1
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
2
|
Qian Y, Ao M, Li B, Kuang Z, Wang X, Cao Y, Li J, Qiu Y, Guo K, Fang M, Wu Z. Design and synthesis of N-(1-(6-(substituted phenyl)-pyridazin-3-yl)-piperidine-3-yl)-amine derivatives as JMJD6 inhibitors. Bioorg Chem 2022; 129:106119. [PMID: 36116323 DOI: 10.1016/j.bioorg.2022.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 μM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhijian Kuang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Sci Rep 2022; 12:6065. [PMID: 35410347 PMCID: PMC9001643 DOI: 10.1038/s41598-022-10028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.
Collapse
|
4
|
Arva A, Kasu YAT, Duncan J, Alkhatatbeh MA, Brower CS. The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6. Proc Natl Acad Sci U S A 2021; 118:e2015887118. [PMID: 33443146 PMCID: PMC7817205 DOI: 10.1073/pnas.2015887118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ligand of Ate1 (Liat1) is a protein of unknown function that was originally discovered through its interaction with arginyl-tRNA protein transferase 1 (Ate1), a component of the Arg/N-degron pathway of protein degradation. Here, we characterized the functional domains of mouse Liat1 and found that its N-terminal half comprises an intrinsically disordered region (IDR) that facilitates its liquid-liquid phase separation (LLPS) in the nucleolus. Using bimolecular fluorescence complementation and immunocytochemistry, we found that Liat1 is targeted to the nucleolus by a low-complexity poly-K region within its IDR. We also found that the lysyl-hydroxylase activity of Jumonji Domain Containing 6 (Jmjd6) modifies Liat1, in a manner that requires the Liat1 poly-K region, and inhibits its nucleolar targeting and potential functions. In sum, this study reveals that Liat1 participates in nucleolar LLPS regulated by Jmjd6.
Collapse
Affiliation(s)
- Akshaya Arva
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | - Jennifer Duncan
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | | |
Collapse
|
5
|
Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. A human protein hydroxylase that accepts D-residues. Commun Chem 2020; 3:52. [PMID: 36703414 PMCID: PMC9814778 DOI: 10.1038/s42004-020-0290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a 2-oxoglutarate-dependent protein hydroxylase that catalyses C3 hydroxylations of protein residues. We report FIH can accept (D)- and (L)-residues for hydroxylation. The substrate selectivity of FIH differs for (D) and (L) epimers, e.g., (D)- but not (L)-allylglycine, and conversely (L)- but not (D)-aspartate, undergo monohydroxylation, in the tested sequence context. The (L)-Leu-containing substrate undergoes FIH-catalysed monohydroxylation, whereas (D)-Leu unexpectedly undergoes dihydroxylation. Crystallographic, mass spectrometric, and DFT studies provide insights into the selectivity of FIH towards (L)- and (D)-residues. The results of this work expand the potential range of known substrates hydroxylated by isolated FIH and imply that it will be possible to generate FIH variants with altered selectivities.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Philip A Gerken
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Helen Thorbjornsrud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
6
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
8
|
Islam MS, McDonough MA, Chowdhury R, Gault J, Khan A, Pires E, Schofield CJ. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. J Biol Chem 2019; 294:11637-11652. [PMID: 31147442 PMCID: PMC6663879 DOI: 10.1074/jbc.ra119.008693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Gault
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amjad Khan
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
9
|
Fulton MD, Brown T, Zheng YG. The Biological Axis of Protein Arginine Methylation and Asymmetric Dimethylarginine. Int J Mol Sci 2019; 20:ijms20133322. [PMID: 31284549 PMCID: PMC6651691 DOI: 10.3390/ijms20133322] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Protein post-translational modifications (PTMs) in eukaryotic cells play important roles in the regulation of functionalities of the proteome and in the tempo-spatial control of cellular processes. Most PTMs enact their regulatory functions by affecting the biochemical properties of substrate proteins such as altering structural conformation, protein-protein interaction, and protein-nucleic acid interaction. Amid various PTMs, arginine methylation is widespread in all eukaryotic organisms, from yeasts to humans. Arginine methylation in many situations can drastically or subtly affect the interactions of substrate proteins with their partnering proteins or nucleic acids, thus impacting major cellular programs. Recently, arginine methylation has become an important regulator of the formation of membrane-less organelles inside cells, a phenomenon of liquid-liquid phase separation (LLPS), through altering π-cation interactions. Another unique feature of arginine methylation lies in its impact on cellular physiology through its downstream amino acid product, asymmetric dimethylarginine (ADMA). Accumulation of ADMA in cells and in the circulating bloodstream is connected with endothelial dysfunction and a variety of syndromes of cardiovascular diseases. Herein, we review the current knowledge and understanding of protein arginine methylation in regards to its canonical function in direct protein regulation, as well as the biological axis of protein arginine methylation and ADMA biology.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Langley GW, Abboud MI, Lohans CT, Schofield CJ. Inhibition of a viral prolyl hydroxylase. Bioorg Med Chem 2019; 27:2405-2412. [PMID: 30737136 DOI: 10.1016/j.bmc.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
11
|
Elia LP, Mason AR, Alijagic A, Finkbeiner S. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 2019; 39:3332-3344. [PMID: 30696728 PMCID: PMC6788815 DOI: 10.1523/jneurosci.3498-17.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Deficient progranulin levels cause dose-dependent neurological syndromes: haploinsufficiency leads to frontotemporal lobar degeneration (FTLD) and nullizygosity produces adult-onset neuronal ceroid lipofuscinosis. Mechanisms controlling progranulin levels are largely unknown. To better understand progranulin regulation, we performed a genome-wide RNAi screen using an ELISA-based platform to discover genes that regulate progranulin levels in neurons. We identified 830 genes that raise or lower progranulin levels by at least 1.5-fold in Neuro2a cells. When inhibited by siRNA or some by submicromolar concentrations of small-molecule inhibitors, 33 genes of the druggable genome increased progranulin levels in mouse primary cortical neurons; several of these also raised progranulin levels in FTLD model mouse neurons. "Hit" genes regulated progranulin by transcriptional or posttranscriptional mechanisms. Pathway analysis revealed enrichment of hit genes from the autophagy-lysosome pathway (ALP), suggesting a key role for this pathway in regulating progranulin levels. Progranulin itself regulates lysosome function. We found progranulin deficiency in neurons increased autophagy and caused abnormally enlarged lysosomes and boosting progranulin levels restored autophagy and lysosome size to control levels. Our data link the ALP to neuronal progranulin: progranulin levels are regulated by autophagy and, in turn, progranulin regulates the ALP. Restoring progranulin levels by targeting genetic modifiers reversed FTLD functional deficits, opening up potential opportunities for future therapeutics development.SIGNIFICANCE STATEMENT Progranulin regulates neuron and immune functions and is implicated in aging. Loss of one functional allele causes haploinsufficiency and leads to frontotemporal lobar degeneration (FTLD), the second leading cause of dementia. Progranulin gene polymorphisms are linked to Alzheimer's disease (AD) and complete loss of function causes neuronal ceroid lipofuscinosis. Despite the critical role of progranulin levels in neurodegenerative disease risk, almost nothing is known about their regulation. We performed an unbiased screen and identified specific pathways controlling progranulin levels in neurons. Modulation of these pathways restored levels in progranulin-deficient neurons and reversed FTLD phenotypes. We provide a new comprehensive understanding of the genetic regulation of progranulin levels and identify potential targets to treat FTLD and other neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Amanda R Mason
- Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, and
| | - Amela Alijagic
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
12
|
Farrell A, Alahari S, Ermini L, Tagliaferro A, Litvack M, Post M, Caniggia I. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight 2019; 4:127009. [PMID: 30996134 DOI: 10.1172/jci.insight.127009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain-containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-β (TGF-β) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-β-driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.
Collapse
Affiliation(s)
- Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrea Tagliaferro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michael Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Institute of Medical Sciences, and.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences, and.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Naffa R, Edwards PJB, Norris G. Isolation and characterization of collagen type I crosslink from skin: high-resolution NMR reveals diastereomers of hydroxylysinonorleucine crosslink. Amino Acids 2019; 51:705-715. [PMID: 30788600 DOI: 10.1007/s00726-019-02708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Skin is made up of mainly collagen type I and its structure is stabilised by the formation of covalent immature and mature crosslinks. In this study, collagen immature crosslink hydroxylysinonorleucine (HLNL) was isolated from bovine skin in high purity using two sequential purification steps. These consisted of preparative fibrous cellulose and size exclusion chromatography. The purified crosslink was then analysed using tandem mass spectrometry and high-resolution nuclear magnetic resonance (NMR) spectroscopy. The mass of singly and doubly charged ions of HLNL was 292.1865 and 146.5970 m/z and their optimised fragmentation energy was 17 keV and 5 keV, respectively. The 13C NMR of HLNL showed a doubled-up peak at 67.84 and 67.91 ppm which corroborated a diastereomeric form of collagen immature crosslink HLNL and both are chiroptically indistinguishable. The chemical structure was fully resolved using 1H, 13C and DEPT-135 high-resolution NMR spectroscopy and compared with other previous studies. We also obtained for the first time the 2D NMR spectra COSY and HSQC of HLNL. We therefore suggested that collagen organization into specific fibrils' orientation may be affected by the different configuration of these diastereomers of HLNL.
Collapse
Affiliation(s)
- Rafea Naffa
- NZ Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Gillian Norris
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
Markolovic S, Zhuang Q, Wilkins SE, Eaton CD, Abboud MI, Katz MJ, McNeil HE, Leśniak RK, Hall C, Struwe WB, Konietzny R, Davis S, Yang M, Ge W, Benesch JLP, Kessler BM, Ratcliffe PJ, Cockman ME, Fischer R, Wappner P, Chowdhury R, Coleman ML, Schofield CJ. The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nat Chem Biol 2018; 14:688-695. [PMID: 29915238 PMCID: PMC6027965 DOI: 10.1038/s41589-018-0071-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/03/2018] [Indexed: 11/14/2022]
Abstract
Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Qinqin Zhuang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sarah E Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlotte D Eaton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Helen E McNeil
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert K Leśniak
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlotte Hall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Weston B Struwe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Simon Davis
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Ming Yang
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Peter J Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Matthew E Cockman
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Clark Center, Stanford, CA, USA.
| | - Mathew L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
16
|
Gao WW, Xiao RQ, Zhang WJ, Hu YR, Peng BL, Li WJ, He YH, Shen HF, Ding JC, Huang QX, Ye TY, Li Y, Liu ZY, Ding R, Rosenfeld MG, Liu W. JMJD6 Licenses ERα-Dependent Enhancer and Coding Gene Activation by Modulating the Recruitment of the CARM1/MED12 Co-activator Complex. Mol Cell 2018; 70:340-357.e8. [PMID: 29628309 PMCID: PMC6258263 DOI: 10.1016/j.molcel.2018.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.
Collapse
Affiliation(s)
- Wei-Wei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong-Quan Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Ren Hu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bing-Ling Peng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-Feng Shen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qi-Xuan Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Tian-Yi Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhi-Ying Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
17
|
Wilkins SE, Islam MS, Gannon JM, Markolovic S, Hopkinson RJ, Ge W, Schofield CJ, Chowdhury R. JMJD5 is a human arginyl C-3 hydroxylase. Nat Commun 2018; 9:1180. [PMID: 29563586 PMCID: PMC5862942 DOI: 10.1038/s41467-018-03410-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Oxygenase-catalysed post-translational modifications of basic protein residues, including lysyl hydroxylations and Nε-methyl lysyl demethylations, have important cellular roles. Jumonji-C (JmjC) domain-containing protein 5 (JMJD5), which genetic studies reveal is essential in animal development, is reported as a histone Nε-methyl lysine demethylase (KDM). Here we report how extensive screening with peptides based on JMJD5 interacting proteins led to the finding that JMJD5 catalyses stereoselective C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6). High-resolution crystallographic analyses reveal overall fold, active site and substrate binding/product release features supporting the assignment of JMJD5 as an arginine hydroxylase rather than a KDM. The results will be useful in the development of selective oxygenase inhibitors for the treatment of cancer and genetic diseases.
Collapse
Affiliation(s)
- Sarah E Wilkins
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Md Saiful Islam
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Joan M Gannon
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Suzana Markolovic
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Richard J Hopkinson
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Lancaster Road, Leicester, LE1 7RH, UK
| | - Wei Ge
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Rasheduzzaman Chowdhury
- The Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
- Stanford University School of Medicine, Department of Molecular and Cellular Physiology, Clark Center, Stanford, CA, 94305-5345, USA.
| |
Collapse
|
18
|
Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget 2018; 7:67532-67550. [PMID: 27556302 PMCID: PMC5341895 DOI: 10.18632/oncotarget.11376] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in numerous cellular processes including transcription, DNA repair, mRNA splicing and signal transduction. Currently, there are nine known members of the protein arginine methyltransferase (PRMT) family, but only one arginine demethylase has been identified, namely the Jumonji domain-containing 6 (JMJD6). Although its demethylase activity was initially challenged, its dual activity as an arginine demethylase and a lysine hydroxylase is now recognized. Interestingly, a growing number of substrates for arginine methylation and demethylation play key roles in tumorigenesis. Though alterations in the sequence of these enzymes have not been identified in cancer, their overexpression is associated with various cancers, suggesting that they could constitute targets for therapeutic strategies. In this review, we present the recent knowledge of the involvement of PRMTs and JMJD6 in tumorigenesis.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Los Angeles, Los Angeles, CA, USA.,Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Laura Corbo
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| |
Collapse
|
19
|
Gillberg L, Ørskov AD, Liu M, Harsløf LBS, Jones PA, Grønbæk K. Vitamin C - A new player in regulation of the cancer epigenome. Semin Cancer Biol 2017; 51:59-67. [PMID: 29102482 DOI: 10.1016/j.semcancer.2017.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Over the past few years it has become clear that vitamin C, as a provider of reduced iron, is an essential factor for the function of epigenetic regulators that initiate the demethylation of DNA and histones. Vitamin C deficiency is rare in the general population, but is frequently observed in patients with cancer. Genes encoding epigenetic regulators are often mutated in cancer, underscoring their central roles in carcinogenesis. In hematological cancers, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), drugs that reverse epigenetic aberrations are now the standard of care. Recent in vitro studies suggest that vitamin C at physiological concentrations, combined with hypomethylating agents may act synergistically to cause DNA demethylation through active and passive mechanisms, respectively. Additionally, several recent studies have renewed interest in the use of pharmacological doses of vitamin C injected intravenously to selectively kill tumor cells. This review will focus on the potential of vitamin C to optimize the outcome of epigenetic therapy in cancer patients and alternatively to act as a therapeutic at high doses.
Collapse
Affiliation(s)
- Linn Gillberg
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Ørskov
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Laurine B S Harsløf
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Mbenza NM, Vadakkedath PG, McGillivray DJ, Leung IKH. NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases. J Inorg Biochem 2017; 177:384-394. [PMID: 28893416 DOI: 10.1016/j.jinorgbio.2017.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
The non-haem Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases belong to a superfamily of structurally-related enzymes that play important biological roles in plants, microorganisms and animals. Structural, mechanistic and functional studies of 2OG oxygenases require efficient and effective biophysical tools. Nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study this enzyme superfamily. It has been applied to obtain information about enzyme kinetics, identify and characterise 2OG oxygenase-catalysed oxidation products, elucidate the catalytic mechanism, monitor ligand binding and study protein dynamics. This review summarises the types of information that NMR spectroscopy can provide in the studies of 2OG oxygenases, highlights the advantages of the technique and describes its drawbacks.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand..
| |
Collapse
|
21
|
Wesche J, Kühn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci 2017; 74:3305-3315. [PMID: 28364192 PMCID: PMC11107486 DOI: 10.1007/s00018-017-2515-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
Collapse
Affiliation(s)
- Juste Wesche
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sarah Kühn
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
22
|
Yi J, Shen HF, Qiu JS, Huang MF, Zhang WJ, Ding JC, Zhu XY, Zhou Y, Fu XD, Liu W. JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner. Nucleic Acids Res 2017; 45:3503-3518. [PMID: 27899633 PMCID: PMC5389685 DOI: 10.1093/nar/gkw1144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
JMJD6, a jumonji C (Jmj C) domain-containing protein demethylase and hydroxylase, has been implicated in an array of biological processes. It has been shown that JMJD6 interacts with and hydroxylates multiple serine/arginine-rich (SR) proteins and SR related proteins, including U2AF65, all of which are known to function in alternative splicing regulation. However, whether JMJD6 is widely involved in alternative splicing and the molecular mechanism underlying JMJD6-regulated alternative splicing have remained incompletely understood. Here, by using RASL-Seq, we investigated the functional impact of RNA-dependent interaction between JMJD6 and U2AF65, revealing that JMJD6 and U2AF65 co-regulated a large number of alternative splicing events. We further demonstrated the JMJD6 function in alternative splicing in jmjd6 knockout mice. Mechanistically, we showed that the enzymatic activity of JMJD6 was required for a subset of JMJD6-regulated splicing, and JMJD6-mediated lysine hydroxylation of U2AF65 could account for, at least partially, their co-regulated alternative splicing events, suggesting both JMJD6 enzymatic activity-dependent and independent control of alternative splicing. These findings reveal an intimate link between JMJD6 and U2AF65 in alternative splicing regulation, which has important implications in development and disease processes.
Collapse
Affiliation(s)
- Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-Feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jin-Song Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Ming-Feng Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-Cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiao-Yan Zhu
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
23
|
Miotti S, Gulino A, Ferri R, Parenza M, Chronowska A, Lecis D, Sangaletti S, Tagliabue E, Tripodo C, Colombo MP. Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities. FASEB J 2017; 31:5356-5370. [PMID: 28790175 DOI: 10.1096/fj.201700377r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
JMJD6 is known to localize in the nucleus, exerting histone arginine demethylase and lysyl hydroxylase activities. A novel localization of JMJD6 in the extracellular matrix, resulting from its secretion as a soluble protein, was unveiled by a new anti-JMJD6 mAb called P4E11, which was developed to identify new targets in the stroma. Recombinant JMJD6 binds with collagen type I (Coll-I), and distinct JMJD6 peptides interfere with collagen fibrillogenesis, collagen-fibronectin interaction, and adhesion of human tumor cells to the collagen substrate. P4E11 and collagen binding to JMJD6 are mutually exclusive because the amino acid sequences of JMJD6 necessary for the interaction with Coll-I are part of the conformational epitope recognized by P4E11. In mice injected with mouse 4T1 breast carcinoma cells, treatment with P4E11 reduced fibrosis at the primary tumor and prevented lung metastases. Reduction of fibrosis has also been documented in human breast and ovarian tumors (MDA-MB-231 and IGROV1, respectively) xenotransplanted into immunodeficient mice treated with P4E11. In summary, this study uncovers a new localization and function for JMJD6 that is most likely independent from its canonical enzymatic activities, and demonstrates that JMJD6 can functionally interact with Coll-I. P4E11 mAb, inhibiting JMJD6/Coll-I interaction, represents a new opportunity to target fibrotic and tumor diseases.-Miotti, S., Gulino, A., Ferri, R., Parenza, M., Chronowska, A., Lecis, D., Sangaletti, S., Tagliabue, E., Tripodo, C., Colombo, M. P. Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities.
Collapse
Affiliation(s)
- Silvia Miotti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Renata Ferri
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Mariella Parenza
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Agnieszka Chronowska
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy;
| |
Collapse
|
24
|
Kwok J, O'Shea M, Hume DA, Lengeling A. Jmjd6, a JmjC Dioxygenase with Many Interaction Partners and Pleiotropic Functions. Front Genet 2017; 8:32. [PMID: 28360925 PMCID: PMC5352680 DOI: 10.3389/fgene.2017.00032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Lysyl hydroxylation and arginyl demethylation are post-translational events that are important for many cellular processes. The jumonji domain containing protein 6 (JMJD6) has been reported to catalyze both lysyl hydroxylation and arginyl demethylation on diverse protein substrates. It also interacts directly with RNA. This review summarizes knowledge of JMJD6 functions that have emerged in the last 15 years and considers how a single Jumonji C (JmjC) domain-containing enzyme can target so many different substrates. New links and synergies between the three main proposed functions of Jmjd6 in histone demethylation, promoter proximal pause release of polymerase II and RNA splicing are discussed. The physiological context of the described molecular functions is considered and recently described novel roles for JMJD6 in cancer and immune biology are reviewed. The increased knowledge of JMJD6 functions has wider implications for our general understanding of the JmjC protein family of which JMJD6 is a member.
Collapse
Affiliation(s)
- Janice Kwok
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Marie O'Shea
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Andreas Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| |
Collapse
|
25
|
Korneenko TV, Pestov NB, Hurski AL, Fedarkevich AM, Shmanai VV, Brenna JT, Shchepinov MS. A strong developmental isotope effect in Caenorhabditis elegans induced by 5,5-deuterated lysine. Amino Acids 2017; 49:887-894. [DOI: 10.1007/s00726-017-2386-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/17/2023]
|
26
|
Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases. Curr Opin Struct Biol 2016; 41:62-72. [PMID: 27309310 DOI: 10.1016/j.sbi.2016.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 02/08/2023]
Abstract
The Jumonji-C (JmjC) subfamily of 2-oxoglutarate (2OG)-dependent oxygenases are of biomedical interest because of their roles in the regulation of gene expression and protein biosynthesis. Human JmjC 2OG oxygenases catalyze oxidative modifications to give either chemically stable alcohol products, or in the case of Nɛ-methyl lysine demethylation, relatively unstable hemiaminals that fragment to give formaldehyde and the demethylated product. Recent work has yielded conflicting reports as to whether some JmjC oxygenases catalyze N-methyl group demethylation or hydroxylation reactions. We review JmjC oxygenase-catalyzed reactions within the context of structural knowledge, highlighting key differences between hydroxylases and demethylases, which have the potential to inform on the possible type(s) of reactions catalyzed by partially characterized or un-characterized JmjC oxygenases in humans and other organisms.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Old Road Campus, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | | | - Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Old Road Campus, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | | |
Collapse
|
27
|
Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, Schofield CJ. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 2016; 7:11974. [PMID: 27337104 PMCID: PMC4931022 DOI: 10.1038/ncomms11974] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
While the oxygen-dependent reversal of lysine N(ɛ)-methylation is well established, the existence of bona fide N(ω)-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity.
Collapse
Affiliation(s)
- Louise J. Walport
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Richard J. Hopkinson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Rachel Schiller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Wei Ge
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher J. Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
28
|
McAllister TE, England KS, Hopkinson RJ, Brennan PE, Kawamura A, Schofield CJ. Recent Progress in Histone Demethylase Inhibitors. J Med Chem 2016; 59:1308-29. [PMID: 26710088 DOI: 10.1021/acs.jmedchem.5b01758] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing interest in targeting histone N-methyl-lysine demethylases (KDMs) with small molecules both for the generation of probes for target exploration and for therapeutic purposes. Here we update on previous reviews on the inhibition of the lysine-specific demethylases (LSDs or KDM1s) and JmjC families of N-methyl-lysine demethylases (JmjC KDMs, KDM2-7), focusing on the academic and patent literature from 2014 to date. We also highlight recent biochemical, biological, and structural studies which are relevant to KDM inhibitor development.
Collapse
Affiliation(s)
- Tom E McAllister
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Katherine S England
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
29
|
Lawrence P, Pacheco J, Stenfeldt C, Arzt J, Rai DK, Rieder E. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 2016; 492:108-17. [PMID: 26914509 DOI: 10.1016/j.virol.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
A companion study reported Jumonji-C domain containing protein 6 (JMJD6) is involved in an integrin- and HS-independent pathway of FMDV infection in CHO cells. JMJD6 localization was investigated in animal tissues from cattle infected with either wild type A24-FMDV (A24-WT) or mutant FMDV (JMJD6-FMDV) carrying E95K/S96L and RGD to KGE mutations in VP1. Additionally, pathogenesis of mutant JMJD6-FMDV was investigated in cattle through aerosol and intraepithelial lingual (IEL) inoculation. Interestingly, JMJD6-FMDV pathogenesis was equivalent to A24-WT administered by IEL route. In contrast, JMJD6-FMDV aerosol-infected cattle did not manifest signs of FMD and animals showed no detectable viremia. Immunofluorescent microscopy of post-mortem tissue revealed JMJD6-FMDV exclusively co-localized with JMJD6(+) cells while A24-WT was occasionally found in JMJD6(+) cells. In vitro, chemical uptake inhibitors demonstrated JMJD6-FMDV entered cells via clathrin-coated pit endocytosis. In vivo, JMJD6-FMDV exhibited preference for JMJD6(+) cells, but availability of this alternative receptor likely depends on route of inoculation.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Juan Pacheco
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States.
| |
Collapse
|
30
|
Lawrence P, Rai D, Conderino JS, Uddowla S, Rieder E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016; 492:38-52. [PMID: 26896934 DOI: 10.1016/j.virol.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus (FMDV) utilizes four integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as its primary cell receptor. During cell culture propagation, FMDV frequently adapts to use heparan sulfate (HS), and rarely utilizes an unidentified third receptor. Capsid mutations acquired by a soluble integrin resistant FMDV cause (i) adaptation to CHO-677 cells (ii) increased affinity to membrane-bound Jumonji C-domain containing protein 6 (JMJD6) (iii) induced JMJD6 re-localization from the cell surface and cytoplasm to the nucleus. Interestingly, pre-treatment of cells with N- and C-terminal JMJD6 antibodies or by simultaneous incubation of mutant virus with soluble JMJD6 (but not by treatment with HS or αvβ6) impaired virus infectivity in cultured cells. JMJD6 and mutant virus co-purified by reciprocal co-immunoprecipitation. Molecular docking predictions suggested JMJD6 C-terminus interacts with mutated VP1 capsid protein. We conclude when specific VP1 mutations are displayed, JMJD6 contributes to FMDV infectivity and may be a previously unidentified FMDV receptor.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Devendra Rai
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Joseph S Conderino
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Sabena Uddowla
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States.
| |
Collapse
|
31
|
Abstract
Epigenetic mechanisms by which cells inherit information are, to a large extent, enabled by DNA methylation and posttranslational modifications of histone proteins. These modifications operate both to influence the structure of chromatin per se and to serve as recognition elements for proteins with motifs dedicated to binding particular modifications. Each of these modifications results from an enzyme that consumes one of several important metabolites during catalysis. Likewise, the removal of these marks often results in the consumption of a different metabolite. Therefore, these so-called epigenetic marks have the capacity to integrate the expression state of chromatin with the metabolic state of the cell. This review focuses on the central roles played by acetyl-CoA, S-adenosyl methionine, NAD(+), and a growing list of other acyl-CoA derivatives in epigenetic processes. We also review how metabolites that accumulate as a result of oncogenic mutations are thought to subvert the epigenetic program.
Collapse
Affiliation(s)
- Ryan Janke
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Anne E Dodson
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
32
|
Abstract
The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
33
|
Böttger A, Islam MS, Chowdhury R, Schofield CJ, Wolf A. The oxygenase Jmjd6--a case study in conflicting assignments. Biochem J 2015; 468:191-202. [PMID: 25997831 DOI: 10.1042/bj20150278] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Jumonji domain-containing protein 6 (Jmjd6) is a member of the superfamily of non-haem iron(II) and 2-oxoglutarate (2OG)-dependent oxygenases; it plays an important developmental role in higher animals. Jmjd6 was initially assigned a role as the phosphatidylserine receptor responsible for engulfment of apoptotic cells but this now seems unlikely. Jmjd6 has been shown to be a nuclear localized protein with a JmjC domain comprising a distorted double-stranded β-helical structure characteristic of the 2OG-dependent oxygenases. Jmjd6 was subsequently assigned a role in catalysing N-methyl-arginine residue demethylation on the N-terminus of the human histones H3 and H4; however, this function is also subject to conflicting reports. Jmjd6 does catalyse 2OG-dependent C-5 hydroxylation of lysine residues in mRNA splicing-regulatory proteins and histones; there is also accumulating evidence that Jmjd6 plays a role in splicing (potentially in an iron- and oxygen-dependent manner) as well as in other processes regulating gene expression, including transcriptional pause release. Moreover, a link with tumour progression has been suggested. In the present review we look at biochemical, structural and cellular work on Jmjd6, highlighting areas of controversy and consensus.
Collapse
Affiliation(s)
- Angelika Böttger
- *Department of Biology II, Ludwig Maximillians University, Munich, Germany
| | - Md Saiful Islam
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Rasheduzzaman Chowdhury
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Christopher J Schofield
- †Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Alexander Wolf
- ‡Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
34
|
Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1027032. [PMID: 28232888 DOI: 10.1080/21690707.2015.1027032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Proteins are natural polypeptides consisting of 20 major amino acid residues, content and order of which in a given amino acid sequence defines the ability of a related protein to fold into unique functional state or to stay intrinsically disordered. Amino acid sequences code for both foldable (ordered) proteins/domains and for intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), but these sequence codes are dramatically different. This difference starts with a very general property of the corresponding amino acid sequences, namely, their compositions. IDPs/IDPRs are enriched in specific disorder-promoting residues, whereas amino acid sequences of ordered proteins/domains typically contain more order-promoting residues. Therefore, the relative abundances of various amino acids in ordered and disordered proteins can be used to scale amino acids according to their disorder promoting potentials. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and represents serine, which is the third most disorder-promoting residue. Similar to previous publications, this review represents some physico-chemical properties of serine and the roles of this residue in structures and functions of ordered proteins, describes major posttranslational modifications tailored to serine, and finally gives an overview of roles of serine in structure and functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science, King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences; Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology, Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
35
|
Hayashi G, Sakamoto R, Okamoto A. 2-Oxazoline formation for selective chemical labeling of 5-hydroxylysine. Chem Asian J 2015; 10:1138-41. [PMID: 25757225 DOI: 10.1002/asia.201500172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 11/07/2022]
Abstract
Hydroxylation of lysine, one of posttranslational modifications of proteins, generates 5-hydroxylysine (Koh) and plays a crucial role in regulating protein functions in cellular activity. We have developed a chemical labeling method of Koh. The 1,2-aminoalcohol moiety of Koh in synthetic peptide sequences was trapped by an alkyne-containing benzimidate to form a 2-oxazoline ring. An additional ammonia treatment process removed the undesirable amidine residue formed between benzimidate and lysine. During the ammonia treatment, the oxazoline residue formed at Koh mainly remained intact, and the ring opening to the amide form was observed for only part of oxazoline, indicating that the chemical labeling is amino acid selective. Azide-substituted biotin or fluorescent dye was attached to the peptide through Huisgen cycloaddition at Koh and converted into an alkyne-labeled oxazoline form. The Koh-labeling assay could provide a platform to enhance proteomic research of lysine hydroxylation.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | | | | |
Collapse
|
36
|
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1416-32. [PMID: 24859458 PMCID: PMC4316176 DOI: 10.1016/j.bbagrm.2014.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
Abstract
N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(ε)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives.
Collapse
Affiliation(s)
- Cyrille C Thinnes
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Akane Kawamura
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
37
|
Zhu H, Hu S, Baker J. JMJD5 Regulates Cell Cycle and Pluripotency in Human Embryonic Stem Cells. Stem Cells 2014; 32:2098-110. [DOI: 10.1002/stem.1724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/20/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Zhu
- Department of Genetics; Stanford University; Stanford California USA
| | - Shijun Hu
- Department of Radiology; Stanford University; Stanford California USA
| | - Julie Baker
- Department of Genetics; Stanford University; Stanford California USA
- Department of Obstetrics and Gynecology; Stanford University; Stanford California USA
| |
Collapse
|
38
|
Heim A, Grimm C, Müller U, Häußler S, Mackeen MM, Merl J, Hauck SM, Kessler BM, Schofield CJ, Wolf A, Böttger A. Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Res 2014; 42:7833-50. [PMID: 24914048 PMCID: PMC4081092 DOI: 10.1093/nar/gku488] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine–serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S′, but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.
Collapse
Affiliation(s)
- Astrid Heim
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Christina Grimm
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Udo Müller
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Simon Häußler
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mukram M Mackeen
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Juliane Merl
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Stefanie M Hauck
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Benedikt M Kessler
- School of Chemical Science, Faculty of Science and Technology, and Institute of Systems Biology (INBIOSIS) Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Christopher J Schofield
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Angelika Böttger
- Department of Biology II, Ludwig Maximilians University, Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
39
|
Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics 2014; 6:89-120. [PMID: 24579949 PMCID: PMC4233403 DOI: 10.2217/epi.13.79] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - KaHing Che
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Peter Cain
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Radoslaw Nowak
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| |
Collapse
|
40
|
Huang X, Zhang L, Qi H, Shao J, Shen J. Identification and functional implication of nuclear localization signals in the N-terminal domain of JMJD5. Biochimie 2013; 95:2114-22. [PMID: 23948433 DOI: 10.1016/j.biochi.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022]
Abstract
JMJD5 has recently been reported to participate in circadian rhythm regulation, embryological development, osteoclastogenesis and tumorigenesis. Although JMJD5 has been found mainly localized in the nucleus of cells, how it enters the nucleus remains unclear. Here we report that JMJD5 contains a functional bipartite nuclear localization signal (NLS) and a chromosome region maintenance 1 (CRM1)-dependent nuclear export signal (NES). Importin α/β and transportin-1 were further identified as JMJD5-associated transport proteins, and different binding regions were determined for the two nuclear import receptors. Additionally, we demonstrate that both the active NLS and the JmjC domain of JMJD5 are necessary for cyclin A1 transcription. Chromatin immunoprecipitation (ChIP) analysis confirmed the alterations of di-methylated lysine 36 of histone H3 (H3K36me2) in the coding region of cyclin A1. These results reveal that the N-terminal domain is essential for the nuclear localization of JMJD5 and its normal enzymatic function towards substrates in the nucleus.
Collapse
Affiliation(s)
- Xiaobin Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
41
|
Veiga-da-Cunha M, Verhoeven-Duif NM, de Koning TJ, Duran M, Dorland B, Van Schaftingen E. Mutations in the AGXT2L2 gene cause phosphohydroxylysinuria. J Inherit Metab Dis 2013; 36:961-6. [PMID: 23242558 DOI: 10.1007/s10545-012-9568-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Phosphohydroxylysinuria has been described in two patients with neurological symptoms, but the deficient enzyme or mutated gene has never been identified. In the present work, we tested the hypothesis that this condition is due to mutations in the AGXT2L2 gene, recently shown to encode phosphohydroxylysine phospholyase. DNA analysis from a third patient, without neurological symptoms, but with an extreme hyperlaxicity of the joints, shows the existence of two mutations, p. Gly240Arg and p.Glu437Val, both in the heterozygous state. Sequencing of cDNA clones derived from fibroblasts mRNA indicated that the two mutations were allelic. Both mutations replace conserved residues. The mutated proteins were produced as recombinant proteins in Escherichia coli and HEK293T cells and shown to be very largely insoluble, whereas the wild-type one was produced as a soluble and active protein. We conclude that phosphohydroxylysinuria is due to mutations in the AGXT2L2 gene and the resulting lack of activity of phosphohydroxylysine phospholyase in vivo. The finding that the nul alleles of p.Gly240Arg and p.Glu437Val are present at low frequencies in the European and/or North American population suggests that this condition is more common than previously thought. The diversity of the clinical symptoms described in three patients with phosphohydroxylysinuria indicates that this is most likely not a neurometabolic disease.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium,
| | | | | | | | | | | |
Collapse
|
42
|
The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochem J 2013; 453:357-70. [PMID: 23688307 DOI: 10.1042/bj20130529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Jmjd6 (jumonji-domain-containing protein 6) is an Fe(II)- and 2OG (2-oxoglutarate)-dependent oxygenase that catalyses hydroxylation of lysine residues in proteins involved in pre-mRNA splicing. Jmjd6 plays an essential role in vertebrate embryonic development and has been shown to modulate alternative splicing in response to hypoxic stress. In the present study we show that an alternatively spliced version of Jmjd6 lacking the polyS (polyserine) domain localizes to the nucleolus, predominantly in the fibrillar centre. Jmjd6 with the polyS domain deleted also interacts with nucleolar proteins. Furthermore, co-immunoprecipitation experiments and F2H (fluorescent 2-hybrid) assays demonstrate that Jmjd6 homo-oligomerization occurs in cells. In correlation with the observed variations in the subnuclear distribution of Jmjd6, the structure of Jmjd6 oligomers in vitro changes in the absence of the polyS domain, possibly reflecting the role of the polyS domain in nuclear/nucleolar shuttling of Jmjd6.
Collapse
|
43
|
Xu J, Wang AH, Oses-Prieto J, Makhijani K, Katsuno Y, Pei M, Yan L, Zheng YG, Burlingame A, Brückner K, Derynck R. Arginine Methylation Initiates BMP-Induced Smad Signaling. Mol Cell 2013; 51:5-19. [PMID: 23747011 PMCID: PMC3951972 DOI: 10.1016/j.molcel.2013.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/12/2012] [Accepted: 05/02/2013] [Indexed: 11/15/2022]
Abstract
Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways.
Collapse
Affiliation(s)
- Jian Xu
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - A. Hongjun Wang
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Kalpana Makhijani
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Yoko Katsuno
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Ming Pei
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Leilei Yan
- Department of Chemistry, Georgia State University, Atlanta, GA30302-4098
| | - Y. George Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA30302-4098
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Katja Brückner
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| |
Collapse
|
44
|
Unoki M, Masuda A, Dohmae N, Arita K, Yoshimatsu M, Iwai Y, Fukui Y, Ueda K, Hamamoto R, Shirakawa M, Sasaki H, Nakamura Y. Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 (JMJD6). J Biol Chem 2013; 288:6053-62. [PMID: 23303181 DOI: 10.1074/jbc.m112.433284] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JMJD6 is reported to hydroxylate lysyl residues of a splicing factor, U2AF65. In this study, we found that JMJD6 hydroxylates histone lysyl residues. In vitro experiments showed that JMJD6 has a binding affinity to histone proteins and hydroxylates multiple lysyl residues of histone H3 and H4 tails. Using JMJD6 knock-out mouse embryos, we revealed that JMJD6 hydroxylates lysyl residues of histones H2A/H2B and H3/H4 in vivo by amino acid composition analysis. 5-Hydroxylysine was detected at the highest level in histones purified from murine testis, which expressed JMJD6 at a significantly high level among various tissues examined, and JMJD6 overexpression increased the amount of 5-hydroxylysine in histones in human embryonic kidney 293 cells. These results indicate that histones are additional substrates of JMJD6 in vivo. Because 5-hydroxylation of lysyl residues inhibited N-acetylation and N-methylation by an acetyltransferase and a methyltransferase, respectively, in vitro, histone 5-hydroxylation may have important roles in epigenetic regulation of gene transcription or chromosomal rearrangement.
Collapse
Affiliation(s)
- Motoko Unoki
- Division of Epigenetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol Cell Biol 2012; 32:4044-52. [PMID: 22851697 DOI: 10.1128/mcb.00513-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
JMJD5 is a Jumonji C (JmjC) protein that has been implicated in breast cancer tumorigenesis, circadian rhythm regulation, embryological development, and osteoclastogenesis. Recently, JMJD5 (also called KDM8) has been reported to demethylate dimethylated Lys-36 in histone H3 (H3K36me2), regulating genes that control cell cycle progression. Here, we report high-resolution crystal structures of the human JMJD5 catalytic domain in complex with the substrate 2-oxoglutarate (2-OG) and the inhibitor N-oxalylglycine (NOG). The structures reveal a β-barrel fold that is conserved in the JmjC family and a long shallow cleft that opens into the enzyme's active site. A comparison with other JmjC enzymes illustrates that JMJD5 shares sequence and structural homology with the asparaginyl and histidinyl hydroxylase FIH-1 (factor inhibiting hypoxia-inducible factor 1 [HIF-1]), the lysyl hydroxylase JMJD6, and the RNA hydroxylase TYW5 but displays limited homology to JmjC lysine demethylases (KDMs). Contrary to previous findings, biochemical assays indicate that JMJD5 does not display demethylase activity toward methylated H3K36 nor toward the other methyllysines in the N-terminal tails of histones H3 and H4. Together, these results imply that JMJD5 participates in roles independent of histone demethylation and may function as a protein hydroxylase given its structural homology with FIH-1 and JMJD6.
Collapse
|
46
|
Mantri M, Zhang Z, McDonough MA, Schofield CJ. Autocatalysed oxidative modifications to 2-oxoglutarate dependent oxygenases. FEBS J 2012; 279:1563-75. [DOI: 10.1111/j.1742-4658.2012.08496.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Mantri M, Webby CJ, Loik ND, Hamed RB, Nielsen ML, McDonough MA, McCullagh JSO, Böttger A, Schofield CJ, Wolf A. Self-hydroxylation of the splicing factor lysyl hydroxylase, JMJD6. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00225b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysyl hydroxylase, JMJD6 undergoes self-hydroxylation resulting in the 5S-hydroxylysine product.
Collapse
Affiliation(s)
| | | | | | - Refaat B. Hamed
- Chemistry Research Laboratory
- Oxford
- United Kingdom
- Department of Pharmacognosy
- Faculty of Pharmacy
| | - Michael L. Nielsen
- Department of Proteomics
- The Novo Nordisk Foundation Center for Protein Research
- University of Copenhagen
- Faculty of Health Sciences
- Copenhagen
| | | | | | - Angelika Böttger
- Department of Biology II
- Ludwig-Maximilians-University
- Planegg-Martinsried
- Germany
| | | | | |
Collapse
|