1
|
Wang ZK, Yuan ZX, Qian C, Liu XW. Plasmonic Probing of Deoxyribonucleic Acid Hybridization at the Single Base Pair Resolution. Anal Chem 2023; 95:18398-18406. [PMID: 38055795 DOI: 10.1021/acs.analchem.3c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Partial DNA duplex formation greatly impacts the quality of DNA hybridization and has been extensively studied due to its significance in many biological processes. However, traditional DNA sensing methods suffer from time-consuming amplification steps and hinder the acquisition of information about single-molecule behavior. In this work, we developed a plasmonic method to probe the hybridization process at a single base pair resolution and study the relationship between the complementarity of DNA analytes and DNA hybridization behaviors. We measured single-molecule hybridization events with Au NP-modified ssDNA probes in real time and found two hybridization adsorption events: stable and transient adsorption. The ratio of these two hybridization adsorption events was correlated with the length of the complementary sequences, distinguishing DNA analytes from different complementary sequences. By using dual incident angle excitation, we recognized different single-base complementary sequences. These results demonstrated that the plasmonic method can be applied to study partial DNA hybridization behavior and has the potential to be incorporated into the identification of similar DNA sequences, providing a sensitive and quantitative tool for DNA analysis.
Collapse
Affiliation(s)
- Zhao-Kun Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhen-Xuan Yuan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
3
|
Liu M, Lau CYJ, Cabello IT, Garssen J, Willemsen LEM, Hennink WE, van Nostrum CF. Live Cell Imaging by Förster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells. Pharmaceuticals (Basel) 2023; 16:818. [PMID: 37375766 DOI: 10.3390/ph16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Our previous study demonstrated that a selected β-lactoglobulin-derived peptide (BLG-Pep) loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles protected mice against cow's milk allergy development. However, the mechanism(s) responsible for the interaction of the peptide-loaded PLGA nanoparticles with dendritic cells (DCs) and their intracellular fate was/were elusive. Förster resonance energy transfer (FRET), a distance-dependent non-radioactive energy transfer process mediated from a donor to an acceptor fluorochrome, was used to investigate these processes. The ratio of the donor (Cyanine-3)-conjugated peptide and acceptor (Cyanine-5) labeled PLGA nanocarrier was fine-tuned for optimal (87%) FRET efficiency. The colloidal stability and FRET emission of prepared NPs were maintained upon 144 h incubation in PBS buffer and 6 h incubation in biorelevant simulated gastric fluid at 37 °C. A total of 73% of Pep-Cy3 NP was internalized by DCs as quantified using flow cytometry and confirmed using confocal fluorescence microscopy. By real-time monitoring of the change in the FRET signal of the internalized peptide-loaded nanoparticles, we observed prolonged retention (for 96 h) of the nanoparticles-encapsulated peptide as compared to 24 h retention of the free peptide in the DCs. The prolonged retention and intracellular antigen release of the BLG-Pep loaded in PLGA nanoparticles in murine DCs might facilitate antigen-specific tolerance induction.
Collapse
Affiliation(s)
- Mengshan Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Irene Trillo Cabello
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Wan Mohamad Noor WNI, Nguyen NTH, Cheong TH, Chek MF, Hakoshima T, Inaba T, Hanawa-Suetsugu K, Nishimura T, Suetsugu S. Small GTPase Cdc42, WASP, and scaffold proteins for higher-order assembly of the F-BAR domain protein. SCIENCE ADVANCES 2023; 9:eadf5143. [PMID: 37126564 PMCID: PMC10132759 DOI: 10.1126/sciadv.adf5143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The higher-order assembly of Bin-amphiphysin-Rvs (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, into lattice on the membrane is essential for the formation of subcellular structures. However, the regulation of their ordered assembly has not been elucidated. Here, we show that the higher ordered assembly of growth-arrested specific 7 (GAS7), an F-BAR domain protein, is regulated by the multivalent scaffold proteins of Wiskott-Aldrich syndrome protein (WASP)/neural WASP, that commonly binds to the BAR domain superfamily proteins, together with WISH, Nck, the activated small guanosine triphosphatase Cdc42, and a membrane-anchored phagocytic receptor. The assembly kinetics by fluorescence resonance energy transfer monitoring indicated that the GAS7 assembly on liposomes started within seconds and was further increased by the presence of these proteins. The regulated GAS7 assembly was abolished by Wiskott-Aldrich syndrome mutations both in vitro and in cellular phagocytosis. Therefore, Cdc42 and the scaffold proteins that commonly bind to the BAR domain superfamily proteins promoted GAS7 assembly.
Collapse
Affiliation(s)
- Wan Nurul Izzati Wan Mohamad Noor
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Theng Ho Cheong
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
5
|
Hirashima S, Park S, Sugiyama H. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes. Chemistry 2023; 29:e202203961. [PMID: 36700521 PMCID: PMC10332638 DOI: 10.1002/chem.202203961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Förster resonance energy transfer (FRET) is an attractive tool for understanding biomolecular dynamics. FRET-based analysis of nucleosomes has the potential to fill the knowledge gaps between static structures and dynamic cellular behaviors. Compared with typical FRET pairs using bulky fluorophores introduced by flexible linkers, fluorescent nucleoside-based FRET pair has great potential since it can be fitted within the helical structures of nucleic acids. Herein we report on the construction of nucleosomes containing a nucleobase FRET pair and the investigation of experimental and theoretical FRET efficiencies through steady-state fluorescence spectroscopy and calculation based on molecular dynamics simulations, respectively. Distinguishable experimental FRET efficiencies were observed depending on the positions of FRET pairs in nucleosomal DNA. The tendency could be supported by theoretical study. This work suggests the possibility of our approach to analyze structural changes of nucleosomes by epigenetic modifications or internucleosomal interactions.
Collapse
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
He Z, Li F, Zuo P, Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3083. [PMID: 37109920 PMCID: PMC10145016 DOI: 10.3390/ma16083083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Over the past several years, resonance energy transfer involving noble metallic nanoparticles has received considerable attention. The aim of this review is to cover advances in resonance energy transfer, widely exploited in biological structures and dynamics. Due to the presence of surface plasmons, strong surface plasmon resonance absorption and local electric field enhancement are generated near noble metallic nanoparticles, and the resulting energy transfer shows potential applications in microlasers, quantum information storage devices and micro-/nanoprocessing. In this review, we present the basic principle of the characteristics of noble metallic nanoparticles, as well as the representative progress in resonance energy transfer involving noble metallic nanoparticles, such as fluorescence resonance energy transfer, nanometal surface energy transfer, plasmon-induced resonance energy transfer, metal-enhanced fluorescence, surface-enhanced Raman scattering and cascade energy transfer. We end this review with an outlook on the development and applications of the transfer process. This will offer theoretical guidance for further optical methods in distance distribution analysis and microscopic detection.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Tian
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
7
|
Jing H, Magdaong NCM, Diers JR, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Dyads with tunable near-infrared donor-acceptor excited-state energy gaps: molecular design and Förster analysis for ultrafast energy transfer. Phys Chem Chem Phys 2023; 25:1827-1847. [PMID: 36601996 DOI: 10.1039/d2cp04689j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the meso-positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad. Molecular designs utilized known effects of macrocycle substituents to engineer bacteriochlorins with S0 → S1 (Qy) transitions spanning 725-788 nm. The design-predicted donor-acceptor excited-state energy gaps in the dyads agree well with those obtained from time dependent density functional theory calculations and with the measured range of 197-1089 cm-1. Similar trends with donor-acceptor excited-state energy gaps are found for (1) the measured ultrafast energy-transfer rates of (0.3-1.7 ps)-1, (2) the spectral overlap integral (J) in Förster energy-transfer theory, and (3) donor-acceptor electronic mixing manifested in the natural transition orbitals for the S0 → S1 transition. Subtle outcomes include the near orthogonal orientation of the π-planes of the bacteriochlorin macrocycles, and the substituent-induced shift in transition-dipole moment from the typical coincidence with the NH-NH axis; the two features together afforded the Förster orientation term κ2 ranging from 0.55-1.53 across the nine dyads, a value supportive of efficient excited-state energy transfer. The molecular design and collective insights on the dyads are valuable for studies relevant to artificial photosynthesis and other processes requiring ultrafast energy transfer.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
8
|
Chowdhury M, Hudson RHE. Exploring Nucleobase Modifications in Oligonucleotide Analogues for Use as Environmentally Responsive Fluorophores and Beyond. CHEM REC 2023; 23:e202200218. [PMID: 36344432 DOI: 10.1002/tcr.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Over the past two decades, it has become abundantly clear that nucleic acid biochemistry, especially with respect to RNA, is more convoluted and complex than previously appreciated. Indeed, the application and exploitation of nucleic acids beyond their predestined role as the medium for storage and transmission of genetic information to the treatment and study of diseases has been achieved. In other areas of endeavor, utilization of nucleic acids as a probe molecule requires that they possess a reporter group. The reporter group of choice is often a luminophore because fluorescence spectroscopy has emerged as an indispensable tool to probe the structural and functional properties of modified nucleic acids. The scope of this review spans research done in the Hudson lab at The University of Western Ontario and is focused on modified pyrimidine nucleobases and their applications as environmentally sensitive fluorophores, base discriminating fluorophores, and in service of antisense applications as well as tantalizing new results as G-quadruplex destabilizing agents. While this review is a focused personal account, particularly influential work of colleagues in the chemistry community will be highlighted. The intention is not to make a comprehensive review, citations to the existing excellent reviews are given, any omission of the wonderful and impactful work being done by others globally is not intentional. Thus, this review will briefly introduce the context of our work, summarize what has been accomplished and finish with the prospects of future developments.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
9
|
Ten TB, Zvoda V, Sarangi MK, Kuznetsov SV, Ansari A. "Flexible hinge" dynamics in mismatched DNA revealed by fluorescence correlation spectroscopy. J Biol Phys 2022; 48:253-272. [PMID: 35451661 PMCID: PMC9411374 DOI: 10.1007/s10867-022-09607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Altered unwinding/bending fluctuations at DNA lesion sites are implicated as plausible mechanisms for damage sensing by DNA-repair proteins. These dynamics are expected to occur on similar timescales as one-dimensional (1D) diffusion of proteins on DNA if effective in stalling these proteins as they scan DNA. We examined the flexibility and dynamics of DNA oligomers containing 3 base pair (bp) mismatched sites specifically recognized in vitro by nucleotide excision repair protein Rad4 (yeast ortholog of mammalian XPC). A previous Forster resonance energy transfer (FRET) study mapped DNA conformational distributions with cytosine analog FRET pair primarily sensitive to DNA twisting/unwinding deformations (Chakraborty et al. Nucleic Acids Res. 46: 1240-1255 (2018)). These studies revealed B-DNA conformations for nonspecific (matched) constructs but significant unwinding for mismatched constructs specifically recognized by Rad4, even in the absence of Rad4. The timescales of these unwinding fluctuations, however, remained elusive. Here, we labeled DNA with Atto550/Atto647N FRET dyes suitable for fluorescence correlation spectroscopy (FCS). With these probes, we detected higher FRET in specific, mismatched DNA compared with matched DNA, reaffirming unwinding/bending deformations in mismatched DNA. FCS unveiled the dynamics of these spontaneous deformations at ~ 300 µs with no fluctuations detected for matched DNA within the ~ 600 ns-10 ms FCS time window. These studies are the first to visualize anomalous unwinding/bending fluctuations in mismatched DNA on timescales that overlap with the < 500 µs "stepping" times of repair proteins on DNA. Such "flexible hinge" dynamics at lesion sites could arrest a diffusing protein to facilitate damage interrogation and recognition.
Collapse
Affiliation(s)
- Timour B Ten
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Viktoriya Zvoda
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manas K Sarangi
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
- Present Address: Department of Physics, Indian Institute of Technology, Patna, 801103, India
| | - Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anjum Ansari
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
10
|
Cappello D, Buguis FL, Boyle PD, Gilroy JB. Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Cappello
- The University of Western Ontario Department of Chemistry CANADA
| | | | - Paul D. Boyle
- The University of Western Ontario Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|
11
|
Chiriboga M, Diaz SA, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL. Understanding Self-Assembled Pseudoisocyanine Dye Aggregates in DNA Nanostructures and Their Exciton Relay Transfer Capabilities. J Phys Chem B 2021; 126:110-122. [PMID: 34962787 DOI: 10.1021/acs.jpcb.1c09048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progress has been made using B-form DNA duplex strands to template chromophores in ordered molecular aggregates known as J-aggregates. These aggregates can exhibit strong electronic coupling, extended coherent lifetimes, and long-range exciton delocalization under appropriate conditions. Certain cyanine dyes such as pseudoisocyanine (PIC) dye have shown a proclivity to form aggregates in specific DNA sequences. In particular, DX-tiles containing nonalternating poly(dA)-poly(dT) dinucleotide tracks (AT-tracks), which template noncovalent PIC dye aggregates, have been demonstrated to exhibit interesting emergent photonic properties. These DNA-based aggregates are referred to as J-bits for their similarity to J-aggregates. Here, we assemble multifluorophore DX-tile scaffolds which template J-bits into both contiguous and noncontiguous linear arrays. Our goal is to understand the relay capability of noncontiguous J-bit arrays and probe the effects that orientation and position have on the energy transfer between them. We find that linearly contiguous J-bits can relay excitons from an initial AlexaFluor 405 donor to a terminal AlexaFluor 647 acceptor across a distance of up to 16.3 nm. We observed a maximum increase in energy transfer of 41% in the shortest scaffold and an 11% increase in energy transfer across the maximum distance. However, in nonlinear arrays, exciton transfer is not detectable, even when off-axis J-bit-to-J-bit transfer distances were <2 nm. These results, in conjunction with the previous work on PIC-DNA systems, suggest that PIC-DNA-based systems may currently be limited to simple 1-D designs, which prevent isolating J-bits for enhanced energy-transfer characteristics until further understanding and improvements to the system can be made.
Collapse
Affiliation(s)
- Matthew Chiriboga
- Center for Bio/Molecular Science & Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States.,Volgenau School of Engineering, Department of Bioengineering, Institute for Advanced Biomedical Research George Mason University, Manassas, Virginia 22030, United States
| | - Sebastian A Diaz
- Center for Bio/Molecular Science & Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular Science & Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States.,College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - David A Hastman
- Center for Bio/Molecular Science & Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States.,A. James Clark School of Engineering, Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Joseph S Melinger
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States
| | - Remi Veneziano
- Volgenau School of Engineering, Department of Bioengineering, Institute for Advanced Biomedical Research George Mason University, Manassas, Virginia 22030, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, District of Columbia 20375, United States
| |
Collapse
|
12
|
Abstract
Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.
Collapse
Affiliation(s)
- Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Morozov D, Mironov V, Moryachkov RV, Shchugoreva IA, Artyushenko PV, Zamay GS, Kolovskaya OS, Zamay TN, Krat AV, Molodenskiy DS, Zabluda VN, Veprintsev DV, Sokolov AE, Zukov RA, Berezovski MV, Tomilin FN, Fedorov DG, Alexeev Y, Kichkailo AS. The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:316-327. [PMID: 34458013 PMCID: PMC8379633 DOI: 10.1016/j.omtn.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.
Collapse
Affiliation(s)
- Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Roman V. Moryachkov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Irina A. Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Polina V. Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Galina S. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Olga S. Kolovskaya
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Tatiana N. Zamay
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey V. Krat
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Vladimir N. Zabluda
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Dmitry V. Veprintsev
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey E. Sokolov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ruslan A. Zukov
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Felix N. Tomilin
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| |
Collapse
|
14
|
Segler ALJ, Sigurdsson ST. A Carbazole-Derived Nitroxide That Is an Analogue of Cytidine: A Rigid Spin Label for DNA and RNA. J Org Chem 2021; 86:11647-11659. [PMID: 34410721 DOI: 10.1021/acs.joc.1c01176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A variety of semirigid and rigid spin labels comprise a valuable arsenal for measurements of biomolecular structures and dynamics by electron paramagnetic resonance (EPR) spectroscopy. Here, we report the synthesis and characterization of rigid spin labels Ċ and Ċm for DNA and RNA, respectively, that are carbazole-derived nitroxides and analogues of cytidine. Ċ and Ċm were converted to their phosphoramidites and used for their incorporation into oligonucleotides by solid-phase synthesis. Analysis of Ċ and Ċm by single-crystal X-ray crystallography verified their identity and showed little deviation from planarity of the nucleobase. Analysis of the continuous-wave (CW) EPR spectra of the spin-labeled DNA and RNA duplexes confirmed their incorporation into the nucleic acids and the line-shape was characteristic of rigid spin labels. Circular dichroism (CD) and thermal denaturation studies of the Ċ-labeled DNAs and Ċm-labeled RNAs indicated that the labels are nonperturbing of duplex structure.
Collapse
Affiliation(s)
- Anna-Lena Johanna Segler
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
15
|
Ban Ž, Karačić Z, Tomić S, Amini H, Marder TB, Piantanida I. Triarylborane Dyes as a Novel Non-Covalent and Non-Inhibitive Fluorimetric Markers for DPP III Enzyme. Molecules 2021; 26:molecules26164816. [PMID: 34443404 PMCID: PMC8398983 DOI: 10.3390/molecules26164816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.
Collapse
Affiliation(s)
- Željka Ban
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
| | - Zrinka Karačić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
| | - Sanja Tomić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
- Correspondence: (S.T.); (I.P.); Tel.: +385-1-4571-251 (S.T.); +385-1-4571-326 (I.P.)
| | - Hashem Amini
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; (H.A.); (T.B.M.)
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; (H.A.); (T.B.M.)
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia; (Ž.B.); (Z.K.)
- Correspondence: (S.T.); (I.P.); Tel.: +385-1-4571-251 (S.T.); +385-1-4571-326 (I.P.)
| |
Collapse
|
16
|
Barnoin G, Shaya J, Richert L, Le HN, Vincent S, Guérineau V, Mély Y, Michel BY, Burger A. Intermolecular dark resonance energy transfer (DRET): upgrading fluorogenic DNA sensing. Nucleic Acids Res 2021; 49:e72. [PMID: 33872373 PMCID: PMC8266640 DOI: 10.1093/nar/gkab237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The sensitivity of FRET-based sensing is usually limited by the spectral overlaps of the FRET donor and acceptor, which generate a poor signal-to-noise ratio. To overcome this limitation, a quenched donor presenting a large Stokes shift can be combined with a bright acceptor to perform Dark Resonance Energy Transfer (DRET). The consequent fluorogenic response from the acceptor considerably improves the signal-to-noise ratio. To date, DRET has mainly relied on a donor that is covalently bound to the acceptor. In this context, our aim was to develop the first intermolecular DRET pair for specific sensing of nucleic acid sequences. To this end, we designed DFK, a push-pull probe based on a fluorenyl π-platform that is strongly quenched in water. DFK was incorporated into a series of oligonucleotides and used as a DRET donor with Cy5-labeled complementary sequences. In line with our expectations, excitation of the dark donor in the double-labeled duplex switched on the far-red Cy5 emission and remained free of cross-excitation. The DRET mechanism was supported by time-resolved fluorescence measurements. This concept was then applied with binary probes, which confirmed the distance dependence of DRET as well as its potency in detecting sequences of interest with low background noise.
Collapse
Affiliation(s)
- Guillaume Barnoin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Janah Shaya
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Hoang-Ngoan Le
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Steve Vincent
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Benoît Y Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
17
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
18
|
Specific chemical modification explores dynamic structure of the NqrB subunit in Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148432. [PMID: 33932367 DOI: 10.1016/j.bbabio.2021.148432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) is a main ion transporter in many pathogenic bacteria. We previously proposed that N-terminal stretch of the NqrB subunit plays an important role in regulating the ubiquinone reaction at the adjacent NqrA subunit in Vibrio cholerae Na+-NQR. However, since approximately three quarters of the stretch (NqrB-Met1-Pro37) was not modeled in an earlier crystallographic study, its structure and function remain unknown. If we can develop a method that enables pinpoint modification of this stretch by functional chemicals (such as spin probes), it could lead to new ways to investigate the unsettled issues. As the first step to this end, we undertook to specifically attach an alkyne group to a lysine located in the stretch via protein-ligand affinity-driven substitution using synthetic ligands NAS-K1 and NAS-K2. The alkyne, once attached, can serve as an "anchor" for connecting functional chemicals via convenient click chemistry. After a short incubation of isolated Na+-NQR with these ligands, alkyne was predominantly incorporated into NqrB. Proteomic analyses in combination with mutagenesis of predicted target lysines revealed that alkyne attaches to NqrB-Lys22 located at the nonmodeled region of the stretch. This study not only achieved the specific modification initially aimed for but also provided valuable information about positioning of the nonmodeled region. For example, the fact that hydrophobic NAS-Ks come into contact with NqrB-Lys22 suggests that the nonmodeled region may orient toward the membrane phase rather than protruding into cytoplasmic medium. This conformation may be essential for regulating the ubiquinone reaction in the adjacent NqrA.
Collapse
|
19
|
Sarca AD, Sardo L, Fukuda H, Matsui H, Shirakawa K, Horikawa K, Takaori-Kondo A, Izumi T. FRET-Based Detection and Quantification of HIV-1 Virion Maturation. Front Microbiol 2021; 12:647452. [PMID: 33767685 PMCID: PMC7985248 DOI: 10.3389/fmicb.2021.647452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 01/27/2023] Open
Abstract
HIV-1 infectivity is achieved through virion maturation. Virus particles undergo structural changes via cleavage of the Gag polyprotein mediated by the viral protease, causing the transition from an uninfectious to an infectious status. The majority of proviruses in people living with HIV-1 treated with combination antiretroviral therapy are defective with large internal deletions. Defective proviral DNA frequently preserves intact sequences capable of expressing viral structural proteins to form virus-like particles whose maturation status is an important factor for chronic antigen-mediated immune stimulation and inflammation. Thus, novel methods to study the maturation capability of defective virus particles are needed to characterize their immunogenicity. To build a quantitative tool to study virion maturation in vitro, we developed a novel single virion visualization technique based on fluorescence resonance energy transfer (FRET). We inserted an optimized intramolecular CFP-YPF FRET donor-acceptor pair bridged with an HIV-1 protease cleavage sequence between the Gag MA-CA domains. This system allowed us to microscopically distinguish mature and immature virions via their FRET signal when the FRET donor and acceptor proteins were separated by the viral protease during maturation. We found that approximately 80% of the FRET labeled virus particles were mature with equivalent infectivity to wild type. The proportion of immature virions was increased by treatment of virus producer cells with a protease inhibitor in a dose-dependent manner, which corresponded to a relative decrease in infectivity. Potential areas of application for this tool are assessing maturation efficiency in different cell type settings of intact or deficient proviral DNA integrated cells. We believe that this FRET-based single-virion imaging platform will facilitate estimating the impact on the immune system of both extracellular intact and defective viruses by quantifying the Gag maturation status.
Collapse
Affiliation(s)
- Anamaria D Sarca
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Sardo
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Matsui
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taisuke Izumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Zhang W, Bertinetti L, Blank KG, Dimova R, Gao C, Schneck E, Fratzl P. Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angew Chem Int Ed Engl 2021; 60:6488-6495. [PMID: 33188706 PMCID: PMC7986915 DOI: 10.1002/anie.202011983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Indexed: 12/21/2022]
Abstract
Osmotic pressures (OPs) play essential roles in biological processes and numerous technological applications. However, the measurement of OP in situ with spatiotemporal resolution has not been achieved so far. Herein, we introduce a novel kind of OP sensor based on liposomes loaded with water-soluble fluorescent dyes exhibiting resonance energy transfer (FRET). The liposomes experience volume changes in response to OP due to water outflux. The FRET efficiency depends on the average distance between the entrapped dyes and thus provides a direct measure of the OP surrounding each liposome. The sensors exhibit high sensitivity to OP in the biologically relevant range of 0-0.3 MPa in aqueous solutions of salt, small organic molecules, and macromolecules. With the help of FRET microscopy, we demonstrate the feasibility of spatiotemporal OP imaging, which can be a promising new tool to investigate phenomena involving OPs and their dynamics in biology and technology.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Luca Bertinetti
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Kerstin G. Blank
- Mechano(bio)chemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Rumiana Dimova
- Department of Theory & Bio-SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Emanuel Schneck
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
- Department of PhysicsTechnische Universität Darmstadt64289DarmstadtGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
21
|
Zhang W, Bertinetti L, Blank KG, Dimova R, Gao C, Schneck E, Fratzl P. Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenbo Zhang
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Luca Bertinetti
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Kerstin G. Blank
- Mechano(bio)chemistry Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Rumiana Dimova
- Department of Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Emanuel Schneck
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
- Department of Physics Technische Universität Darmstadt 64289 Darmstadt Germany
| | - Peter Fratzl
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
22
|
Füchtbauer AF, Wranne MS, Sarangamath S, Bood M, El-Sagheer AH, Brown T, Gradén H, Grøtli M, Wilhelmsson LM. Lighting Up DNA with the Environment-Sensitive Bright Adenine Analogue qAN4. Chempluschem 2021; 85:319-326. [PMID: 32045137 DOI: 10.1002/cplu.201900712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Indexed: 12/20/2022]
Abstract
The fluorescent adenine analogue qAN4 was recently shown to possess promising photophysical properties, including a high brightness as a monomer. Here we report the synthesis of the phosphoramidite of qAN4 and its successful incorporation into DNA oligonucleotides using standard solid-phase synthesis. Circular dichroism and thermal melting studies indicate that the qAN4-modification has a stabilizing effect on the B-form of DNA. Moreover, qAN4 base-pairs selectively with thymine with mismatch penalties similar to those of mismatches of adenine. The low energy absorption band of qAN4 inside DNA has its peak around 358 nm and the emission in duplex DNA is partly quenched and blue-shifted (ca. 410 nm), compared to the monomeric form. The spectral properties of the fluorophore also show sensitivity to pH; a property that may find biological applications. Quantum yields in single-stranded DNA range from 1-29 % and in duplex DNA from 1-7 %. In combination with the absorptive properties, this gives an average brightness inside duplex DNA of 275 M-1 cm-1 , more than five times higher than the most used environment-sensitive fluorescent base analogue, 2-aminopurine. Finally, we show that qAN4 can be used to advantage as a donor for interbase FRET applications in combination with adenine analogue qAnitro as an acceptor.
Collapse
Affiliation(s)
- Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden.,Cardiovascular Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.,Chemistry Branch Department of Science and Mathematics Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Henrik Gradén
- Cardiovascular Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
23
|
Saha U, Chatterjee S, Dolai M, Suresh Kumar G. Biophysical and Thermodynamic Investigations on the Differentiation of Fluorescence Response towards Interaction of DNA: A Pyrene-Based Receptor versus Its Fe(III) Complex. ACS APPLIED BIO MATERIALS 2020; 3:7810-7820. [DOI: 10.1021/acsabm.0c00983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Urmila Saha
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Sabyasachi Chatterjee
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, W.B., India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| |
Collapse
|
24
|
Hirashima S, Sugiyama H, Park S. Construction of a FRET System in a Double-Stranded DNA Using Fluorescent Thymidine and Cytidine Analogs. J Phys Chem B 2020; 124:8794-8800. [DOI: 10.1021/acs.jpcb.0c06879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Burns JR, Wood JW, Stulz E. A Porphyrin-DNA Chiroptical Molecular Ruler With Base Pair Resolution. Front Chem 2020; 8:113. [PMID: 32175308 PMCID: PMC7054460 DOI: 10.3389/fchem.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
DNA-based molecular rulers enable scientists to determine important parameters across biology, from the measurement of protein binding interactions, to the study of membrane dynamics in cells. However, existing rulers can suffer from poor nanometre resolution due to the flexible nature of linkers used to tether to the DNA framework. We aimed to overcome this problem using zinc and free-base porphyrin chromophores attached via short and rigid acetylene linkers. This connectivity enables the distance and angle between the porphyrins to be fine-tuned along the DNA scaffold. The porphyrins undergo favorable energy transfer and chiral exciton coupling interactions to act as highly sensitive molecular ruler probes. To validate the system, we monitored the detection of small changes in DNA structure upon intercalation of ethidium bromide. CD spectroscopy showed the porphyrins undergo highly sensitive changes in excitation coupling to facilitate base pair resolution of the novel system.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, University College London, London, United Kingdom
| | - James W Wood
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
26
|
Chen PW, Tseng CY, Shi F, Bi B, Lo YH. Detecting Protein-Ligand Interaction from Integrated Transient Induced Molecular Electronic Signal (i-TIMES). Anal Chem 2020; 92:3852-3859. [PMID: 32045225 DOI: 10.1021/acs.analchem.9b05310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative information about protein-ligand interactions is central to drug discovery. To obtain the quintessential reaction dissociation constant, ideally measurements of reactions should be performed without perturbations by molecular labeling or immobilization. The technique of transient induced molecular electrical signal (TIMES) has provided a promising technique to meet such requirements, and its performance in a microfluidic environment further offers the potential for high throughput and reduced consumption of reagents. In this work, we further the development by using integrated TIMES signal (i-TIMES) to greatly enhance the accuracy and reproducibility of the measurement. While the transient response may be of interest, the integrated signal directly measures the total amount of surface charge density resulted from molecules near the surface of electrode. The signals enable quantitative characterization of protein-ligand interactions. We have demonstrated the feasibility of i-TIMES technique using different biomolecules including lysozyme, N,N',N″-triacetylchitotriose (TriNAG), aptamer, p-aminobenzamidine (pABA), bovine pancreatic ribonuclease A (RNaseA), and uridine-3'-phosphate (3'UMP). The results show i-TIMES is a simple and accurate technique that can bring tremendous value to drug discovery and research of intermolecular interactions.
Collapse
Affiliation(s)
- Ping-Wei Chen
- Chemical Engineering Program, University of California San Diego, La Jolla, California 92093-0448, United States
| | - Chi-Yang Tseng
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093-0418, United States
| | - Fumin Shi
- InnoScounting LLC, Rockville, Maryland 20850-4432, United States
| | - Bo Bi
- InnoScounting LLC, Rockville, Maryland 20850-4432, United States
| | - Yu-Hwa Lo
- Chemical Engineering Program, University of California San Diego, La Jolla, California 92093-0448, United States.,Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093-0418, United States.,Electrical and Computer Engineering Department, University of California San Diego, La Jolla, California 92093-0407, United States
| |
Collapse
|
27
|
Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation. Anal Bioanal Chem 2019; 411:6723-6732. [PMID: 31396648 DOI: 10.1007/s00216-019-02045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR). The approach consists of (i) acquiring SAXS experimental data of an aptamer in solution, (ii) building a spatial distribution of the molecule's electron density using SAXS results, (iii) constructing a 3D model of the aptamer from its nucleotide primary sequence and secondary structure, and (iv) comparing and refining the modeled 3D structures with the experimental SAXS model. In the proof-of-principle we analyzed the 3D structure of RE31 aptamer to thrombin in a native free state at different temperatures and validated it by circular dichroism (CD). The resulting 3D structure of RE31 has the most energetically favorable conformation and the same elements such as a B-form duplex, non-complementary region, and two G-quartets which were previously reported by X-ray diffraction (XRD) from a single crystal. More broadly, this study demonstrates the complementary approach for constructing and adjusting the 3D structures of aptamers, DNAzymes, and ribozymes in solution, and could supply new opportunities for developing functional nucleic acids. Graphical abstract.
Collapse
|
28
|
Soni R, Sharma D, Krishna AM, Sathiri J, Sharma A. A highly efficient Baby Spinach-based minimal modified sensor (BSMS) for nucleic acid analysis. Org Biomol Chem 2019; 17:7222-7227. [PMID: 31329202 DOI: 10.1039/c9ob01414d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular recognition between nucleic acids has proven to be a powerful tool for designing hybridization probes for the detection of DNA and RNA sequences. Most detection probes rely on the conjugation of small molecule dyes to nucleic acids for fluorescence output, which is not cost-effective and also limits their applications in vivo, as they are not genetically encodable. More affordable sensors devoid of any chemical labeling are needed that show high fluorescence output and are genetically encodable. Here, we have designed a label-free Baby Spinach-based minimal modified sensor (BSMS) for the analysis of nucleic acids. The minimal modification in the sensor design reduces the complexity of the design, and provides additional stabilization after binding the target nucleic acids, leading to a high fluorescence output. BSMS is able to detect both DNA and RNA of potentially any lengths and is based on a Baby Spinach aptamer that binds and enhances the fluorescence of a small molecule dye. BSMS shows specificity towards its analyte in the presence of other sequences and selectively differentiates between closely related sequences. BSMS comprises genetically encodable unmodified RNA and has been shown to function at ambient temperature, and thus is anticipated to provide nucleic acid monitoring in vivo.
Collapse
Affiliation(s)
- Rashi Soni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Deepti Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - A Murali Krishna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Jagadeesh Sathiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Ashwani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India. and Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
29
|
Velmurugu Y, Vivas P, Connolly M, Kuznetsov SV, Rice PA, Ansari A. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein. Nucleic Acids Res 2019; 46:1741-1755. [PMID: 29267885 PMCID: PMC5829579 DOI: 10.1093/nar/gkx1215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1–10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.
Collapse
Affiliation(s)
- Yogambigai Velmurugu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paula Vivas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Serguei V Kuznetsov
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
|
31
|
Juliusson HY, Segler ALJ, Sigurdsson ST. Benzoyl-Protected Hydroxylamines for Improved Chemical Synthesis of Oligonucleotides Containing Nitroxide Spin Labels. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haraldur Y. Juliusson
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| | - Anna-Lena J. Segler
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
32
|
Russell BA, Kubiak-Ossowska K, Chen Y, Mulheran PA. Critical role of tyrosine-20 in formation of gold nanoclusters within lysozyme: a molecular dynamics study. Phys Chem Chem Phys 2019; 21:4907-4911. [PMID: 30756100 DOI: 10.1039/c8cp06374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysozyme is one of the most commonly used proteins for encapsulating gold nanoclusters, yielding Ly-AuNC complexes. While possible applications of Ly-AuNCs in environmental, biological and trace metal sensing in solution have been demonstrated, there is currently a poor understanding of the physical characteristics of the Ly-AuNC complex. In this study we have employed fully atomistic molecular dynamics simulations to gain an understanding of the formation of Au clusters within the protein. It was found that in order to form AuNCs in the simulations, an approach of targeted insertion of Au atoms at a critical surface residue was needed. Tyrosine is known to be crucial for the reduction of Au salts experimentally, and our simulations showed that Tyr20 is the key residue for the formation of an AuNC beneath the protein surface in the α-helical domain. It is hoped these observations will aid future improvements and modification of Ly-AuNCs via alterations of the alpha-helix domain or Tyr20.
Collapse
Affiliation(s)
- Ben A Russell
- Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UK.
| | | | | | | |
Collapse
|
33
|
Qi Q, Taniguchi M, Lindsey JS. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). J Chem Inf Model 2019; 59:652-667. [PMID: 30715870 DOI: 10.1021/acs.jcim.8b00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the photophysical parameters that underpin Förster resonance energy transfer (FRET), perhaps the least explored is the spectral overlap term ( J). While by definition J increases linearly with acceptor molar absorption coefficient (ε(A) in M-1 cm-1), is proportional to wavelength (λ4), and depends on the degree of overlap of the donor fluorescence and acceptor absorption spectra, the question arose as to the value of J for the case of perfect spectral overlap versus that for representative fluorophores with incomplete spectral overlap. Here, Gaussian distributions of absorption and fluorescent spectra have been modeled that encompass varying degrees of overlap, full-width-at-half-maximum (fwhm), and Stokes shift. For ε(A) = 105 M-1 cm-1 and perfect overlap, the J value (in M-1 cm-1 nm4) ranges from 1.15 × 1014 (200 nm) to 7.07 × 1016 (1000 nm), is almost linear with λ4 (average of λabs and λflu), and is nearly independent of fwhm. For visible-region fluorophores with perfectly overlapped Gaussian spectra, the resulting value of J ( JG-0) is ∼0.71 ε(A)λ4 (M-1 cm-1 nm4). The experimental J values for homotransfer, as occurs in light-harvesting antennas, were calculated with spectra from a static database of 60 representative compounds (12 groups, 5 compounds each) and found to range from 4.2 × 1010 ( o-xylene) to 5.3 × 1016 M-1 cm-1 nm4 (a naphthalocyanine). The degree of overlap, defined by the ratio of the experimental J to the model JG-0 for perfectly overlapped spectra, ranges from ∼0.5% (coumarin 151) to 77% (bacteriochlorophyll a). The results provide insights into how a variety of factors affect the resulting J values. The high degree of spectral overlap for (bacterio)chlorophylls prompts brief conjecture concerning the relevance of energy transfer to the question "why chlorophyll".
Collapse
Affiliation(s)
- Qi Qi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Masahiko Taniguchi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Jonathan S Lindsey
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
34
|
Moroz P, Royo Romero L, Zamkov M. Colloidal semiconductor nanocrystals in energy transfer reactions. Chem Commun (Camb) 2019; 55:3033-3048. [DOI: 10.1039/c9cc00162j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excitonic energy transfer is a versatile mechanism by which colloidal semiconductor nanocrystals can interact with a variety of nanoscale species. This feature article will discuss the latest research on the key scenarios under which semiconductor nanocrystals can engage in energy transfer with other nanoparticles, organic fluorophores, and plasmonic nanostructures, highlighting potential technological benefits to be gained from such processes.
Collapse
Affiliation(s)
- Pavel Moroz
- Department of Physics and Astronomy
- Bowling Green State University
- Bowling Green
- USA
- The Center for Photochemical Sciences
| | - Luis Royo Romero
- Department of Physics and Astronomy
- Bowling Green State University
- Bowling Green
- USA
| | - Mikhail Zamkov
- Department of Physics and Astronomy
- Bowling Green State University
- Bowling Green
- USA
- The Center for Photochemical Sciences
| |
Collapse
|
35
|
Kashida H, Kokubo Y, Makino K, Asanuma H. Selective binding of nucleosides to gapped DNA duplex revealed by orientation and distance dependence of FRET. Org Biomol Chem 2019; 17:6786-6789. [DOI: 10.1039/c9ob00946a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein we used orientation and distance dependence of Förster resonance energy transfer (FRET) to analyze the binding of nucleosides to a gapped DNA duplex.
Collapse
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yuta Kokubo
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Koki Makino
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
36
|
Mayoral MJ, Serrano-Molina D, Camacho-García J, Magdalena-Estirado E, Blanco-Lomas M, Fadaei E, González-Rodríguez D. Understanding complex supramolecular landscapes: non-covalent macrocyclization equilibria examined by fluorescence resonance energy transfer. Chem Sci 2018; 9:7809-7821. [PMID: 30429990 PMCID: PMC6194488 DOI: 10.1039/c8sc03229g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
As molecular self-assembled systems increase in complexity, due to a large number of participating entities and/or the establishment of multiple competing equilibria, their full understanding becomes likewise more complicated, and the use of diverse analytical techniques that can afford complementary information is required. We demonstrate in this work that resonance excitation energy transfer phenomena, measured by fluorescence spectroscopy in combination with other optical spectroscopies, can be a valuable tool to obtain supplementary thermodynamic data about complex supramolecular landscapes that other methods fail to provide. In particular, noncovalent macrocyclization processes of lipophilic dinucleosides are studied here by setting up a competition between intra- and intermolecular association processes of Watson-Crick H-bonding pairs. Multiwavelength analysis of the monomer emission changes allowed us to determine cyclotetramerization constants and to quantify chelate cooperativity, which was confirmed to be substantially larger for the G-C than for the A-U pair. Furthermore, when bithiophene-BODIPY donor-acceptor energy transfer probes are employed in these competition experiments, fluorescence and circular dichroism spectroscopy measurements in different regions of the visible spectrum additionally reveal intermolecular interactions occurring simultaneously at both sides of the macrocyclization reaction: the cyclic product, acting as a host for the competitor, and the monomer reactant, ultimately leading to macrocycle denaturation.
Collapse
Affiliation(s)
- María J Mayoral
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - David Serrano-Molina
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - Jorge Camacho-García
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - Eva Magdalena-Estirado
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - Marina Blanco-Lomas
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - Elham Fadaei
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group , Departamento de Química Orgánica , Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain . ;
- Institute for Advanced Research in Chemical Sciences (IAdChem) , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
37
|
Nicholson DA, Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies. J Phys Chem B 2018; 122:9869-9876. [PMID: 30289262 DOI: 10.1021/acs.jpcb.8b06872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amino acid and nucleic acid interactions are central in biology and may have played a role in the evolutionary development of protein-based life from an early "RNA Universe." To explore the possible role of single amino acids in promoting nucleic acid folding, single-molecule Förster resonance energy transfer experiments have been implemented with a DNA hairpin construct (7 nucleotide double strand with a 40A loop) as a simple model for secondary structure formation. Exposure to positively charged amino acids (arginine and lysine) is found to clearly stabilize the secondary structure. Kinetically, each amino acid promotes folding by generating a large increase in the folding rate with little change in the unfolding rate. From analysis as a function of temperature, arginine and lysine are found to significantly increase the overall exothermicity of folding while imposing only a small entropic penalty on the folding process. Detailed investigations into the kinetics and thermodynamics of this amino acid-induced folding stability reveal arginine and lysine to interact with nucleic acids in a manner reminiscent of monovalent cations. Specifically, these observations are interpreted in the context of an ion atmosphere surrounding the nucleic acid, in which amino acid salts stabilize folding qualitatively like small monovalent cations but also exhibit differences because of the composition of their side chains.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - Abhigyan Sengupta
- Department of Bioengineering , University of California at Merced , Merced , California 95340 , United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
38
|
Lawson CP, Füchtbauer AF, Wranne MS, Giraud T, Floyd T, Dumat B, Andersen NK, H El-Sagheer A, Brown T, Gradén H, Wilhelmsson LM, Grøtli M. Synthesis, oligonucleotide incorporation and fluorescence properties in DNA of a bicyclic thymine analogue. Sci Rep 2018; 8:13970. [PMID: 30228309 PMCID: PMC6143597 DOI: 10.1038/s41598-018-31897-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
Fluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-phase DNA synthesis. The bT deoxyribonucleoside has a brightness value of 790 M−1cm−1 in water, which is comparable or higher than most fluorescent thymine analogues reported. When incorporated into DNA, bT pairs selectively with adenine without perturbing the B-form structure, keeping the melting thermodynamics of the B-form duplex DNA virtually unchanged. As for most fluorescent base analogues, the emission of bT is reduced inside DNA (4.5- and 13-fold in single- and double-stranded DNA, respectively). Overall, these properties make bT an interesting thymine analogue for studying DNA and an excellent starting point for the development of brighter bT derivatives.
Collapse
Affiliation(s)
- Christopher P Lawson
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Tristan Giraud
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Thomas Floyd
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Blaise Dumat
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Nicolai K Andersen
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Henrik Gradén
- Cardiovascular, Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal, SE-431 83, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden.
| |
Collapse
|
39
|
Melnychuk N, Klymchenko AS. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. J Am Chem Soc 2018; 140:10856-10865. [PMID: 30067022 DOI: 10.1021/jacs.8b05840] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Going beyond the limits of optical biosensing motivates exploration of signal amplification strategies that convert a single molecular recognition event into a response equivalent to hundreds of fluorescent dyes. In this respect, Førster Resonance Energy Transfer (FRET) with bright fluorescent nanoparticles (NPs) is an attractive direction, but it is limited by poor efficiency of NPs as FRET donors, because their size is typically much larger than the Førster radius (∼5 nm). Here, we established FRET-based nanoparticle probes that overcome this fundamental limitation by exploiting a phenomenon of giant light harvesting with thousands of strongly coupled dyes in a polymer matrix. These nanoprobes are based on 40 nm dye-loaded poly(methyl methacrylate- co-methacrylic acid) (PMMA-MA) NPs, so-called light-harvesting nanoantennas, which are functionalized at their surface with oligonucleotides. To achieve this functionalization, we developed an original methodology: PMMA-MA was modified with azide/carboxylate bifunctional group that enabled assembly of small polymeric NPs and their further Cu-free click coupling with oligonucleotides. The obtained functionalized nanoantenna behaves as giant energy donor, where hybridization of target nucleic acid (encoding survivin cancer marker) with ∼23 grafted oligonucleotides/Cy5-acceptors switches on/off FRET from ∼3200 rhodamine-donors of the nanoantenna, leading to 75-fold signal amplification. In solution and on surfaces at single-particle level, the nanoprobe provides sequence-specific two-color ratiometric response to nucleic acids with limit of detection reaching 0.25 pM. It displays unprecedented brightness for a FRET biosensor: it outperforms analogous FRET-based molecular probe by >2000-fold and QDot-605 by ∼100-fold. The developed concept of amplified sensing will increase orders of magnitude sensitivity of fluorescent probes for biomolecular targets.
Collapse
Affiliation(s)
- Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie , Université de Strasbourg , Strasbourg CS 60024 , France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie , Université de Strasbourg , Strasbourg CS 60024 , France
| |
Collapse
|
40
|
Moroz P, Jin Z, Sugiyama Y, Lara D, Razgoniaeva N, Yang M, Kholmicheva N, Khon D, Mattoussi H, Zamkov M. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. ACS NANO 2018; 12:5657-5665. [PMID: 29883087 DOI: 10.1021/acsnano.8b01451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sensing strategies utilizing Förster resonance energy transfer (FRET) are widely used for probing biological phenomena. FRET sensitivity to the donor-acceptor distance makes it ideal for measuring the concentration of a known analyte or determining the spatial separation between fluorescent labels in a macromolecular assembly. The difficulty lies in extracting the FRET efficiency from the acceptor-induced quenching of the donor emission, which may contain a significant non-FRET contribution. Here, we demonstrate a general spectroscopic approach for differentiating between charge transfer and energy transfer (ET) processes in donor-acceptor assemblies and apply the developed method for unravelling the FRET/non-FRET contributions in cyanine dye-semiconductor quantum dot (QD) constructs. The present method relies on correlating the amplitude of the acceptor emission to specific changes in the donor excitation profile in order to extract ET-only transfer efficiencies. Quenching of the donor emission is then utilized to determine the non-ET component, tentatively attributed to the charge transfer. We observe that the latter accounts for 50-99% of donor emission quenching in QD-Cy5 and QD-Cy7 systems, stressing the importance of determining the non-FRET efficiency in a spectroscopic ruler and other FRET-based sensing applications.
Collapse
Affiliation(s)
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | - Yuya Sugiyama
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | - D'Andree Lara
- Department of Chemistry and Biochemistry , St. Mary's University , San Antonio , Texas 78228 , United States
| | | | | | | | - Dmitriy Khon
- Department of Chemistry and Biochemistry , St. Mary's University , San Antonio , Texas 78228 , United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | | |
Collapse
|
41
|
Börner R, Kowerko D, Hadzic MCAS, König SLB, Ritter M, Sigel RKO. Simulations of camera-based single-molecule fluorescence experiments. PLoS One 2018; 13:e0195277. [PMID: 29652886 PMCID: PMC5898730 DOI: 10.1371/journal.pone.0195277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
Single-molecule microscopy has become a widely used technique in (bio)physics and (bio)chemistry. A popular implementation is single-molecule Förster Resonance Energy Transfer (smFRET), for which total internal reflection fluorescence microscopy is frequently combined with camera-based detection of surface-immobilized molecules. Camera-based smFRET experiments generate large and complex datasets and several methods for video processing and analysis have been reported. As these algorithms often address similar aspects in video analysis, there is a growing need for standardized comparison. Here, we present a Matlab-based software (MASH-FRET) that allows for the simulation of camera-based smFRET videos, yielding standardized data sets suitable for benchmarking video processing algorithms. The software permits to vary parameters that are relevant in cameras-based smFRET, such as video quality, and the properties of the system under study. Experimental noise is modeled taking into account photon statistics and camera noise. Finally, we survey how video test sets should be designed to evaluate currently available data analysis strategies in camera-based sm fluorescence experiments. We complement our study by pre-optimizing and evaluating spot detection algorithms using our simulated video test sets.
Collapse
Affiliation(s)
- Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Danny Kowerko
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Sebastian L. B. König
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marc Ritter
- Department of Applied Computer and Biosciences, Mittweida University of Applied Sciences, Mittweida, Germany
| | | |
Collapse
|
42
|
Taniguchi M, Du H, Lindsey JS. PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Multiple Spectral Databases. Photochem Photobiol 2018; 94:277-289. [DOI: 10.1111/php.12862] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/22/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Hai Du
- Department of Chemistry North Carolina State University Raleigh NC
| | | |
Collapse
|
43
|
Cayre F, Mura S, Andreiuk B, Sobot D, Gouazou S, Desmaële D, Klymchenko AS, Couvreur P. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles. Adv Healthc Mater 2018; 7. [PMID: 29195020 DOI: 10.1002/adhm.201700830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is used here for the first time to monitor the in vivo fate of nanoparticles made of the squalene-gemcitabine prodrug and two novel derivatives of squalene with the cyanine dyes 5.5 and 7.5, which behave as efficient FRET pair in the NIR region. Following intravenous administration, nanoparticles initially accumulate in the liver, then they show loss of their integrity within 2 h and clearance of the squalene bioconjugates is observed within 24 h. Such awareness is a key prerequisite before introduction into clinical settings.
Collapse
Affiliation(s)
- Fanny Cayre
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Simona Mura
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01601 Kyiv Ukraine
| | - Dunja Sobot
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Sandrine Gouazou
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Didier Desmaële
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
| | - Patrick Couvreur
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| |
Collapse
|
44
|
Lerner E, Cordes T, Ingargiol A, Alhadid Y, Chung S, Michalet X, Weiss S. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 2018; 359:eaan1133. [PMID: 29348210 PMCID: PMC6200918 DOI: 10.1126/science.aan1133] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Antonino Ingargiol
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yazan Alhadid
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Bood M, Sarangamath S, Wranne MS, Grøtli M, Wilhelmsson LM. Fluorescent nucleobase analogues for base-base FRET in nucleic acids: synthesis, photophysics and applications. Beilstein J Org Chem 2018; 14:114-129. [PMID: 29441135 PMCID: PMC5789401 DOI: 10.3762/bjoc.14.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base–base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and enable detailed investigations of structure and dynamics of nucleic acid containing systems. The first base–base FRET pair, tCO–tCnitro, has recently been complemented with among others the adenine analogue FRET pair, qAN1–qAnitro, increasing the flexibility of the methodology. Here we present the design, synthesis, photophysical characterization and use of such base analogues. They enable a higher control of the FRET orientation factor, κ2, have a different distance window of opportunity than external fluorophores, and, thus, have the potential to facilitate better structure resolution. Netropsin DNA binding and the B-to-Z-DNA transition are examples of structure investigations that recently have been performed using base–base FRET and that are described here. Base–base FRET has been around for less than a decade, only in 2017 expanded beyond one FRET pair, and represents a highly promising structure and dynamics methodology for the field of nucleic acids. Here we bring up its advantages as well as disadvantages and touch upon potential future applications.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
46
|
Kashida H, Kurihara A, Kawai H, Asanuma H. Orientation-dependent FRET system reveals differences in structures and flexibilities of nicked and gapped DNA duplexes. Nucleic Acids Res 2017; 45:e105. [PMID: 28369626 PMCID: PMC5499647 DOI: 10.1093/nar/gkx200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Differences in structures and flexibilities of DNA duplexes play important roles on recognition by DNA-binding proteins. We herein describe a novel method for structural analyses of DNA duplexes by using orientation dependence of Förster resonance energy transfer (FRET). We first analyzed canonical B-form duplex and correct structural parameters were obtained. The experimental FRET efficiencies were in excellent agreement with values theoretically calculated by using determined parameters. We then investigated DNA duplexes with nick and gaps, which are key intermediates in DNA repair systems. Effects of gap size on structures and flexibilities were successfully revealed. Since our method is facile and sensitive, it could be widely used to analyze DNA structures containing damages and non-natural molecules.
Collapse
Affiliation(s)
- Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ayako Kurihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hayato Kawai
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
47
|
Tutkus M, Marciulionis T, Sasnauskas G, Rutkauskas D. DNA-Endonuclease Complex Dynamics by Simultaneous FRET and Fluorophore Intensity in Evanescent Field. Biophys J 2017; 112:850-858. [PMID: 28297644 DOI: 10.1016/j.bpj.2017.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
The single-molecule Förster resonance energy transfer (FRET) is a powerful tool to study interactions and conformational changes of biological molecules in the distance range from a few to 10 nm. In this study, we demonstrate a method to augment this range with longer distances. The method is based on the intensity changes of a tethered fluorophore, diffusing in the exponentially decaying evanescent excitation field. In combination with FRET it allowed us to reveal and characterize the dynamics of what had been inaccessible conformations of the DNA-protein complex. Our model system, restriction enzyme Ecl18kI, interacts with a FRET pair-labeled DNA fragment to form two different DNA loop conformations. The DNA-protein interaction geometry is such that the efficient FRET is expected for one of these conformations-"antiparallel" loop. In the alternative "parallel" loop, the expected distance between the dyes is outside the range accessible by FRET. Therefore, "antiparallel" looping is observed in a single-molecule time trajectory as discrete transitions to a state of high FRET efficiency. At the same time, transitions to a high-intensity state of the directly excited acceptor fluorophore on a DNA tether are due to a change of its average position in the evanescent field of excitation and can be associated with a loop of either "parallel" or "antiparallel" configuration. Simultaneous analysis of FRET and acceptor intensity trajectories then allows us to discriminate different DNA loop conformations and access the average lifetimes of different states.
Collapse
Affiliation(s)
- Marijonas Tutkus
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Tomas Marciulionis
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | - Danielis Rutkauskas
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania.
| |
Collapse
|
48
|
Wranne MS, Füchtbauer AF, Dumat B, Bood M, El-Sagheer AH, Brown T, Gradén H, Grøtli M, Wilhelmsson LM. Toward Complete Sequence Flexibility of Nucleic Acid Base Analogue FRET. J Am Chem Soc 2017; 139:9271-9280. [PMID: 28613885 DOI: 10.1021/jacs.7b04517] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Förster resonance energy transfer (FRET) using fluorescent base analogues is a powerful means of obtaining high-resolution nucleic acid structure and dynamics information that favorably complements techniques such as NMR and X-ray crystallography. Here, we expand the base-base FRET repertoire with an adenine analogue FRET-pair. Phosphoramidite-protected quadracyclic 2'-deoxyadenosine analogues qAN1 (donor) and qAnitro (acceptor) were synthesized and incorporated into DNA by a generic, reliable, and high-yielding route, and both constitute excellent adenine analogues. The donor, qAN1, has quantum yields reaching 21% and 11% in single- and double-strands, respectively. To the best of our knowledge, this results in the highest average brightness of an adenine analogue inside DNA. Its potent emissive features overlap well with the absorption of qAnitro and thus enable accurate FRET-measurements over more than one turn of B-DNA. As we have shown previously for our cytosine analogue FRET-pair, FRET between qAN1 and qAnitro positioned at different base separations inside DNA results in efficiencies that are highly dependent on both distance and orientation. This facilitates significantly enhanced resolution in FRET structure determinations, demonstrated here in a study of conformational changes of DNA upon binding of the minor groove binder netropsin. Finally, we note that the donor and acceptor of our cytosine FRET-pair, tCO and tCnitro, can be conveniently combined with the acceptor and donor of our current adenine pair, respectively. Consequently, our base analogues can now measure base-base FRET between 3 of the 10 possible base combinations and, through base-complementarity, between all sequence positions in a duplex.
Collapse
Affiliation(s)
- Moa S Wranne
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology , Gothenburg S-41296, Sweden
| | - Anders Foller Füchtbauer
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology , Gothenburg S-41296, Sweden
| | - Blaise Dumat
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology , Gothenburg S-41296, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg S-41296, Sweden.,Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca , Mölndal S-43183, Sweden
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom.,Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University , Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Henrik Gradén
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca , Mölndal S-43183, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg S-41296, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology , Gothenburg S-41296, Sweden
| |
Collapse
|
49
|
Füchtbauer AF, Preus S, Börjesson K, McPhee SA, Lilley DMJ, Wilhelmsson LM. Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations. Sci Rep 2017; 7:2393. [PMID: 28539582 PMCID: PMC5443824 DOI: 10.1038/s41598-017-02453-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.
Collapse
Affiliation(s)
- Anders Foller Füchtbauer
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Søren Preus
- Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Scott A McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - L Marcus Wilhelmsson
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden.
| |
Collapse
|
50
|
Roger E, Gimel JC, Bensley C, Klymchenko AS, Benoit JP. Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model. J Control Release 2017; 253:11-18. [PMID: 28274740 DOI: 10.1016/j.jconrel.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Lipid nanocapsules (LNCs) have demonstrated great potential for the oral delivery of drugs having very limited oral bioavailability (BCS class II, III and IV molecules). It has been shown previously that orally-administered LNCs can permeate through mucus, increase drug absorption by the epithelial tissue, and finally, increase drug bioavailability. However, even if transport mechanisms through mucus and the intestinal barrier have already been clarified, the preservation of particle integrity is still not known. The aim of the present work is to study in vitro the fate of LNCs after their transportation across an intestinal epithelium model (Caco-2 cell model). For this, two complementary techniques were employed: Förster Resonance Energy Transfer (FRET) and Nanoparticle Tracking Analysis (NTA). Results showed, after 2h, the presence of nanoparticles in the basolateral side of the cell layer and a measurable FRET signal. This provides very good evidence for the transcellular intact crossing of the nanocarriers.
Collapse
Affiliation(s)
- Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France.
| | - Jean-Christophe Gimel
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| | - Conor Bensley
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| | - Andrey S Klymchenko
- University of Strasbourg, CNRS UMR7213, Laboratoire de Biophotonique et Pharmacologie, 74 Route du Rhin, 67401 Illkirch, Cedex, France
| | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| |
Collapse
|