1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
3
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
4
|
Kabra R, Singh S. ABC Exporters in Pathogenesis: Role of Synthetic Anti-Microbial Peptides. Protein J 2020; 39:657-670. [PMID: 33068233 DOI: 10.1007/s10930-020-09931-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
ABC exporters are involved in diverse cellular processes including lipid trafficking, drug resistance, pathogenesis etc. The greatest thrust has been in the area of drug resistance that explains the underlying well-crafted canonical architecture of its structure. Interestingly, ranging from structural organisation to subsequent design and delivery aspects lays the niche of antimicrobial peptides. One of the major highlight of this paper is the role of synthetic antimicrobial peptides in current scenario.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
5
|
Wesalo JS, Luo J, Morihiro K, Liu J, Deiters A. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Chembiochem 2020; 21:141-148. [PMID: 31664790 PMCID: PMC6980333 DOI: 10.1002/cbic.201900464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022]
Abstract
The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.
Collapse
Affiliation(s)
- Joshua S. Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Ji Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Kunihiko Morihiro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| |
Collapse
|
6
|
Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:1-19. [PMID: 27783132 DOI: 10.1007/10_2016_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA CUATyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA CUAPyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.
Collapse
|
7
|
MacArthur NS, Jakobsche CE. 6-Hydroxynorleucine: Syntheses and Applications of a Versatile Building Block. ORG PREP PROCED INT 2017. [DOI: 10.1080/00304948.2017.1380492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Charles E. Jakobsche
- Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610
| |
Collapse
|
8
|
Brabham R, Fascione MA. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications. Chembiochem 2017; 18:1973-1983. [DOI: 10.1002/cbic.201700148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Robin Brabham
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| | - Martin A. Fascione
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| |
Collapse
|
9
|
Itoh Y, Aihara K, Mellini P, Tojo T, Ota Y, Tsumoto H, Solomon VR, Zhan P, Suzuki M, Ogasawara D, Shigenaga A, Inokuma T, Nakagawa H, Miyata N, Mizukami T, Otaka A, Suzuki T. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators. J Med Chem 2016; 59:1531-44. [DOI: 10.1021/acs.jmedchem.5b01323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Keisuke Aihara
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Paolo Mellini
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Toshifumi Tojo
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Yosuke Ota
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Viswas Raja Solomon
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Peng Zhan
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Miki Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Daisuke Ogasawara
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Akira Shigenaga
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Hidehiko Nakagawa
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tamio Mizukami
- Graduate
School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Akira Otaka
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
- CREST, Japan Science
and Technology Agency (JST), 4-1-8
Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Yang M, Li J, Chen PR. Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem Soc Rev 2015; 43:6511-26. [PMID: 24867400 DOI: 10.1039/c4cs00117f] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Considerable attention has been focused on improving the biocompatibility of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a hallmark of bioorthogonal reaction, in living cells. Besides creating copper-free versions of click chemistry such as strain promoted azide-alkyne cycloaddition (SPAAC), a central effort has also been made to develop various Cu(I) ligands that can prevent the cytotoxicity of Cu(I) ions while accelerating the CuAAC reaction. Meanwhile, additional transition metals such as palladium have been explored as alternative sources to promote a bioorthogonal conjugation reaction on cell surface, as well as within an intracellular environment. Furthermore, transition metal mediated chemical conversions beyond conjugation have also been utilized to manipulate protein activity within living systems. We highlight these emerging examples that significantly enriched our protein chemistry toolkit, which will likely expand our view on the definition and applications of bioorthogonal chemistry.
Collapse
Affiliation(s)
- Maiyun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
11
|
Dumas A, Lercher L, Spicer CD, Davis BG. Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci 2015; 6:50-69. [PMID: 28553457 PMCID: PMC5424465 DOI: 10.1039/c4sc01534g] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Lukas Lercher
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher D Spicer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Benjamin G Davis
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
12
|
Lee MM, Fekner T, Lu J, Heater BS, Behrman EJ, Zhang L, Hsu PH, Chan MK. Pyrrolysine-Inspired Protein Cyclization. Chembiochem 2014; 15:1769-72. [DOI: 10.1002/cbic.201402129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 11/05/2022]
|
13
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|