• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4675697)   Today's Articles (2958)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Mishra S, Dolkar T, Pareek A, Bonthapally R, Maity DK, Dutta A, Ghosh S. Beyond S and Se: Electrocatalytic Hydrogen Production by Tellurolate-Bridged Co(III)-Mn(I) Heterodinuclear Complexes. Inorg Chem 2024;63:16918-16927. [PMID: 39190592 DOI: 10.1021/acs.inorgchem.4c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
2
Procacci B, Wrathall SLD, Farmer AL, Shaw DJ, Greetham GM, Parker AW, Rippers Y, Horch M, Lynam JM, Hunt NT. Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN)2] in Polar and Protic Solvents. J Phys Chem B 2024;128:1461-1472. [PMID: 38301127 PMCID: PMC10875664 DOI: 10.1021/acs.jpcb.3c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
3
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023;19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
4
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
5
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022;144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
6
Cząstka K, Oughli AA, Rüdiger O, DeBeer S. Enzymatic X-ray absorption spectroelectrochemistry. Faraday Discuss 2022;234:214-231. [PMID: 35142778 DOI: 10.1039/d1fd00079a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Isegawa M, Matsumoto T, Ogo S. Hydrogen evolution, electron-transfer, and hydride-transfer reactions in a nickel-iron hydrogenase model complex: a theoretical study of the distinctive reactivities for the conformational isomers of nickel-iron hydride. Dalton Trans 2021;51:312-323. [PMID: 34897337 DOI: 10.1039/d1dt03582g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Greene BL. Progress and Opportunities in Photochemical Enzymology of Oxidoreductases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
9
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021;57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
10
Caserta G, Pelmenschikov V, Lorent C, Tadjoung Waffo AF, Katz S, Lauterbach L, Schoknecht J, Wang H, Yoda Y, Tamasaku K, Kaupp M, Hildebrandt P, Lenz O, Cramer SP, Zebger I. Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations. Chem Sci 2020;12:2189-2197. [PMID: 34163984 PMCID: PMC8179317 DOI: 10.1039/d0sc05022a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
11
Kumar A, Neese F, Valeev EF. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. J Chem Phys 2020;153:094105. [PMID: 32891102 DOI: 10.1063/5.0012753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Caserta G, Lorent C, Ciaccafava A, Keck M, Breglia R, Greco C, Limberg C, Hildebrandt P, Cramer SP, Zebger I, Lenz O. The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha - a minimal hydrogenase? Chem Sci 2020;11:5453-5465. [PMID: 34094072 PMCID: PMC8159394 DOI: 10.1039/d0sc01369b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]  Open
13
Siegbahn PEM, Liao RZ. The Energetics of Hydrogen Molecule Oxidation in NiFe-hydrogenase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Slater JW, Marguet SC, Gray ME, Monaco HA, Sotomayor M, Shafaat HS. Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01720] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Keegan BC, Ocampo D, Shearer J. pH Dependent Reversible Formation of a Binuclear Ni2 Metal-Center Within a Peptide Scaffold. INORGANICS 2019;7:90. [PMID: 38046130 PMCID: PMC10691859 DOI: 10.3390/inorganics7070090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]  Open
16
Qiu S, Li Q, Xu Y, Shen S, Sun C. Learning from nature: Understanding hydrogenase enzyme using computational approach. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
17
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019;119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
18
Qiu S, Azofra LM, Macfarlane DR, Sun C. Hydrogen Evolution in [NiFe] Hydrogenases: A Case of Heterolytic Approach between Proton and Hydride. Inorg Chem 2019;58:2979-2986. [DOI: 10.1021/acs.inorgchem.8b02812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
19
Yang X, Gianetti TL, Wörle MD, van Leest NP, de Bruin B, Grützmacher H. A low-valent dinuclear ruthenium diazadiene complex catalyzes the oxidation of dihydrogen and reversible hydrogenation of quinones. Chem Sci 2019;10:1117-1125. [PMID: 30774909 PMCID: PMC6346631 DOI: 10.1039/c8sc02864h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022]  Open
20
Isegawa M, Sharma AK, Ogo S, Morokuma K. Electron and Hydride Transfer in a Redox-Active NiFe Hydride Complex: A DFT Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
22
Firpo V, Le JM, Pavone V, Lombardi A, Bren KL. Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein. Chem Sci 2018;9:8582-8589. [PMID: 30568783 PMCID: PMC6253682 DOI: 10.1039/c8sc01948g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]  Open
23
Saitow M, Becker U, Riplinger C, Valeev EF, Neese F. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J Chem Phys 2018;146:164105. [PMID: 28456208 DOI: 10.1063/1.4981521] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]  Open
24
Qiu S, Azofra LM, MacFarlane DR, Sun C. Hydrogen bonding effect between active site and protein environment on catalysis performance in H2-producing [NiFe] hydrogenases. Phys Chem Chem Phys 2018;20:6735-6743. [PMID: 29457815 DOI: 10.1039/c7cp07685a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SIr and active Ni-SIa states of [NiFe] hydrogenase studied by utilizing Ni-SIr-to-Ni-SIa photoactivation. Chem Commun (Camb) 2018;53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
26
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018;18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
27
Qiu S, Olsen S, MacFarlane DR, Sun C. The oxygen reduction reaction on [NiFe] hydrogenases. Phys Chem Chem Phys 2018;20:23528-23534. [DOI: 10.1039/c8cp04160a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
28
Carlson MR, Gilbert-Wilson R, Gray DR, Mitra J, Rauchfuss TB, Richers CP. Diiron Dithiolate Hydrides Complemented with Proton-Responsive Phosphine-Amine Ligands. Eur J Inorg Chem 2017;2017:3169-3173. [PMID: 28808414 DOI: 10.1002/ejic.201700474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
Ash PA, Hidalgo R, Vincent KA. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 2017;7:2471-2485. [PMID: 28413691 PMCID: PMC5387674 DOI: 10.1021/acscatal.6b03182] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Indexed: 12/11/2022]
30
Slater JW, Marguet SC, Cirino SL, Maugeri PT, Shafaat HS. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. Inorg Chem 2017;56:3926-3938. [PMID: 28323426 DOI: 10.1021/acs.inorgchem.6b02934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Dong G, Phung QM, Hallaert SD, Pierloot K, Ryde U. H2binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Phys Chem Chem Phys 2017;19:10590-10601. [DOI: 10.1039/c7cp01331k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Greene BL, Vansuch GE, Wu CH, Adams MWW, Dyer RB. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. J Am Chem Soc 2016;138:13013-13021. [DOI: 10.1021/jacs.6b07789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016;116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Ogata H, Lubitz W, Higuchi Y. Structure and function of [NiFe] hydrogenases. J Biochem 2016;160:251-258. [PMID: 27493211 DOI: 10.1093/jb/mvw048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]  Open
35
Qiu S, Azofra LM, MacFarlane DR, Sun C. Unraveling the Role of Ligands in the Hydrogen Evolution Mechanism Catalyzed by [NiFe] Hydrogenases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
36
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 2016;21:383-94. [DOI: 10.1007/s00775-016-1348-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
37
Chambers GM, Huynh MT, Li Y, Hammes-Schiffer S, Rauchfuss TB, Reijerse E, Lubitz W. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site. Inorg Chem 2016;55:419-31. [PMID: 26421729 PMCID: PMC4807737 DOI: 10.1021/acs.inorgchem.5b01662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
38
Qiu S, Azofra LM, MacFarlane DR, Sun C. Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Phys Chem Chem Phys 2016;18:15369-74. [DOI: 10.1039/c6cp00948d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
39
Das R, Neese F, van Gastel M. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences. Phys Chem Chem Phys 2016;18:24681-92. [DOI: 10.1039/c6cp03672d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Wombwell C, Caputo CA, Reisner E. [NiFeSe]-hydrogenase chemistry. Acc Chem Res 2015;48:2858-65. [PMID: 26488197 DOI: 10.1021/acs.accounts.5b00326] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
41
Behnke SL, Shafaat HS. Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1108914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
42
Petrenko A, Stein M. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell. J Phys Chem B 2015. [PMID: 26218232 DOI: 10.1021/acs.jpcb.5b04208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
43
Manesis AC, Shafaat HS. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase. Inorg Chem 2015;54:7959-67. [PMID: 26234790 DOI: 10.1021/acs.inorgchem.5b01103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
44
Barilone JL, Ogata H, Lubitz W, van Gastel M. Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: an approach by quantum chemistry and single crystal ENDOR spectroscopy. Phys Chem Chem Phys 2015;17:16204-12. [PMID: 26035632 DOI: 10.1039/c5cp01322d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Roncaroli F, Bill E, Friedrich B, Lenz O, Lubitz W, Pandelia ME. Cofactor composition and function of a H2-sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy. Chem Sci 2015;6:4495-4507. [PMID: 29142700 PMCID: PMC5665086 DOI: 10.1039/c5sc01560j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023]  Open
46
Kaliakin DS, Zaari RR, Varganov SA. Effect of H2 Binding on the Nonadiabatic Transition Probability between Singlet and Triplet States of the [NiFe]-Hydrogenase Active Site. J Phys Chem A 2015;119:1066-73. [DOI: 10.1021/jp510522z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
47
Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 2015;520:571-4. [DOI: 10.1038/nature14110] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
48
Smith DMA, Raugei S, Squier TC. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity. Phys Chem Chem Phys 2014;16:24026-33. [PMID: 25285653 DOI: 10.1039/c4cp03518f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
49
Mimicking hydrogenases: From biomimetics to artificial enzymes. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.018] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
50
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev 2014;114:4081-148. [DOI: 10.1021/cr4005814] [Citation(s) in RCA: 1399] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA