drug development potential of natural products from freshwater and terrestrial cyanobacteria.
Collapse
Affiliation(s)
- George E. Chlipala
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois, 60612
| | - Shunyan Mo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois, 60612
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois, 60612
| |
Collapse
|
23
|
Friest JA, Broussy S, Chung WJ, Berkowitz DB. Combinatorial catalysis employing a visible enzymatic beacon in real time: synthetically versatile (pseudo)halometalation/carbocyclizations. Angew Chem Int Ed Engl 2011; 50:8895-9. [PMID: 21905180 PMCID: PMC3517167 DOI: 10.1002/anie.201103365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 01/10/2023]
Affiliation(s)
- Jacob A. Friest
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA), Fax: (+001) 402-472-9402
| | - Sylvain Broussy
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA), Fax: (+001) 402-472-9402
| | - Woo Jin Chung
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA), Fax: (+001) 402-472-9402
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA), Fax: (+001) 402-472-9402
| |
Collapse
|
24
|
Friest JA, Broussy S, Chung WJ, Berkowitz DB. Combinatorial Catalysis Employing a Visible Enzymatic Beacon in Real Time: Synthetically Versatile (Pseudo)Halometalation/Carbocyclizations. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J Bacteriol 2011; 193:3822-31. [PMID: 21622740 DOI: 10.1128/jb.00360-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaenopeptins (AP) are bioactive cyclic hexapeptides synthesized nonribosomally in cyanobacteria. APs are characterized by several conserved motifs, including the ureido bond, N-methylation in position 5, and d-Lys in position 2. All other positions of the AP molecule are variable, resulting in numerous structural variants. We have identified a nonribosomal peptide synthetase (NRPS) operon from Planktothrix agardhii strain CYA126/8 consisting of five genes (apnA to apnE) encoding six NRPS modules and have confirmed its role in AP synthesis by the generation of a mutant via insertional inactivation of apnC. In order to correlate the genetic diversity among adenylation domains (A domains) with AP structure variation, we sequenced the A domains of all six NRPS modules from seven Planktothrix strains differing in the production of AP congeners. It is remarkable that single strains coproduce APs bearing either of the chemically divergent amino acids Arg and Tyr in exocyclic position 1. Since the A domain of the initiation module (the ApnA A₁ domain) has been proposed to activate the amino acid incorporated into exocyclic position 1, we decided to analyze this domain both biochemically and phylogenetically. Only ApnA A₁ enzymes from strains producing AP molecules containing Arg or Tyr in position 1 were found to activate these two chemically divergent amino acids in vitro. Phylogenetic analysis of apn A domain sequences revealed that strains with a promiscuous ApnA A₁ domain are derived from an ancestor that activates only Arg. Surprisingly, positive selection appears to affect only three codons within the apnA A₁ gene, suggesting that this remarkable promiscuity has evolved from point mutations only.
Collapse
|
26
|
Fernández D, Pallarès I, Vendrell J, Avilés FX. Progress in metallocarboxypeptidases and their small molecular weight inhibitors. Biochimie 2010; 92:1484-500. [PMID: 20466032 DOI: 10.1016/j.biochi.2010.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/04/2010] [Indexed: 01/11/2023]
Abstract
In what corresponds to a life span, metallocarboxypeptidases (MCPs) have jumped from being mere contaminants in animal pancreas powders (in depression year 1929) to be key players in cellular and molecular processes (in yet-another-depression years 2009-2010). MCPs are unique zinc-dependent enzymes that catalyze the breakdown of the amide bond at the C-terminus of peptide and protein substrates and participate in the recovery of dietary amino acids, tissue organogenesis, neurohormone and cytokine maturation and other important physiological processes. More than 26 genes code for MCPs in the human genome, many of them still waiting to be fully understood in terms of physiological function. A variety of MCPs have been linked to diseases in man: acute pancreatitis and pancreas cancer, type 2 diabetes, Alzheimer's Disease, various types of cancer, and fibrinolysis and inflammation. Many of these discoveries have been made possible thanks to recent advances, as exemplified by plasma carboxypeptidases N and B, known for fifty and twenty years, respectively, which have had their structures released only very recently. Plasma carboxypeptidase B is a biological target for therapy because of its involvement in the coagulation/fibrinolysis processes. Besides, the widespread use of carboxypeptidase A as a benchmark metalloprotease since the early days of Biochemistry has allowed the identification and design of an increasingly vast repertory of small molecular weight inhibitors. With these two examples we wish to emphasize that MCPs have become part of the drug discovery portfolio of pharmaceutical companies and academic research laboratories. This paper will review key developments in the discovery and design of MCP small molecular weight inhibitors, with an emphasis on the discovery of chemically diverse entities. Although encouraging advances have been achieved in the last few years, the specificity and oral bioavailability of the new chemotherapeutic agents seem to pose a challenge to medicinal chemists.
Collapse
Affiliation(s)
- Daniel Fernández
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
27
|
Imker HJ, Walsh CT, Wuest WM. SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A. J Am Chem Soc 2010; 131:18263-5. [PMID: 19968303 DOI: 10.1021/ja909170u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Syringolins are a class of cyclic tripeptide natural products that are potent and irreversible inhibitors of the eukaryotic proteasome. In addition to being hybrid NRPS/PKS molecules, they also feature an unusual ureido-linkage (red) between two amino acid monomers. Here we report the first in vitro characterization of enzymatic ureido-linkage formation which is catalyzed by an NRPS, SylC. Using (13)C- and (18)O-labeling studies, we show that biosynthesis occurs via N-carboxylation to form an initial N-carboxy-aminoacyl-S-Ppant enzyme intermediate which undergoes intramolecular cyclization followed by condensation with a second amino acid to form the ureido-containing dipeptide product.
Collapse
Affiliation(s)
- Heidi J Imker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115. USA
| | | | | |
Collapse
|