1
|
Bardales AC, Mills JR, Kolpashchikov DM. DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5' to 5' and 3' to 3' Chemical Ligation of Oligonucleotides. Bioconjug Chem 2024; 35:28-33. [PMID: 38135674 DOI: 10.1021/acs.bioconjchem.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accessibility of synthetic oligonucleotides and the success of DNA nanotechnology open a possibility to use DNA nanostructures for building sophisticated enzyme-like catalytic centers. Here we used a double DNA crossover (DX) tile nanostructure to enhance the rate, the yield, and the specificity of 5'-5' ligation of two oligonucleotides with arbitrary sequences. The ligation product was isolated via a simple procedure. The same strategy was applied for the synthesis of 3'-3' linked oligonucleotides, thus introducing a synthetic route to DNA and RNA with a switched orientation that is affordable by a low-resource laboratory. To emphasize the utility of the ligation products, we synthesized a circular structure formed from intramolecular complementarity that we named "an impossible DNA wheel" since it cannot be built from regular DNA strands by enzymatic reactions. Therefore, DX-tile nanostructures can open a route to producing useful chemical products that are unattainable via enzymatic synthesis. This is the first example of the use of DNA nanostructures as a catalyst. This study advocates for further exploration of DNA nanotechnology for building enzyme-like reactive systems.
Collapse
Affiliation(s)
- Andrea C Bardales
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Joseph R Mills
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science, University of Central Florida, Orlando, Florida 32816, United States
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Abstract
Hybridization probes are RNA or DNA oligonucleotides or their analogs that bind to specific nucleotide sequences in targeted nucleic acids (analytes) via Watson-Crick base pairs to form probe-analyte hybrids. Formation of a stable hybrid would indicate the presence of a DNA or RNA fragment complementary to the known probe sequence. Some of the well-known technologies that rely on nucleic acid hybridization are TaqMan and molecular beacon (MB) probes, fluorescent in situ hybridization (FISH), polymerase chain reaction (PCR), antisense, siRNA, and CRISPR/cas9, among others. Although invaluable tools for DNA and RNA recognition, hybridization probes suffer from several common disadvantages including low selectivity under physiological conditions, low affinity to folded single-stranded RNA and double-stranded DNA, and high cost of dye-labeled and chemically modified probes. Hybridization probes are evolving into multifunctional molecular devices (dubbed here "multicomponent probes", "DNA machines", and "DNA robots") to satisfy complex and often contradictory requirements of modern biomedical applications. In the definition used here, "multicomponent probes" are DNA probes that use more than one oligonucleotide complementary to an analyzed sequence. A "DNA machine" is an association of a discrete number of DNA strands that undergoes structural rearrangements in response to the presence of a specific analyte. Unlike multicomponent probes, DNA machines unify several functional components in a single association even in the absence of a target. DNA robots are DNA machines equipped with computational (analytic) capabilities. This Account is devoted to an overview of the ongoing evolution of hybridization probes to DNA machines and robots. The Account starts with a brief excursion to historically significant and currently used instantaneous probes. The majority of the text is devoted to the design of (i) multicomponent probes and (ii) DNA machines for nucleic acid recognition and analysis. The fundamental advantage of both designs is their ability to simultaneously address multiple problems of RNA/DNA analysis. This is achieved by modular design, in which several specialized functional components are used simultaneously for recognition of RNA or DNA analytes. The Account is concluded with the analysis of perspectives for further evolution of DNA machines into DNA robots.
Collapse
Affiliation(s)
- Dmitry M. Kolpashchikov
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences
255, Orlando, Florida 32816-2366, United States
| |
Collapse
|
3
|
Karadeema RJ, Stancescu M, Steidl TP, Bertot SC, Kolpashchikov DM. The owl sensor: a 'fragile' DNA nanostructure for the analysis of single nucleotide variations. NANOSCALE 2018; 10:10116-10122. [PMID: 29781024 DOI: 10.1039/c8nr01107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of single nucleotide variations (SNVs) in DNA and RNA sequences is instrumental in healthcare for the detection of genetic and infectious diseases and drug-resistant pathogens. Here we took advantage of the developments in DNA nanotechnology to design a hybridization sensor, named the 'owl sensor', which produces a fluorescence signal only when it complexes with fully complementary DNA or RNA analytes. The novelty of the owl sensor operation is that the selectivity of analyte recognition is, at least in part, determined by the structural rigidity and stability of the entire DNA nanostructure rather than exclusively by the stability of the analyte-probe duplex, as is the case for conventional hybridization probes. Using two DNA and two RNA analytes we demonstrated that owl sensors differentiate SNVs in a wide temperature range of 5 °C-32 °C, a performance unachievable by conventional hybridization probes including the molecular beacon probe. The owl sensor reliably detects cognate analytes even in the presence of 100 times excess of single base mismatched sequences. The approach, therefore, promises to add to the toolbox for the diagnosis of SNVs at ambient temperatures.
Collapse
Affiliation(s)
- Rebekah J Karadeema
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
4
|
Abstract
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
5
|
Smith AL, Kolpashchikov DM. Divide and Control: Comparison of Split and Switch Hybridization Sensors. ChemistrySelect 2017; 2:5427-5431. [PMID: 29372178 PMCID: PMC5777618 DOI: 10.1002/slct.201701179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hybridization probes have been intensively used for nucleic acid analysis in medicine, forensics and fundamental research. Instantaneous hybridization probes (IHPs) enable signalling immediately after binding to a targeted DNA or RNA sequences without the need to isolate the probe-target complex (e. g. by gel electrophoresis). The two most common strategies for IHP design are conformational switches and split approach. A conformational switch changes its conformation and produces signal upon hybridization to a target. Split approach uses two (or more) strands that independently or semi independently bind the target and produce an output signal only if all components associate. Here, we compared the performance of split vs switch designs for deoxyribozyme (Dz) hybridization probes under optimal conditions for each of them. The split design was represented by binary Dz (BiDz) probes; while catalytic molecular beacon (CMB) probes represented the switch design. It was found that BiDz were significantly more selective than CMBs in recognition of single base substitution. CMBs produced high background signal when operated at 55°C. An important advantage of BiDz over CMB is more straightforward design and simplicity of assay optimization.
Collapse
Affiliation(s)
- Alexandra L Smith
- Chemistry Department, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| | - Dmitry M Kolpashchikov
- Chemistry Department, Burnett School of Biomedical Sciences, National Center for Forensic Science, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| |
Collapse
|
6
|
Campbell EA, Peterson E, Kolpashchikov DM. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles. Chemphyschem 2017; 18:1730-1734. [PMID: 28234410 DOI: 10.1002/cphc.201700109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/02/2023]
Abstract
DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions.
Collapse
Affiliation(s)
- Eleanor A Campbell
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Evan Peterson
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine and National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA)An invited contribution to a Special Issue on Molecular Logic
| |
Collapse
|
7
|
Farzan VM, Markelov ML, Skoblov AY, Shipulin GA, Zatsepin TS. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers. Analyst 2017; 142:945-950. [DOI: 10.1039/c6an02441f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dissection of stem and loop regions in molecular beacons by nucleotide or non-nucleotide linkers minimizes nonspecific recognition in SNP discrimination.
Collapse
Affiliation(s)
- Valentina M. Farzan
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| | | | | | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| |
Collapse
|
8
|
Cox AJ, Bengtson HN, Rohde KH, Kolpashchikov DM. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection. Chem Commun (Camb) 2016; 52:14318-14321. [PMID: 27886299 PMCID: PMC5645153 DOI: 10.1039/c6cc06889h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Nobel prize in chemistry in 2016 was awarded for 'the design and synthesis of molecular machines'. Here we designed and assembled a molecular machine for the detection of specific RNA molecules. An association of several DNA strands, named multifunctional DNA machine for RNA analysis (MDMR1), was designed to (i) unwind RNA with the help of RNA-binding arms, (ii) selectively recognize a targeted RNA fragment, (iii) attract a signal-producing substrate and (iv) amplify the fluorescent signal by catalysis. MDMR1 enabled detection of 16S rRNA at concentrations ∼24 times lower than that by a traditional deoxyribozyme probe.
Collapse
Affiliation(s)
- A J Cox
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - H N Bengtson
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - K H Rohde
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - D M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| |
Collapse
|
9
|
Stancescu M, Fedotova TA, Hooyberghs J, Balaeff A, Kolpashchikov DM. Nonequilibrium Hybridization Enables Discrimination of a Point Mutation within 5-40 °C. J Am Chem Soc 2016; 138:13465-13468. [PMID: 27681667 PMCID: PMC5645261 DOI: 10.1021/jacs.6b05628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Detection of point mutations and single nucleotide polymorphisms in DNA and RNA has a growing importance in biology, biotechnology, and medicine. For the application at hand, hybridization assays are often used. Traditionally, they differentiate point mutations only at elevated temperatures (>40 °C) and in narrow intervals (ΔT = 1-10 °C). The current study demonstrates that a specially designed multistranded DNA probe can differentiate point mutations in the range of 5-40 °C. This unprecedentedly broad ambient-temperature range is enabled by a controlled combination of (i) nonequilibrium hybridization conditions and (ii) a mismatch-induced increase of equilibration time in respect to that of a fully matched complex, which we dub "kinetic inversion".
Collapse
Affiliation(s)
- Maria Stancescu
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Tatiana A. Fedotova
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Jef Hooyberghs
- Flemish Institute for Technological Research, VITO, Boeretang 200, Mol B-2400, Belgium
- Theoretical Physics, Hasselt University, Campus Diepenbeek, Agoralaan - Building D, Diepenbeek B-3590, Belgium
| | - Alexander Balaeff
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
10
|
Cox AJ, Bengtson HN, Gerasimova YV, Rohde KH, Kolpashchikov DM. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity. Chembiochem 2016; 17:2038-2041. [PMID: 27620365 DOI: 10.1002/cbic.201600438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Some natural enzymes increase the rate of diffusion-limited reactions by facilitating substrate flow to their active sites. Inspired by this natural phenomenon, we developed a strategy for efficient substrate delivery to a deoxyribozyme (DZ) catalytic sensor. This resulted in a three- to fourfold increase in sensitivity and up to a ninefold improvement in the detection limit. The reported strategy can be used to enhance catalytic efficiency of diffusion-limited enzymes and to improve sensitivity of enzyme-based biosensors.
Collapse
Affiliation(s)
- Amanda J Cox
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Hillary N Bengtson
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA. .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA. .,National Center for Forensic Science, University of Central Florida, 12354 Research Pkwy. Suite 225, Orlando, FL, 32826, USA.
| |
Collapse
|
11
|
Bag SS, Talukdar S, Das SK, Pradhan MK, Mukherjee S. Donor/acceptor chromophores-decorated triazolyl unnatural nucleosides: synthesis, photophysical properties and study of interaction with BSA. Org Biomol Chem 2016; 14:5088-108. [DOI: 10.1039/c6ob00500d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the syntheses and photophysical properties of some triazolyl donor/acceptor unnatural nucleosides and studies on the interaction of one of the fluorescent nucleosides with BSA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Sangita Talukdar
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Suman Kalyan Das
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Manoj Kumar Pradhan
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Soumen Mukherjee
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| |
Collapse
|
12
|
O'Steen MR, Cornett EM, Kolpashchikov DM. Nuclease-containing media for resettable operation of DNA logic gates. Chem Commun (Camb) 2015; 51:1429-31. [PMID: 25493931 DOI: 10.1039/c4cc09283j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We designed and tested a system that allows DNA logic gates to respond multiple times to the addition of oligonucleotide inputs. After producing an output signal, the system spontaneously resets to the background state. This system does not require any operator action to achieve reset of a DNA logic gate, and may become useful for construction of reusable DNA-based computational devices.
Collapse
Affiliation(s)
- Martin R O'Steen
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA.
| | | | | |
Collapse
|
13
|
Bag SS, Talukdar S, Das SK. Design and synthesis of triazolyl-donor/acceptor unnatural nucleosides and oligonucleotide probes containing triazolyl-phenanthrene nucleoside. ACTA ACUST UNITED AC 2014; 58:1.32.1-27. [PMID: 25199635 DOI: 10.1002/0471142700.nc0132s58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the context of abasic DNA or DNA duplex stabilization, several unnatural nucleosidic/non-nucleosidic base surrogates have been reported. Toward this end, we have designed and synthesized triazolyl-aromatic donor chomophores as unnatural nucleoside analogs. These modifications display markedly higher thermal stabilization of abasic DNA duplex in comparison to the stabilization offered by other nucleoside/non-nucleoside base surrogates reported in the literature. The same oligonucleotide probe containing triazolylphenanthrene nucleotide also offers very good stability of the self-pair duplex via π-π stacking interaction and hetero-pair duplex via charge transfer interaction when paired against triazolyl acceptor aromatic nucleoside. Moreover, the probe in the reverse sequence containing triazolylphenanthrene nucleotide has shown FRET efficiency in a chimeric DNA duplex. The triazolyl nucleotides would expectedly show stability toward exonuclease activity. This unit describes protocols for chemical synthesis of unnatural triazolyl nucleosides and one oligonucleotide probe. The unit also provides a summary of various thermal and photophysical applications of triazolylphenantherene-containing oligonucleotides.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | | | | |
Collapse
|
14
|
Knez K, Spasic D, Janssen KPF, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 2014; 139:353-70. [PMID: 24298558 DOI: 10.1039/c3an01436c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is a crucial challenge in the development of a novel generation of diagnostic tools. Accurate detection of SNPs can prove elusive, as the impact of a single variable nucleotide on the properties of a target sequence is limited, even if this sequence consists of only a few nucleotides. New, accurate and facile strategies for the detection of point mutations are therefore absolutely necessary for the increased adoption of point-of-care molecular diagnostics. Currently, PCR and sequencing are mostly applied for diagnosing SNPs. However these methods have serious drawbacks as routine diagnostic tools because of their labour intensity and cost. Several new, more suitable methods can be applied to enable sensitive detection of mutations based on specially designed hybridization probes, mutation recognizing enzymes and thermal denaturation. Here, an overview is presented of the most recent advances in the field of fast and sensitive SNP detection assays with strong potential for integration in point-of-care tests.
Collapse
Affiliation(s)
- Karel Knez
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium.
| | | | | | | |
Collapse
|
15
|
Brown CW, Lakin MR, Stefanovic D, Graves SW. Catalytic molecular logic devices by DNAzyme displacement. Chembiochem 2014; 15:950-4. [PMID: 24692254 DOI: 10.1002/cbic.201400047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W Brown
- Center for Biomedical Engineering, MSC01 1141, 1 University of New Mexico, Albuquerque, NM 87131 (USA)
| | | | | | | |
Collapse
|
16
|
Bengtson HN, Kolpashchikov DM. A differential fluorescent receptor for nucleic acid analysis. Chembiochem 2014; 15:228-31. [PMID: 24339354 PMCID: PMC4066444 DOI: 10.1002/cbic.201300657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 01/28/2023]
Abstract
Differential receptors use an array of sensors to recognize analytes. Each sensor in the array can recognize not one, but several analytes with different rates, so a single analyte triggers a response of several sensors in the array. The receptor thus produces a pattern of signals that is unique for each analyte, thereby enabling identification of a specific analyte by producing a "fingerprint" pattern. We applied this approach for the analysis of DNA sequences of Mycobacterium tuberculosis strains that differ by single nucleotide substitutions in the 81-bp hot-spot region that imparts rifampin resistance. The technology takes advantage of the new multicomponent, selfassembling sensor, which produces a fluorescent signal in the presence of specific DNA sequences. A differential fluorescent receptor (DFR) contained an array of three such sensors and differentiated at least eight DNA sequences. The approach requires only one molecular-beacon-like fluorescent reporter, which can be used by all three sensors. The DFR developed in this study represents a cost-efficient alternative to molecular diagnostic technologies that use fluorescent hybridization probes.
Collapse
Affiliation(s)
- Hillary N. Bengtson
- Chemistry Department and Burnett School of Biomedical Sciences University of Central Florida 4000 Central Florida Blvd, Orlando, FL 32816 (USA)
| | - Dmitry M. Kolpashchikov
- Chemistry Department and Burnett School of Biomedical Sciences University of Central Florida 4000 Central Florida Blvd, Orlando, FL 32816 (USA)
| |
Collapse
|
17
|
Zhang DY, Hariadi RF, Choi HMT, Winfree E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat Commun 2013; 4:1965. [PMID: 23756381 PMCID: PMC3709499 DOI: 10.1038/ncomms2965] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/01/2013] [Indexed: 11/09/2022] Open
Abstract
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. DNA tile self-assembly and DNA strand displacement circuits are well-developed frameworks in DNA nanotechnology. Here, the two approaches are combined to give programmable kinetic control of DNA nanotube self-assembly.
Collapse
Affiliation(s)
- David Yu Zhang
- Department of Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA.
| | | | | | | |
Collapse
|
18
|
Cornett EM, O’Steen MR, Kolpashchikov DM. Operating Cooperatively (OC) sensor for highly specific recognition of nucleic acids. PLoS One 2013; 8:e55919. [PMID: 23441157 PMCID: PMC3575382 DOI: 10.1371/journal.pone.0055919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular Beacon (MB) probes have been extensively used for nucleic acid analysis because of their ability to produce fluorescent signal in solution instantly after hybridization. The indirect binding of MB probe to a target analyte offers several advantages, including: improved genotyping accuracy and the possibility to analyse folded nucleic acids. Here we report on a new design for MB-based sensor, called ‘Operating Cooperatively’ (OC), which takes advantage of indirect binding of MB probe to a target analyte. The sensor consists of two unmodified DNA strands, which hybridize to a universal MB probe and a nucleic acid analyte to form a fluorescent complex. OC sensors were designed to analyze two human SNPs and E.coli 16S rRNA. High specificity of the approach was demonstrated by the detection of true analyte in over 100 times excess amount of single base substituted analytes. Taking into account the flexibility in the design and the simplicity in optimization, we conclude that OC sensors may become versatile and efficient tools for instant DNA and RNA analysis in homogeneous solution.
Collapse
Affiliation(s)
- Evan M. Cornett
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Martin R. O’Steen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Dmitry M. Kolpashchikov
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Analysis of single-nucleotide polymorphisms (SNPs) is important for diagnosis of infectious and genetic diseases, for environment and population studies, as well as in forensic applications. Herein is a detailed description to design an "operating cooperatively" (OC) sensor for highly specific SNP analysis. OC sensors use two unmodified DNA adaptor strands and a molecular beacon probe to detect a nucleic acid targets with exceptional specificity towards SNPs. Genotyping can be accomplished at room temperature in a homogenous assay. The approach is easily adaptable for any nucleic acid target, and has been successfully used for analysis of targets with complex secondary structures. Additionally, OC sensors are an easy-to-design and cost-effective method for SNP analysis and nucleic acid detection.
Collapse
|
20
|
Bag SS, Talukdar S, Matsumoto K, Kundu R. Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair. J Org Chem 2012; 78:278-91. [PMID: 23171090 DOI: 10.1021/jo302033f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the design and synthesis of triazolyl donor/acceptor unnatural nucleosides via click chemistry and studies on the duplex stabilization of DNA containing two such new nucleosides. The observed duplex stabilization among the self-pair/heteropair has been found to be comparable to that of a natural A/T pair. Our observations on the comparable duplex stabilization has been explained on the basis of possible π-π stacking and/or charge transfer interactions between the pairing partners. The evidence of ground-state charge transfer complexation came from the UV-vis spectra and the static quenching of fluorescence in a heteropair. We have also exploited one of our unnatural DNAs in stabilizing abasic DNA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Guwahati-781039, India.
| | | | | | | |
Collapse
|
21
|
Kolpashchikov DM. An elegant biosensor molecular beacon probe: challenges and recent solutions. SCIENTIFICA 2012; 2012:928783. [PMID: 24278758 PMCID: PMC3820487 DOI: 10.6064/2012/928783] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 05/02/2023]
Abstract
Molecular beacon (MB) probes are fluorophore- and quencher-labeled short synthetic DNAs folded in a stem-loop shape. Since the first report by Tyagi and Kramer, it has become a widely accepted tool for nucleic acid analysis and triggered a cascade of related developments in the field of molecular sensing. The unprecedented success of MB probes stems from their ability to detect specific DNA or RNA sequences immediately after hybridization with no need to wash out the unbound probe (instantaneous format). Importantly, the hairpin structure of the probe is responsible for both the low fluorescent background and improved selectivity. Furthermore, the signal is generated in a reversible manner; thus, if the analyte is removed, the signal is reduced to the background. This paper highlights the advantages of MB probes and discusses the approaches that address the challenges in MB probe design. Variations of MB-based assays tackle the problem of stem invasion, improve SNP genotyping and signal-to-noise ratio, as well as address the challenges of detecting folded RNA and DNA.
Collapse
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| |
Collapse
|
22
|
Gerasimova YV, Kolpashchikov DM. Detection of bacterial 16S rRNA using a molecular beacon-based X sensor. Biosens Bioelectron 2012; 41:386-90. [PMID: 23021850 DOI: 10.1016/j.bios.2012.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/14/2023]
Abstract
We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a completely complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, Escherichia coli16S rRNA was detected in real time with the detection limit of ~0.17 nM. The high specificity of the analysis was proven by differentiating Bacillus subtilis from E. coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | | |
Collapse
|
23
|
Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM. Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angew Chem Int Ed Engl 2012; 51:9075-7. [PMID: 22888076 PMCID: PMC3517149 DOI: 10.1002/anie.201203708] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Indexed: 02/06/2023]
Abstract
Elementary, Dr. Watson! A combination of YES and OR logic gates was applied to differentiate between DNA sequences of wild-type and rifampin-resistant (Rif(r)) Mycobacterium tuberculosis (Mtb) in a multiplex real-time fluorescent assay.
Collapse
Affiliation(s)
- Evan M Cornett
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
24
|
Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM. Molecular Logic Gates for DNA Analysis: Detection of Rifampin Resistance in M. tuberculosis DNA. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|