1
|
Ramakrishna BS, Rani N, Xu H, Alan-Lee C, Schlegel HB, Nguyen HM. Why is thiol unexpectedly less reactive but more selective than alcohol in phenanthroline-catalyzed 1,2- cis O- and S-furanosylations? Org Biomol Chem 2025; 23:328-342. [PMID: 39575458 PMCID: PMC11582804 DOI: 10.1039/d4ob01593b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The lack of catalytic stereoselective approaches for producing 1,2-cis S-furanosides emphasizes the critical need for further research in this area. Herein, we present a stereoselective S-furanosylation method, utilizing a 4,7-dipiperidine-substituted phenanthroline catalyst. This developed protocol fills a gap in the field, enabling the coupling of cysteine residues and thiols with furanosyl bromide electrophiles. The process allows for stereoselective access to 1,2-cis S-furanosides. Through computational and experimental investigations, thiol is found to be less reactive than alcohol but exhibits greater stereoselectivity. The 1,2-cis stereoselectivity of O-products depends on the nature of the electrophile, while S-products are obtained with excellent 1,2-cis stereoselectivity, irrespective of the furanose structure. The displaced bromide ion from the glycosyl electrophile influences the reaction's reactivity and stereoselectivity. Alcohol-OH forms a stronger hydrogen bond with bromide ion than thiol-SH, contributing to the difference in their reactivity. The energy difference between forming S-furanoside and O-furanoside transition states is 3.7 kcal mol-1, supporting the increased reactivity of alcohol over thiol. The difference in transition state energies between the major and minor S-product is greater than that for the major and minor O-product. This is consistent with experimental data showing how thiol is more stereoselective than alcohol. The catalyst and reaction conditions utilized for the generation of 1,2-cis O-furanosides in our prior studies are found to be unsuitable for the synthesis of 1,2-cis S-furanosides. In the present study, a highly reactive phenanthroline catalyst and specific reaction conditions have been developed to achieve stereoselective S-linked product formation.
Collapse
Affiliation(s)
- Boddu S Ramakrishna
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Neha Rani
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hengfu Xu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Cyrus Alan-Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
2
|
Chen LM, Keisham S, Tateno H, van Ede J, Pronk M, van Loosdrecht MCM, Lin Y. Alterations of Glycan Composition in Aerobic Granular Sludge during the Adaptation to Seawater Conditions. ACS ES&T WATER 2024; 4:279-286. [PMID: 38229592 PMCID: PMC10788855 DOI: 10.1021/acsestwater.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Bacteria can synthesize a diverse array of glycans, being found attached to proteins and lipids or as loosely associated polysaccharides to the cells. The major challenge in glycan analysis in environmental samples lies in developing high-throughput and comprehensive characterization methodologies to elucidate the structure and monitor the change of the glycan profile, especially in protein glycosylation. To this end, in the current research, the dynamic change of the glycan profile of a few extracellular polymeric substance (EPS) samples was investigated by high-throughput lectin microarray and mass spectrometry, as well as sialylation and sulfation analysis. Those EPS were extracted from aerobic granular sludge collected at different stages during its adaptation to the seawater condition. It was found that there were glycoproteins in all of the EPS samples. In response to the exposure to seawater, the amount of glycoproteins and their glycan diversity displayed an increase during adaptation, followed by a decrease once the granules reached a stable state of adaptation. Information generated sheds light on the approaches to identify and monitor the diversity and dynamic alteration of the glycan profile of the EPS in response to environmental stimuli.
Collapse
Affiliation(s)
- Le Min Chen
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Jitske van Ede
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mario Pronk
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Royal
HaskoningDHV, Laan 1914
35, Amersfoort 3800 AL, The Netherlands
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
3
|
Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage ϕ CbK Predation of Multiflagellin Bacteria. J Bacteriol 2021; 203:JB.00399-20. [PMID: 33288623 DOI: 10.1128/jb.00399-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Caulobacter crescentus is a Gram-negative alphaproteobacterium that commonly lives in oligotrophic fresh- and saltwater environments. C. crescentus is a host to many bacteriophages, including ϕCbK and ϕCbK-like bacteriophages, which require interaction with the bacterial flagellum and pilus complexes during adsorption. It is commonly thought that the six paralogs of the flagellin gene present in C. crescentus are important for bacteriophage evasion. Here, we show that deletion of specific flagellins in C. crescentus can indeed attenuate ϕCbK adsorption efficiency, although no single deletion completely ablates ϕCbK adsorption. Thus, the bacteriophage ϕCbK likely recognizes a common motif among the six known flagellins in C. crescentus with various degrees of efficiency. Interestingly, we observe that most deletion strains still generate flagellar filaments, with the exception of a strain that contains only the most divergent flagellin, FljJ, or a strain that contains only FljN and FljO. To visualize the surface residues that are likely recognized by ϕCbK, we determined two high-resolution structures of the FljK filament, with and without an amino acid substitution that induces straightening of the filament. We observe posttranslational modifications on conserved surface threonine residues of FljK that are likely O-linked glycans. The possibility of interplay between these modifications and ϕCbK adsorption is discussed. We also determined the structure of a filament composed of a heterogeneous mixture of FljK and FljL, the final resolution of which was limited to approximately 4.6 Å. Altogether, this work builds a platform for future investigations of how phage ϕCbK infects C. crescentus at the molecular level.IMPORTANCE Bacterial flagellar filaments serve as an initial attachment point for many bacteriophages to bacteria. Some bacteria harbor numerous flagellin genes and are therefore able to generate flagellar filaments with complex compositions, which is thought to be important for evasion from bacteriophages. This study characterizes the importance of the six flagellin genes in C. crescentus for infection by bacteriophage ϕCbK. We find that filaments containing the FljK flagellin are the preferred substrate for bacteriophage ϕCbK. We also present a high-resolution structure of a flagellar filament containing only the FljK flagellin, which provides a platform for future studies on determining how bacteriophage ϕCbK attaches to flagellar filaments at the molecular level.
Collapse
|
4
|
Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of Glycoproteins Isolated from Extracellular Polymeric Substances of Full-Scale Anammox Granular Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13127-13135. [PMID: 30335377 PMCID: PMC6256349 DOI: 10.1021/acs.est.8b03180] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 05/22/2023]
Abstract
ANaerobic AMMonium OXidation (anammox) is an established process for efficient nitrogen removal from wastewater, relying on anammox bacteria to form stable biofilms or granules. To understand the formation, structure, and stability of anammox granules, it is important to determine the composition of the extracellular polymeric substances (EPS). The aim of this research was to elucidate the nature of the proteins, which are the major fraction of the EPS and were suspected to be glycosylated. EPS were extracted from full-scale anammox granular sludge, dominated by " Candidatus Brocadia", and subjected to denaturing polyacrylamide gel electrophoresis. By further analysis with mass spectrometry, a high abundant glycoprotein, carrying a heterogeneous O-glycan structure, was identified. The potential glycosylation sequence motif was identical to that proposed for the surface layer protein of " Candidatus Kuenenia stuttgartiensis". The heavily glycosylated protein forms a large fraction of the EPS and was also located by lectin staining. Therefore, we hypothesize an important role of glycoproteins in the structuring of anammox granules, comparable to the importance of glycans in the extracellular matrix of multicellular organisms. Furthermore, different glycoconjugates may have distinct roles in the matrix of granular sludge, which requires more in-depth characterization of different glycoconjugates in future EPS studies.
Collapse
Affiliation(s)
- Marissa Boleij
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Martin Pabst
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Thomas R Neu
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brueckstrasse 3A , 39114 Magdeburg , Germany
| | - Mark C M van Loosdrecht
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Yuemei Lin
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| |
Collapse
|
5
|
Zhang D, Wang M, Guo Z, Guo P, Chen X, Wang J. Specific Isolation of Glycoproteins with Mesoporous Zirconia-Polyoxometalate Hybrid. Proteomics 2018; 18:e1700381. [DOI: 10.1002/pmic.201700381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/01/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Dandan Zhang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Mengmeng Wang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Zhiyong Guo
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Pengfei Guo
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Xuwei Chen
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Jianhua Wang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| |
Collapse
|
6
|
Recent advances in enhanced enzyme activity, thermostability and secretion by N-glycosylation regulation in yeast. Biotechnol Lett 2018; 40:847-854. [DOI: 10.1007/s10529-018-2526-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
7
|
Basit A, Liu J, Rahim K, Jiang W, Lou H. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 2018; 38:989-1002. [DOI: 10.1080/07388551.2018.1425662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Zamora CY, Schocker NS, Chang MM, Imperiali B. Chemoenzymatic Synthesis and Applications of Prokaryote-Specific UDP-Sugars. Methods Enzymol 2017; 597:145-186. [PMID: 28935101 DOI: 10.1016/bs.mie.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This method describes the chemoenzymatic synthesis of several nucleotide sugars, which are essential substrates in the biosynthesis of prokaryotic N- and O-linked glycoproteins. Protein glycosylation is now known to be widespread in prokaryotes and proceeds via sequential action of several enzymes, utilizing both common and modified prokaryote-specific sugar nucleotides. The latter, which include UDP-hexoses such as UDP-diNAc-bacillosamine (UDP-diNAcBac), UDP-diNAcAlt, and UDP-2,3-diNAcManA, are also important components of other bacterial and archaeal glycoconjugates. The ready availability of these "high-value" intermediates will enable courses of study into inhibitor screening, glycoconjugate biosynthesis pathway discovery, and unnatural carbohydrate incorporation toward metabolic engineering.
Collapse
Affiliation(s)
| | | | - Michelle M Chang
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Barbara Imperiali
- Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
9
|
Mustafa G, Kousar S, Rajoka MI, Jamil A. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases. AMB Express 2016; 6:30. [PMID: 27080227 PMCID: PMC5471287 DOI: 10.1186/s13568-016-0202-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023] Open
Abstract
Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications.
Collapse
|
10
|
Leon DR, Ytterberg AJ, Boontheung P, Kim U, Loo JA, Gunsalus RP, Ogorzalek Loo RR. Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1. Front Microbiol 2015; 6:149. [PMID: 25798134 PMCID: PMC4350412 DOI: 10.3389/fmicb.2015.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to "mine" information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.
Collapse
Affiliation(s)
- Deborah R Leon
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - A Jimmy Ytterberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Pinmanee Boontheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Unmi Kim
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA ; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Robert P Gunsalus
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
11
|
Pérez-Pascual D, Gómez E, Guijarro JA. Lack of a type-2 glycosyltransferase in the fish pathogen Flavobacterium psychrophilum determines pleiotropic changes and loss of virulence. Vet Res 2015; 46:1. [PMID: 25582708 PMCID: PMC4293000 DOI: 10.1186/s13567-014-0124-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/26/2014] [Indexed: 02/05/2023] Open
Abstract
Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were screened in order to identify those with alteration in colony morphology, colony spreading and extracellular proteolytic activity, amongst other phenotypes. A F. psychrophilum mutant lacking gliding motility showed interruption of the FP1638 locus that encodes a putative type-2 glycosyltransferase (from here on referred to as fpgA gene, Flavobacterium psychrophilum glycosyltransferase). Additionally, the mutant also showed a decrease in the extracellular proteolytic activity as a consequence of down regulation in the fpgA mutant background of the fpp2-fpp1 operon promoter, responsible for the major extracellular proteolytic activity of the bacterium. The protein glycosylation profile of the parental strain showed the presence of a 22 kDa glycosylated protein which is lost in the mutant. Complementation with the fpgA gene led to the recovery of the wild-type phenotype. LD50 experiments in the rainbow trout infection model show that the mutant was highly attenuated. The pleiotropic phenotype of the mutant demonstrated the importance of this glycosyltranferase in the physiology and virulence of the bacterium. Moreover, the fpgA mutant strain could be considered a good candidate for the design of an attenuated vaccine.
Collapse
Affiliation(s)
- David Pérez-Pascual
- />Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
- />Present address: INRA, Institut Micalis, Équipe Peptides et Communication Bactérienne, Domaine de Vilvert, bâtiment 526, 78352 Jouy-en-Josas cedex, France
| | - Esther Gómez
- />Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A Guijarro
- />Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Characterization of wheat germ agglutinin lectin-reactive glycosylated OmpA-like proteins derived from Porphyromonas gingivalis. Infect Immun 2014; 82:4563-71. [PMID: 25135681 DOI: 10.1128/iai.02069-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycosylation is one of the common posttranslational modifications in eukaryotes. Recently, glycosylated proteins have also been identified in prokaryotes. A few glycosylated proteins, including gingipains, have been identified in Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis. However, no other glycosylated proteins have been found. The present study identified glycoproteins in P. gingivalis cell lysates by lectin blotting. Whole-cell lysates reacted with concanavalin A (ConA), Lens culinaris agglutinin (LCA), Phaseolus vulgaris erythroagglutinin (PHA-E4), and wheat germ agglutinin (WGA), suggesting the presence of mannose-, N-acetylgalactosamine-, or N-acetylglucosamine (GlcNAc)-modified proteins. Next, glycoproteins were isolated by ConA-, LCA-, PHA-E4-, or WGA-conjugated lectin affinity chromatography although specific proteins were enriched only by the WGA column. Mass spectrometry analysis showed that an OmpA-like, heterotrimeric complex formed by Pgm6 and Pgm7 (Pgm6/7) was the major glycoprotein isolated from P. gingivalis. Deglycosylation experiments and Western blotting with a specific antibody indicated that Pgm6/7 was modified with O-GlcNAc. When whole-cell lysates from P. gingivalis mutant strains with deletions of Pgm6 and Pgm7 were applied to a WGA column, homotrimeric Pgm7, but not Pgm6, was isolated. Heterotrimeric Pgm6/7 had the strongest affinity for fibronectin of all the extracellular proteins tested, whereas homotrimeric Pgm7 showed reduced binding activity. These findings suggest that the heterotrimeric structure is important for the biological activity of glycosylated WGA-binding OmpA-like proteins in P. gingivalis.
Collapse
|
13
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
14
|
Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014; 78:304-41. [PMID: 24847024 PMCID: PMC4054257 DOI: 10.1128/mmbr.00052-13] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lina Kaminski
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| |
Collapse
|
15
|
van Teeseling MCF, de Almeida NM, Klingl A, Speth DR, Op den Camp HJM, Rachel R, Jetten MSM, van Niftrik L. A new addition to the cell plan of anammox bacteria: "Candidatus Kuenenia stuttgartiensis" has a protein surface layer as the outermost layer of the cell. J Bacteriol 2014; 196:80-9. [PMID: 24142254 PMCID: PMC3911120 DOI: 10.1128/jb.00988-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023] Open
Abstract
Anammox bacteria perform anaerobic ammonium oxidation (anammox) and have a unique compartmentalized cell consisting of three membrane-bound compartments (from inside outwards): the anammoxosome, riboplasm, and paryphoplasm. The cell envelope of anammox bacteria has been proposed to deviate from typical bacterial cell envelopes by lacking both peptidoglycan and a typical outer membrane. However, the composition of the anammox cell envelope is presently unknown. Here, we investigated the outermost layer of the anammox cell and identified a proteinaceous surface layer (S-layer) (a crystalline array of protein subunits) as the outermost component of the cell envelope of the anammox bacterium "Candidatus Kuenenia stuttgartiensis." This is the first description of an S-layer in the phylum of the Planctomycetes and a new addition to the cell plan of anammox bacteria. This S-layer showed hexagonal symmetry with a unit cell consisting of six protein subunits. The enrichment of the S-layer from the cell led to a 160-kDa candidate protein, Kustd1514, which has no homology to any known protein. This protein is present in a glycosylated form. Antibodies were generated against the glycoprotein and used for immunogold localization. The antiserum localized Kustd1514 to the S-layer and thus verified that this protein forms the "Ca. Kuenenia stuttgartiensis" S-layer.
Collapse
Affiliation(s)
- Muriel C. F. van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Naomi M. de Almeida
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Andreas Klingl
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Daan R. Speth
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Reinhard Rachel
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Posch G, Pabst M, Neumann L, Coyne MJ, Altmann F, Messner P, Comstock LE, Schäffer C. "Cross-glycosylation" of proteins in Bacteroidales species. Glycobiology 2012; 23:568-77. [PMID: 23258847 DOI: 10.1093/glycob/cws172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
While it is now evident that the two Bacteroidales species Bacteroides fragilis and Tannerella forsythia both have general O-glycosylation systems and share a common glycosylation sequon, the ability of these organisms to glycosylate a protein native to the other organism has not yet been demonstrated. Here, we report on the glycosylation of heterologous proteins between these two organisms. Using genetic tools previously developed for Bacteroides species, two B. fragilis model glycoproteins were expressed in the fastidious anaerobe T. forsythia and the attachment of the known T. forsythia O-glycan to these proteins was demonstrated by liquid chromatography electrospray ionization tandem mass spectrometry. Likewise, two predominant T. forsythia glycoproteins were expressed in B. fragilis and glycosylation with the B. fragilis O-glycan was confirmed. Purification of these proteins from B. fragilis allowed the preliminary characterization of the previously uncharacterized B. fragilis protein O-glycan. Based on mass spectrometric data, we show that the B. fragilis protein O-glycan is an oligosaccharide composed of nine sugar units. Compositional and structural similarities with the T. forsythia O-glycan suggest commonalities in their biosynthesis. These data demonstrate the feasibility of exploiting these organisms for the design of novel glycoproteins.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Juturu V, Wu JC. Microbial xylanases: Engineering, production and industrial applications. Biotechnol Adv 2012; 30:1219-27. [DOI: 10.1016/j.biotechadv.2011.11.006] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/26/2022]
|
18
|
Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, Moore CH, Havlíček V, Patchett ML, Norris GE. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 2011; 585:645-50. [PMID: 21251913 DOI: 10.1016/j.febslet.2011.01.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 11/12/2022]
Abstract
O-Glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine β-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43. The O-linked N-acetylglucosamine is essential for bacteriostatic activity, and the C-terminus is required for full potency (IC(50) 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S-linked to Cys22.
Collapse
Affiliation(s)
- Judith Stepper
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Biosynthesis and role of N-linked glycosylation in cell surface structures of archaea with a focus on flagella and s layers. Int J Microbiol 2010; 2010:470138. [PMID: 20976295 PMCID: PMC2952790 DOI: 10.1155/2010/470138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/01/2010] [Indexed: 11/17/2022] Open
Abstract
The genetics and biochemistry of the N-linked glycosylation system of Archaea have been investigated over the past 5 years using flagellins and S layers as reporter proteins in the model organisms, Methanococcus voltae, Methanococcus maripaludis, and Haloferax volcanii. Structures of archaeal N-linked glycans have indicated a variety of linking sugars as well as unique sugar components. In M. voltae, M. maripaludis, and H. volcanii, a number of archaeal glycosylation genes (agl) have been identified by deletion and complementation studies. These include many of the glycosyltransferases and the oligosaccharyltransferase needed to assemble the glycans as well as some of the genes encoding enzymes required for the biosynthesis of the sugars themselves. The N-linked glycosylation system is not essential for any of M. voltae, M. maripaludis, or H. volcanii, as demonstrated by the successful isolation of mutants carrying deletions in the oligosaccharyltransferase gene aglB (a homologue of the eukaryotic Stt3 subunit of the oligosaccharyltransferase complex). However, mutations that affect the glycan structure have serious effects on both flagellation and S layer function.
Collapse
|
20
|
Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 2010; 38:1307-13. [DOI: 10.1042/bst0381307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With glycosylation now firmly established across both Archaeal and bacterial proteins, a wide array of glycan diversity has become evident from structural analysis and genomic data. These discoveries have been built in part on the development and application of mass spectrometric technologies to the bacterial glycoproteome. This review highlights recent findings using high sensitivity MS of the large variation of glycans that have been reported on flagellin and pilin proteins of bacteria, using both ‘top down’ and ‘bottom up’ approaches to the characterization of these glycoproteins. We summarize current knowledge of the sugar modifications that have been observed on flagellins and pilins, in terms of both the diverse repertoire of monosaccharides observed, and the assemblage of moieties that decorate many of these sugars.
Collapse
|
21
|
The s-layer glycome-adding to the sugar coat of bacteria. Int J Microbiol 2010; 2011. [PMID: 20871840 PMCID: PMC2943079 DOI: 10.1155/2011/127870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.
Collapse
|
22
|
Jiménez-Castells C, Defaus S, Andreu D, Gutiérrez-Gallego R. Recent progress in the field of neoglycoconjugate chemistry. Biomol Concepts 2010; 1:85-96. [DOI: 10.1515/bmc.2010.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractGlycosylation is probably the most complex secondary gene event that affects the vast majority of proteins in nature resulting in the occurrence of a heterogeneous mixture of glycoforms for a single protein. Many functions are exerted by single monosaccharides, well-defined oligosaccharides, or larger glycans present in these glycoproteins. To unravel these functions it is of the utmost importance to prepare well-defined single glycans conjugated to the underlying aglycon. In this review, the most recent developments are described to address the preparation of carbohydrate-amino acid (glyco-conjugates). Naturally occurring N- and O-linked glycosylation are described and the preparation of non-natural sugar-amino acid linkages are also included.
Collapse
Affiliation(s)
- Carmen Jiménez-Castells
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sira Defaus
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- 1Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|