1
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
2
|
Chen C, Yang S, Liu Y, Qiu Y, Yao J. Metal ions-bridged J aggregation mediated nanoassembly composition for breast cancer phototherapy. Asian J Pharm Sci 2022; 17:230-240. [PMID: 35582644 PMCID: PMC9091788 DOI: 10.1016/j.ajps.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, the highly ordered J-aggregates of organic dyes with intriguing optical properties have received considerable attention in biomedical applications. Herein, binary metal ions Mn(II)/Fe(III) are used to induce the formation of indocyanine green (ICG) J-aggregates. Further, the sheet-like J-aggregates are able to act as "carriers" for loading hydrophobic chemotherapeutic gambogic acid (GA), realizing the effect of "killing two birds with one stone" for both treatment and delivery. The as-designed nanoassembly is formed spontaneously in aqueous environment via π-π stacking, electrostatic interaction, and hydrophobic force, exhibiting enhanced photostability of ICG and outstanding reactive oxygen species (ROS) generation ability. Moreover, significant inhibition of tumor growth by the synergetic effect of phototherapy and chemotherapy is verified in a subcutaneous 4T1 tumors model. In conclusion, this work not only presents a facile and green approach to manufacture carrier-free nanodrugs, but also establishes a universal platform that has potential application in the co-delivery of near-infrared dye and hydrophobic molecules.
Collapse
|
3
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
A Photoalkylative Fluorogenic Probe of Guttiferone A for Live Cell Imaging and Proteome Labeling in Plasmodium falciparum. Molecules 2020; 25:molecules25215139. [PMID: 33158263 PMCID: PMC7663766 DOI: 10.3390/molecules25215139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose–response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis.
Collapse
|
5
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
6
|
Chiral resolution of a caged xanthone and evaluation across a broad spectrum of breast cancer subtypes. Bioorg Chem 2019; 93:103303. [DOI: 10.1016/j.bioorg.2019.103303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/29/2022]
|
7
|
Chantarasriwong O, Milcarek AT, Morales TH, Settle AL, Rezende CO, Althufairi BD, Theodoraki MA, Alpaugh ML, Theodorakis EA. Synthesis, structure-activity relationship and in vitro pharmacodynamics of A-ring modified caged xanthones in a preclinical model of inflammatory breast cancer. Eur J Med Chem 2019; 168:405-413. [DOI: 10.1016/j.ejmech.2019.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
|
8
|
Wang W, Li X, Wang Z, Zhang J, Dong X, Wu Y, Fang C, Zhou A, Wu Y. A novel "mosaic-type" nanoparticle for selective drug release targeting hypoxic cancer cells. NANOSCALE 2019; 11:2211-2222. [PMID: 30656317 DOI: 10.1039/c8nr06452k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The surface potential of particles is a double-edged sword for nanomedicine. The negative charge can protect nanoparticles from clearance before they reach the tumor tissue; however, it is difficult to phagocytose the negative particles by target cells due to the negative potential of the cytomembrane. Preparing techniques to efficiently release the encapsulated drug from negative nanoparticles into target cells is a formidable challenge facing advanced drug delivery studies. Herein, we have developed a novel "mosaic-type" nanoparticle system (GA-Cy7-NP) for selective drug release targeting hypoxic cancer cells. In this system, hypoxia-targeting near-infrared dye (Cy7) moiety with a positive charge is conjugated to an antitumor agent, namely, gambogic acid (GA). This conjugate could self-assemble into nanoparticles with surfactin in an aqueous solution, where the Cy7 group is embedded in the negatively charged particle surface formed by surfactin. Most remarkably, the "mosaic-type" nanoparticles could selectively release the loaded drug conjugates into hypoxic cancer cells without particle internalization. Using in vitro PC3 cell and xenograft mouse models, we demonstrate that GA-Cy7-NP exhibits enhanced drug distribution in tumor cells and superior antitumor activity as compared to the prototype drug when evaluated in terms of cell proliferation, tumor growth, and angiogenesis assay.
Collapse
Affiliation(s)
- Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gillis K, Clor J, Khan A, Tyagarajan K. Multiplexed approaches correlating mitochondrial health to cell health using microcapillary cytometry. Methods 2018; 134-135:106-112. [DOI: 10.1016/j.ymeth.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
|
10
|
Ji Y, Shan S, He M, Chu CC. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid. Acta Biomater 2017; 62:234-245. [PMID: 28859900 DOI: 10.1016/j.actbio.2017.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 01/26/2023]
Abstract
β-Cyclodextrin can form inclusion complex with a series of guest molecules including phenyl moieties, and has gained considerable popularity in the study of supramolecular nanostructure. In this study, a biodegradable nanocomplex (HA(CD)-4Phe4 nanocomplex) was developed from β-cyclodextrin grafted hyaluronic acid (HA) and phenylalanine based poly(ester amide). The phenylalanine based poly(ester amide) is a biodegradable pseudo protein which provides the encapsulation capacity for gambogic acid (GA), a naturally-derived chemotherapeutic which has been effectively employed to treat multidrug resistant tumor. The therapeutic potency of free GA is limited due to its poor solubility in water and the lack of tumor-selective toxicity. The nanocomplex carrier enhanced the solubility and availability of GA in aqueous media, and the HA component enabled the targeted delivery to tumor cells with overexpression of CD44 receptors. In the presence of hyaluronidase, the release of GA from the nanocomplex was significantly accelerated, due to the enzymatic biodegradation of the carrier. Compared to free GA, GA-loaded nanocomplex exhibited improved cytotoxicity in MDA-MB-435/MDR multidrug resistant melanoma cells, and induced enhanced level of apoptosis and mitochondrial depolarization, at low concentration of GA (1-2µM). The nanocomplex enhanced the therapeutic potency of GA, especially when diluted in physiological environment. In addition, suppressed matrix metalloproteinase activity was also detected in MDA-MB-435/MDR cells treated by GA-loaded nanocomplex, which demonstrated its potency in the inhibition of tumor metastasis. The in vitro data suggested that HA(CD)-4Phe4 nanocomplex could provide a promising alternative in the treatment of multidrug resistant tumor cells. STATEMENT OF SIGNIFICANCE Gambogic acid (GA), naturally derived from genus Garcinia trees, exhibited significant cytotoxic activity against multiple types of tumors with resistance to traditional chemotherapeutics. Unfortunately, the poor solubility of GA in conventional pharmaceutical solvents and non-targeted distribution in normal tissues greatly limited its therapeutic potency. To overcome the challenges, we develop a nanoplatform from the supramolecular assembly of β-cyclodextrin grafted hyaluronic acid (HA) and phenylalanine based pseudo protein. The pseudo protein in the nanocomplex provided the hydrophobic interaction and loading capacity for GA, while the HA component targeted the overexpressed CD44 receptor and improved the selective endocytosis in multidrug resistant melanoma cells. The supramolecular nanocomplex provide a promising platform for the delivery of hydrophobic chemotherapeutics to improve the bioavailability and efficiency.
Collapse
|
11
|
Ganugula R, Arora M, Saini P, Guada M, Kumar MNVR. Next Generation Precision-Polyesters Enabling Optimization of Ligand-Receptor Stoichiometry for Modular Drug Delivery. J Am Chem Soc 2017; 139:7203-7216. [PMID: 28395139 DOI: 10.1021/jacs.6b13231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of receptor-mediated drug delivery primarily depends on the ability to optimize ligand-receptor stoichiometry. Conventional polyesters such as polylactide (PLA) or its copolymer, polylactide-co-glycolide (PLGA), do not allow such optimization due to their terminal functionality. We herein report the synthesis of 12 variations of the PLA-poly(ethylene glycol) (PEG) based precision-polyester (P2s) platform, permitting 5-12 periodically spaced carboxyl functional groups on the polymer backbone. These carboxyl groups were utilized to achieve variable degrees of gambogic acid (GA) conjugation to facilitate ligand-receptor stoichiometry optimization. These P2s-GA combined with fluorescent P2s upon emulsification form nanosystems (P2Ns) of size <150 nm with GA expressed on the surface. The P2Ns outclass conventional PLGA-GA nanosystems in cellular uptake using caco-2 intestinal model cultures. The P2Ns showed a proportional increase in cellular uptake with an increase in relative surface GA density from 0 to 75%; the slight decline for 100% GA density was indicative of receptor saturation. The intracellular trafficking of P2Ns in live caco-2 cells demonstrated the involvement of endocytic pathways in cellular uptake. The P2Ns manifest transferrin receptor (TfR) colocalization in ex vivo intestinal tissue sections, despite blocking of the receptor with transferrin (Tf) noncompetitively, i.e., independently of receptor occupation by native ligand. The in vivo application of P2Ns was demonstrated using cyclosporine (CsA) as a model peptide. The P2Ns exhibited modular release in vivo, as a function of surface GA density. This approach may contribute to the development of personalized dose regimen.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Prabhjot Saini
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Melissa Guada
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Majeti N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Scherer D, Schworm B, Seyler C, Xynogalos P, Scholz EP, Thomas D, Katus HA, Zitron E. Inhibition of inwardly rectifying Kir2.x channels by the novel anti-cancer agent gambogic acid depends on both pore block and PIP 2 interference. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:701-710. [PMID: 28365825 DOI: 10.1007/s00210-017-1372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022]
Abstract
The caged xanthone gambogic acid (GA) is a novel anti-cancer agent which exhibits anti-proliferative, anti-inflammatory and cytotoxic effects in many types of cancer tissues. In a recent phase IIa study, GA exhibits a favourable safety profile. However, limited data are available concerning its interaction with cardiac ion channels. Heteromeric assembly of Kir2.x channels underlies the cardiac inwardly rectifying IK1 current which is responsible for the stabilization of the diastolic resting membrane potential. Inhibition of the cardiac IK1 current may lead to ventricular arrhythmia due to delayed afterdepolarizations. Compared to Kv2.1, hERG and Kir1.1, a slow, delayed inhibition of Kir2.1 channels by GA in a mammalian cell line was reported before but no data exist in literature concerning action of GA on homomeric Kir2.2 and Kir2.3 and heteromeric Kir2.x channels. Therefore, the aim of this study was to provide comparative data on the effect of GA on homomeric and heteromeric Kir2.x channels. Homomeric and heteromeric Kir2.x channels were heterologously expressed in Xenopus oocytes, and the two-microelectrode voltage-clamp technique was used to record Kir2.x currents. To investigate the mechanism of the channel inhibition by GA, alanine-mutated Kir2.x channels with modifications in the channels pore region or at phosphatidylinositol 4,5-bisphosphate (PIP2)-binding sites were employed. GA caused a slow inhibition of homomeric and heteromeric Kir2.x channels at low micromolar concentrations (with IC50 Kir2.1/2.2 < Kir2.2 < Kir2.2/2.3 < Kir2.3 < Kir2.1 < Kir2.1/2.3). The effect did not reach saturation within 60 min and was not reversible upon washout for 30 min. The inhibition showed no strong voltage dependence. We provide evidence for a combination of direct channel pore blockade and a PIP2-dependent mechanism as a molecular basis for the observed effect. We conclude that Kir2.x channel inhibition by GA may be relevant in patients with pre-existing cardiac disorders such as chronic heart failure or certain rhythm disorders and recommend a close cardiac monitoring for those patients when treated with GA.
Collapse
Affiliation(s)
- Daniel Scherer
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.
| | - Benedikt Schworm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Panagiotis Xynogalos
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Eberhard P Scholz
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Edgar Zitron
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
13
|
Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrob Agents Chemother 2016; 61:AAC.01220-16. [PMID: 27799215 DOI: 10.1128/aac.01220-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023] Open
Abstract
Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents.
Collapse
|
14
|
Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc Natl Acad Sci U S A 2016; 113:E4801-9. [PMID: 27466407 DOI: 10.1073/pnas.1606655113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of their importance in maintaining protein homeostasis, molecular chaperones, including heat-shock protein 90 (Hsp90), represent attractive drug targets. Although a number of Hsp90 inhibitors are in preclinical/clinical development, none strongly differentiate between constitutively expressed Hsp90β and stress-induced Hsp90α, the two cytosolic paralogs of this molecular chaperone. Thus, the importance of inhibiting one or the other paralog in different disease states remains unknown. We show that the natural product, gambogic acid (GBA), binds selectively to a site in the middle domain of Hsp90β, identifying GBA as an Hsp90β-specific Hsp90 inhibitor. Furthermore, using computational and medicinal chemistry, we identified a GBA analog, referred to as DAP-19, which binds potently and selectively to Hsp90β. Because of its unprecedented selectivity for Hsp90β among all Hsp90 paralogs, GBA thus provides a new chemical tool to study the unique biological role of this abundantly expressed molecular chaperone in health and disease.
Collapse
|
15
|
The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand. Sci Rep 2016; 6:29501. [PMID: 27388994 PMCID: PMC4937428 DOI: 10.1038/srep29501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 01/03/2023] Open
Abstract
The current methods for targeted drug delivery utilize ligands that must out-compete endogenous ligands in order to bind to the active site facilitating the transport. To address this limitation, we present a non-competitive active transport strategy to overcome intestinal barriers in the form of tunable nanosystems (NS) for transferrin receptor (TfR) utilizing gambogic acid (GA), a xanthanoid, as its ligand. The NS made using GA conjugated poly(lactide-co-glycolide) (PLGA) have shown non-competitive affinity to TfR evaluated in cell/cell-free systems. The fluorescent PLGA-GA NS exhibited significant intestinal transport and altered distribution profile compared to PLGA NS in vivo. The PLGA-GA NS loaded with cyclosporine A (CsA), a model peptide, upon peroral dosing to rodents led to maximum plasma concentration of CsA at 6 h as opposed to 24 h with PLGA-NS with at least 2-fold higher levels in brain at 72 h. The proposed approach offers new prospects for peroral drug delivery and beyond.
Collapse
|
16
|
Thida M, Kim DW, Tran TTT, Pham MQ, Lee H, Kim I, Lee JW. Gambogic acid induces apoptotic cell death in T98G glioma cells. Bioorg Med Chem Lett 2016; 26:1097-1101. [DOI: 10.1016/j.bmcl.2015.11.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
|
17
|
Zhou Y, Li W, Zhang X, Zhang H, Xiao Y. Global profiling of cellular targets of gambogic acid by quantitative chemical proteomics. Chem Commun (Camb) 2016; 52:14035-14038. [DOI: 10.1039/c6cc07581a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gambogic acid has shown significant potential as an anti-cancer and anti-inflammatory compound, here we report that the target profiling of gambogic acid in human cancer cells via quantitative chemical proteomics.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Centre for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology
- CAS Centre for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Xixi Zhang
- University of Chinese Academy of Sciences
- Beijing 100039
- China
- Institute for Nutritional Sciences
- Shanghai Institutes for Biological Sciences
| | - Haibing Zhang
- Institute for Nutritional Sciences
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology
- CAS Centre for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| |
Collapse
|
18
|
The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer. Proc Natl Acad Sci U S A 2015; 112:3698-703. [PMID: 25762074 DOI: 10.1073/pnas.1502960112] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.
Collapse
|
19
|
Elbel KM, Guizzunti G, Theodoraki MA, Xu J, Batova A, Dakanali M, Theodorakis EA. A-ring oxygenation modulates the chemistry and bioactivity of caged Garcinia xanthones. Org Biomol Chem 2014; 11:3341-8. [PMID: 23563530 DOI: 10.1039/c3ob40395e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural products of the caged Garcinia xanthones (CGX) family are characterized by a unique chemical structure, potent bioactivities and promising pharmacological profiles. We have developed a Claisen/Diels-Alder reaction cascade that, in combination with a Pd(0)-catalyzed reverse prenylation, provides rapid and efficient access to the CGX pharmacophore, represented by the structure of cluvenone. To further explore this pharmacophore, we have synthesized various A-ring oxygenated analogues of cluvenone and have evaluated their bioactivities in terms of growth inhibition, mitochondrial fragmentation, induction of mitochondrial-dependent cell death and Hsp90 client inhibition. We found that installation of an oxygen functionality at various positions of the A-ring influences significantly both the site-selectivity of the Claisen/Diels-Alder reaction and the bioactivity of these compounds, due to remote electronic effects.
Collapse
Affiliation(s)
- Kristyna M Elbel
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Duan D, Zhang B, Yao J, Liu Y, Sun J, Ge C, Peng S, Fang J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic Biol Med 2014; 69:15-25. [PMID: 24407164 DOI: 10.1016/j.freeradbiomed.2013.12.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/17/2013] [Accepted: 12/28/2013] [Indexed: 11/30/2022]
Abstract
The thioredoxin reductase (TrxR) isoenzymes, TrxR1 in cytosol or nucleus and TrxR2 in mitochondria, are essential mammalian selenocysteine (Sec)-containing flavoenzymes with a unique C-terminal -Gly-Cys-Sec-Gly active site. TrxRs are often overexpressed in a number of human tumors, and the reduction of their expression in malignant cells reverses tumor growth, making the enzymes attractive targets for anticancer drug development. Gambogic acid (GA), a natural product that has been used in traditional Chinese medicine for centuries, demonstrates potent anticancer activity in numerous types of human cancer cells and has entered phase II clinical trials. We discovered that GA may interact with TrxR1 to elicit oxidative stress and eventually induce apoptosis in human hepatocellular carcinoma SMMC-7721 cells. GA primarily targets the Sec residue in the antioxidant enzyme TrxR1 to inhibit its Trx-reduction activity, leading to accumulation of reactive oxygen species and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 in cells attenuates the cytotoxicity of GA, whereas knockdown of TrxR1 sensitizes cells to GA. Targeting of TrxR1 by GA thus discloses a previously unrecognized mechanism underlying the biological action of GA and provides useful information for further development of GA as a potential agent in the treatment of cancer.
Collapse
Affiliation(s)
- Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinyu Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|