1
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
2
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
3
|
Barker WT, Chandler CE, Melander RJ, Ernst RK, Melander C. Tryptamine derivatives disarm colistin resistance in polymyxin-resistant gram-negative bacteria. Bioorg Med Chem 2019; 27:1776-1788. [PMID: 30898435 DOI: 10.1016/j.bmc.2019.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/30/2022]
Abstract
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.
Collapse
Affiliation(s)
- William T Barker
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Roberta J Melander
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Christian Melander
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Wang C, Xu P, Zhang L, Huang J, Zhu K, Luo C. Current Strategies and Applications for Precision Drug Design. Front Pharmacol 2018; 9:787. [PMID: 30072901 PMCID: PMC6060444 DOI: 10.3389/fphar.2018.00787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Since Human Genome Project (HGP) revealed the heterogeneity of individuals, precision medicine that proposes the customized healthcare has become an intractable and hot research. Meanwhile, as the Precision Medicine Initiative launched, precision drug design which aims at maximizing therapeutic effects while minimizing undesired side effects for an individual patient has entered a new stage. One of the key strategies of precision drug design is target based drug design. Once a key pathogenic target is identified, rational drug design which constitutes the major part of precision drug design can be performed. Examples of rational drug design on novel druggable targets and protein-protein interaction surfaces are summarized in this review. Besides, various kinds of computational modeling and simulation approaches increasingly benefit for the drug discovery progress. Molecular dynamic simulation, drug target prediction and in silico clinical trials are discussed. Moreover, due to the powerful ability in handling high-dimensional data and complex system, deep learning has efficiently promoted the applications of artificial intelligence in drug discovery and design. In this review, deep learning methods that tailor to precision drug design are carefully discussed. When a drug molecule is discovered, the development of specific targeted drug delivery system becomes another key aspect of precision drug design. Therefore, state-of-the-art techniques of drug delivery system including antibody-drug conjugates (ADCs), and ligand-targeted conjugates are also included in this review.
Collapse
Affiliation(s)
- Chen Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Luyu Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Huang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
PKC in Regenerative Therapy: New Insights for Old Targets. Pharmaceuticals (Basel) 2017; 10:ph10020046. [PMID: 28524095 PMCID: PMC5490403 DOI: 10.3390/ph10020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults often result in severe clinical complications (i.e., infections and/or amputation) and sometimes lead to patient death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules in wound-healing.
Collapse
|
6
|
Strödke B, Gehring AP, Bracher F. Synthesis of desaza analogues of annomontine and canthin-4-one alkaloids. Arch Pharm (Weinheim) 2015; 348:125-31. [PMID: 25664630 DOI: 10.1002/ardp.201400328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022]
Abstract
1-Acetylcarbazoles are readily converted to 3-desazacanthin-4-ones upon treatment with Bredereck's reagent, but in contrast to canthin-4-ones, these do not undergo ring transformation reactions with guanidine. Only after N-protection (methyl or 2-(trimethylsilyl)ethoxymethyl group), 2-desaza analogues of the alkaloid annomontine are accessible via the enaminoketones obtained by condensation with Bredereck's reagent. One of the annomontine analogues is an inhibitor of the Plasmodium falciparum CDC-like kinases (CLK) and shows antimalarial activity.
Collapse
Affiliation(s)
- Benjamin Strödke
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | |
Collapse
|
7
|
Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochem J 2015; 471:415-30. [PMID: 26349539 DOI: 10.1042/bj20141127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/08/2015] [Indexed: 11/17/2022]
Abstract
By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible.
Collapse
|
8
|
Zhan P, Itoh Y, Suzuki T, Liu X. Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. J Med Chem 2015; 58:7611-33. [PMID: 26086931 DOI: 10.1021/acs.jmedchem.5b00229] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
9
|
Ferguson BD, Carol Tan YH, Kanteti RS, Liu R, Gayed MJ, Vokes EE, Ferguson MK, John Iafrate A, Gill PS, Salgia R. Novel EPHB4 Receptor Tyrosine Kinase Mutations and Kinomic Pathway Analysis in Lung Cancer. Sci Rep 2015; 5:10641. [PMID: 26073592 PMCID: PMC4466581 DOI: 10.1038/srep10641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Lung cancer outcomes remain poor despite the identification of several potential therapeutic targets. The EPHB4 receptor tyrosine kinase (RTK) has recently emerged as an oncogenic factor in many cancers, including lung cancer. Mutations of EPHB4 in lung cancers have previously been identified, though their significance remains unknown. Here, we report the identification of novel EPHB4 mutations that lead to putative structural alterations as well as increased cellular proliferation and motility. We also conducted a bioinformatic analysis of these mutations to demonstrate that they are mutually exclusive from other common RTK variants in lung cancer, that they correspond to analogous sites of other RTKs’ variations in cancers, and that they are predicted to be oncogenic based on biochemical, evolutionary, and domain-function constraints. Finally, we show that EPHB4 mutations can induce broad changes in the kinome signature of lung cancer cells. Taken together, these data illuminate the role of EPHB4 in lung cancer and further identify EPHB4 as a potentially important therapeutic target.
Collapse
Affiliation(s)
- Benjamin D Ferguson
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Yi-Hung Carol Tan
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Rajani S Kanteti
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Ren Liu
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, California, United States of America
| | - Matthew J Gayed
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Everett E Vokes
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mark K Ferguson
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Parkash S Gill
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, California, United States of America
| | - Ravi Salgia
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Gower CM, Chang MEK, Maly DJ. Bivalent inhibitors of protein kinases. Crit Rev Biochem Mol Biol 2014; 49:102-15. [PMID: 24564382 DOI: 10.3109/10409238.2013.875513] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described.
Collapse
Affiliation(s)
- Carrie M Gower
- Department of Chemistry, University of Washington , Seattle, WA , USA
| | | | | |
Collapse
|
11
|
van Ameijde J, Zwiebel AP, Ruijtenbeek R, Liskamp RM. Azide–alkyne cycloaddition affording enzymatically tunable bisubstrate based inhibitors of histone acetyltransferase PCAF. Bioorg Med Chem Lett 2014; 24:113-6. [DOI: 10.1016/j.bmcl.2013.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
|
12
|
van Ameijde J, Overvoorde J, Knapp S, den Hertog J, Ruijtenbeek R, Liskamp RMJ. Real-Time Monitoring of the Dephosphorylating Activity of Protein Tyrosine Phosphatases Using Microarrays with 3-Nitrophosphotyrosine Substrates. Chempluschem 2013; 78:1349-1357. [PMID: 31986648 DOI: 10.1002/cplu.201300299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 11/10/2022]
Abstract
Phosphatases and kinases regulate the crucial phosphorylation post-translational modification. In spite of their similarly important role in many diseases and therapeutic potential, phosphatases have received arguably less attention. One reason for this is a scarcity of high-throughput phosphatase assays. Herein, a new real-time, dynamic protein tyrosine phosphatase (PTP) substrate microarray assay measuring product formation is described. PTP substrates comprising a novel 3-nitrophosphotyrosine residue are immobilized in discrete spots. After reaction catalyzed by a PTP a 3-nitrotyrosine residue is formed that can be detected by specific, sequence-independent antibodies. The resulting microarray was successfully evaluated with a panel of recombinant PTPs and cell lysates, which afforded results comparable to data from other assays. Its parallel nature, convenience, and low sample requirements facilitate investigation of the therapeutically relevant PTP enzyme family.
Collapse
Affiliation(s)
- Jeroen van Ameijde
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands), Fax: (+31) (0)30-253-6655.,Netherlands Proteomics Centre, Padualaan 8, 3584 CA Utrecht (The Netherlands)
| | - John Overvoorde
- Hubrecht Institute, KNAW and University Medical Centre, Uppsalalaan 8, 3508 AD Utrecht (The Netherlands)
| | - Stefan Knapp
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Headington, Oxford OX3 7DQ (U.K.)
| | - Jeroen den Hertog
- Hubrecht Institute, KNAW and University Medical Centre, Uppsalalaan 8, 3508 AD Utrecht (The Netherlands).,Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands)
| | - Rob Ruijtenbeek
- Pamgene International Ltd. Wolvenhoek 10, 5200 BJ Den Bosch (The Netherlands)
| | - Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands), Fax: (+31) (0)30-253-6655.,School of Chemistry, Joseph Black Building, Glasgow University, University Avenue, Glasgow G12 8QQ (U.K.)
| |
Collapse
|
13
|
van Wandelen LTM, van Ameijde J, Ismail-Ali AF, van Ufford HC(LQ, Vijftigschild LAW, Beekman JM, Martin NI, Ruijtenbeek R, Liskamp RMJ. Cell-penetrating bisubstrate-based protein kinase C inhibitors. ACS Chem Biol 2013; 8:1479-87. [PMID: 23621550 DOI: 10.1021/cb300709g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although protein kinase inhibitors present excellent pharmaceutical opportunities, lack of selectivity and associated therapeutic side effects are common. Bisubstrate-based inhibitors targeting both the high-selectivity peptide substrate binding groove and the high-affinity ATP pocket address this. However, they are typically large and polar, hampering cellular uptake. This paper describes a modular development approach for bisubstrate-based kinase inhibitors furnished with cell-penetrating moieties and demonstrates their cellular uptake and intracellular activity against protein kinase C (PKC). This enzyme family is a longstanding pharmaceutical target involved in cancer, immunological disorders, and neurodegenerative diseases. However, selectivity is particularly difficult to achieve because of homology among family members and with several related kinases, making PKC an excellent proving ground for bisubstrate-based inhibitors. Besides the pharmacological potential of the novel cell-penetrating constructs, the modular strategy described here may be used for discovering selective, cell-penetrating kinase inhibitors against any kinase and may increase adoption and therapeutic application of this promising inhibitor class.
Collapse
Affiliation(s)
- Loek T. M. van Wandelen
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jeroen van Ameijde
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ahmed F. Ismail-Ali
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - H. C. (Linda) Quarles van Ufford
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Nathaniel I. Martin
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- PamGene International Ltd., Wolvenhoek 10, PO Box 1345, 5200 BJ, ’s
Hertogenbosch, The Netherlands
| | - Rob M. J. Liskamp
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
14
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
15
|
Abstract
This review will highlight the most commonly used methods to discover small molecule Type III/IV kinase inhibitors.
Collapse
Affiliation(s)
- Lori Krim Gavrin
- Pfizer Research
- Rare Disease Chemistry and Chemical Biology
- BioTherapeutics Chemistry
- Cambridge
- USA
| | - Eddine Saiah
- Pfizer Research
- Rare Disease Chemistry and Chemical Biology
- BioTherapeutics Chemistry
- Cambridge
- USA
| |
Collapse
|
16
|
Hilhorst R, Houkes L, Mommersteeg M, Musch J, van den Berg A, Ruijtenbeek R. Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples. Methods Mol Biol 2013; 977:259-71. [PMID: 23436369 DOI: 10.1007/978-1-62703-284-1_21] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide microarray technology can be used to identify substrates for recombinant kinases, to measure kinase activity and changes thereof in cell lysates and lysates from fresh frozen (tumor) tissue. The effect of kinase inhibitors on the kinase activities in relevant tissues can be investigated as well. The method for performing experiments on dynamic peptide microarrays with real-time readout is described, as well as the influence of assay parameters and suggestions for optimization of experiments.
Collapse
Affiliation(s)
- Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
van Wandelen LTM, van Ameijde J, Mady ASA, Wammes AEM, Bode A, Poot AJ, Ruijtenbeek R, Liskamp RMJ. Directed modulation of protein kinase C isozyme selectivity with bisubstrate-based inhibitors. ChemMedChem 2012; 7:2113-21. [PMID: 23139239 DOI: 10.1002/cmdc.201200349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/09/2012] [Indexed: 11/11/2022]
Abstract
Kinases present an attractive target for drug development, since they are involved in vital cellular processes and are implicated in a variety of diseases, such as cancer and diabetes. However, obtaining selectivity for a specific kinase over others is difficult since many current kinase inhibitors exclusively target the highly conserved kinase ATP binding domain. Previously, a microarray-based strategy to discover so-called bisubstrate-based inhibitors that target the more specific peptide binding groove in addition to the ATP binding site was described. One attractive feature of this strategy is the opportunity to tune the selectivity of these inhibitors by systematically varying components. In an extension to this previous work, this study explores the potential of this guided selectivity modulation, leading to a series of inhibitors with different selectivity profiles against highly homologous protein kinase C (PKC) isozymes. Of the inhibitors studied, most exhibited improved potency and selectivity compared with their constituent parts. Furthermore, the selectivity was found to be tunable either through modification of the pseudosubstrate peptide (peptide binding groove) or the ATP-competitive part (ATP binding site). In a number of cases, the selectivity of the construct could be predicted from the initial peptide substrate profiling experiment. Since this strategy is applicable to all kinase sets, it could be used to rapidly develop uniquely selective inhibitors.
Collapse
Affiliation(s)
- Loek T M van Wandelen
- Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sikkema AH, den Dunnen WFA, Diks SH, Peppelenbosch MP, de Bont ESJM. Optimizing targeted cancer therapy: towards clinical application of systems biology approaches. Crit Rev Oncol Hematol 2012; 82:171-86. [PMID: 21641230 DOI: 10.1016/j.critrevonc.2011.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022] Open
Abstract
In cancer, genetic and epigenetic alterations ultimately culminate in discordant activation of signal transduction pathways driving the malignant process. Pharmacological or biological inhibition of such pathways holds significant promise with respect to devising rational therapy for cancer. Thus, technical concepts pursuing robust characterization of kinase activity in tissue samples from cancer patients have been subject of investigation. In the present review we provide a comprehensive overview of these techniques and discuss their advantages and disadvantages for systems biology approaches to identify kinase targets in oncological disease. Recent advances in the development and application of array-based peptide-substrate kinase activity screens show great promise in overcoming the discrepancy between the evaluation of aberrant cell signaling in specific malignancies or even individual patients and the currently available ensemble of highly specific targeted treatment strategies. These developments have the potential to result in a more effective selection of kinase inhibitors and thus optimize mechanism-based patient-specific therapeutic strategies. Given the results from current research on the tumor kinome, generating network views on aberrant tumor cell signaling is critical to meet this challenge.
Collapse
Affiliation(s)
- Arend H Sikkema
- Beatrix Children's Hospital, Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Peptide Arrays. MICROARRAYS IN DIAGNOSTICS AND BIOMARKER DEVELOPMENT 2012. [PMCID: PMC7193736 DOI: 10.1007/978-3-642-28203-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the concern over the potential loss of structural information as a result of the use of peptides as opposed to proteins as molecular probes, peptide arrays have been implemented in a broad range of applications including antibody screening and epitope mapping, characterization of molecular interactions, and enzymatic activity profiling, and they have become a valuable tool for proteomics research. In this chapter, we first (Sect. 7.1) recapitulate the development of these arrays and highlight a couple of key improvements in the array production and the application in proteomics research. For clinical and biomarker development applications, it is important to measure entities that are directly related to physiological function (and dysfunction). In this respect, the assessment of enzymatic activities is obviously preferable to genotyping, expression profiling, or even measurement of protein amounts. In Sect. 7.2, an original technology based on peptides arrayed onto a porous support allows detailed profiling of kinase activities in a biological sample. The applications described range from kinase characterization to inhibition profiles, detection of off-target effects, and drug response prediction in a clinical setting, allowing rational choice of the drug to be used. Such directly functional approaches will have an important role in the transition to more personalized medicine. Finally, in Sect. 7.3, a recently developed method for “laser printing” of peptide arrays that will make these approaches much more practical is presented.
Collapse
|
21
|
Substrate profiling of IGF-1R and InsR: Identification of a potent pentamer substrate. Bioorg Med Chem Lett 2011; 21:7030-3. [DOI: 10.1016/j.bmcl.2011.09.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022]
|
22
|
Arsenault R, Griebel P, Napper S. Peptide arrays for kinome analysis: New opportunities and remaining challenges. Proteomics 2011; 11:4595-609. [DOI: 10.1002/pmic.201100296] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 01/08/2023]
|
23
|
Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS One 2011; 6:e18522. [PMID: 21533163 PMCID: PMC3078918 DOI: 10.1371/journal.pone.0018522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/10/2011] [Indexed: 12/27/2022] Open
Abstract
Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2 domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains (JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2 increased the Km for ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this inhibitory mechanism but does not significantly affect substrate preference or Km for ATP. These results provide the biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Arturo Sanz
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Ungureanu
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Tuija Pekkala
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | | | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Olli Silvennoinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
24
|
Serwa RA, Swiecicki JM, Homann D, Hackenberger CPR. Phosphoramidate-peptide synthesis by solution- and solid-phase Staudinger-phosphite reactions. J Pept Sci 2010; 16:563-7. [DOI: 10.1002/psc.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Prediction of response to preoperative chemoradiotherapy in rectal cancer by multiplex kinase activity profiling. Int J Radiat Oncol Biol Phys 2010; 78:555-62. [PMID: 20675069 DOI: 10.1016/j.ijrobp.2010.04.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/09/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE Tumor response of rectal cancer to preoperative chemoradiotherapy (CRT) varies considerably. In experimental tumor models and clinical radiotherapy, activity of particular subsets of kinase signaling pathways seems to predict radiation response. This study aimed to determine whether tumor kinase activity profiles might predict tumor response to preoperative CRT in locally advanced rectal cancer (LARC). METHODS AND MATERIALS Sixty-seven LARC patients were treated with a CRT regimen consisting of radiotherapy, fluorouracil, and, where possible, oxaliplatin. Pretreatment tumor biopsy specimens were analyzed using microarrays with kinase substrates, and the resulting substrate phosphorylation patterns were correlated with tumor response to preoperative treatment as assessed by histomorphologic tumor regression grade (TRG). A predictive model for TRG scores from phosphosubstrate signatures was obtained by partial-least-squares discriminant analysis. Prediction performance was evaluated by leave-one-out cross-validation and use of an independent test set. RESULTS In the patient population, 73% and 15% were scored as good responders (TRG 1-2) or intermediate responders (TRG 3), whereas 12% were assessed as poor responders (TRG 4-5). In a subset of 7 poor responders and 12 good responders, treatment outcome was correctly predicted for 95%. Application of the prediction model on the remaining patient samples resulted in correct prediction for 85%. Phosphosubstrate signatures generated by poor-responding tumors indicated high kinase activity, which was inhibited by the kinase inhibitor sunitinib, and several discriminating phosphosubstrates represented proteins derived from signaling pathways implicated in radioresistance. CONCLUSIONS Multiplex kinase activity profiling may identify functional biomarkers predictive of tumor response to preoperative CRT in LARC.
Collapse
|
26
|
Parera Pera N, Branderhorst HM, Kooij R, Maierhofer C, van der Kaaden M, Liskamp RMJ, Wittmann V, Ruijtenbeek R, Pieters RJ. Rapid Screening of Lectins for Multivalency Effects with a Glycodendrimer Microarray. Chembiochem 2010; 11:1896-904. [DOI: 10.1002/cbic.201000340] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Lavogina D, Enkvist E, Uri A. Bisubstrate inhibitors of protein kinases: from principle to practical applications. ChemMedChem 2010; 5:23-34. [PMID: 19774589 DOI: 10.1002/cmdc.200900252] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, Jakobi 2, 51014 Tartu (Estonia).
| | | | | |
Collapse
|
28
|
|
29
|
van Ameijde J, Poot AJ, van Wandelen LTM, Wammes AEM, Ruijtenbeek R, Rijkers DTS, Liskamp RMJ. Preparation of novel alkylated arginine derivatives suitable for click-cycloaddition chemistry and their incorporation into pseudosubstrate- and bisubstrate-based kinase inhibitors. Org Biomol Chem 2010; 8:1629-39. [PMID: 20237675 DOI: 10.1039/b922928k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient strategies for the introduction of arginine residues featuring acetylene or azide moieties in their side chains are described. The substituents are introduced in a way that maintains the basicity of the guanidine moiety. The methodology can be used e.g. for non-invasive labeling of arginine-containing peptides. Its applicability is demonstrated by the introduction of 'click' handles into a Protein Kinase C (PKC) pseudosubstrate peptide, and the subsequent preparation and evaluation of a novel bisubstrate-based inhibitor based on such a peptide.
Collapse
Affiliation(s)
- Jeroen van Ameijde
- Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|