1
|
Xie J, Gore JC. The Potential Targets and Mechanisms of a Carbazole and Pyrazole Containing Anticancer Compound. Curr Cancer Drug Targets 2020; 20:364-371. [PMID: 31951182 PMCID: PMC10563180 DOI: 10.2174/1568009620666200115162343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
AIMS Characterization of a small anticancer compound. BACKGROUND The development of small molecules as new anti-cancer therapeutics is necessary to improve anti-tumor efficacy and reduce toxicities, especially for the treatment of brain tumors, where only small molecules can effectively cross the brain-blood barrier. Several novel hits were previously selected by concurrently screening colon and glioma cancer cell lines with a sensorconjugated reporter system. Here, we focused on one of them. OBJECTIVE Elucidating the potential target(s) of a novel anticancer compound. METHODS Computer-assisted structural and motif analysis (least absolute shrinkage and selection operator or LASSO score) was used to assess compound's targets, then direct kinase activity assays were used for the confirmation; Western blot of phosphorylated kinases, as well as FACS and caspase 3/7 activity assays, were used to decipher the action mechanisms. Finally, the expression profiling of proteins involved in various G-protein pathways by real-time PCR was performed. RESULTS The small chemical, (4E)-4-[2-(9-ethyl-9H-carbazol-3-yl)hydrazin-1-ylidene]-3-methyl- 4,5-dihydro-1H-pyrazol-5-one, with a formula C18H17N5O and MW of 319.36, designated as VUGX01, was predicted to be a ligand/inhibitor to receptor tyrosine kinases (RTKs) by computer analysis (least absolute shrinkage and selection operator or LASSO score). However, direct analysis with recombinant kinases showed that it is not an effective inhibitor to the popular receptor kinases at 1μM concentration. This compound can activate caspases in some tumor cell lines but has minimal effects on the cell cycle. Drug treatments lead to the changes in phosphorylation of AKT and c- RAF, as well as the expression level of MAP2K, suggesting this compound may interact with Gprotein coupled receptors (GPCRs). The expression profiling of 82 proteins involved in various Gprotein pathways by real-time PCR showed that the treatment up-regulates the expression of several proteins, including angiotensinogen, angiotensin II receptor, and IP3-kinase catalytic subunit gamma. CONCLUSION VUGX01 can effectively block proliferation and induce apoptosis of certain types of cancer cells, even it is predicted by high LASSO score, but it is not an effective RTKs inhibitor, it may inhibit cell growth through acting as a novel ligand to one or several GPCRs.
Collapse
Affiliation(s)
- Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Zhang X, Zheng X, Yang H, Yan J, Fu X, Wei R, Xu X, Zhang Z, Yu A, Zhou K, Ding J, Geng M, Huang X. Piribedil disrupts the MLL1-WDR5 interaction and sensitizes MLL-rearranged acute myeloid leukemia (AML) to doxorubicin-induced apoptosis. Cancer Lett 2018; 431:150-160. [PMID: 29857126 DOI: 10.1016/j.canlet.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Targeting WT MLL for the treatment of MLL-r leukemia, which is highly aggressive and resistant to chemotherapy, has been shown to be a promising strategy. However, drug treatments targeting WT MLL are lacking. We used an in vitro histone methyltransferase assay to screen a library consists of 592 FDA-approved drugs for MLL1 inhibitors by measuring alterations in HTRF signal and found that Piribedil represented a potent activity. Piribedil specifically inhibited the proliferation of MLL-r cells by inducing cell-cycle arrest, apoptosis and myeloid differentiation with little toxicity to the non-MLL cells. Mechanism study showed Piribedil blocked the MLL1-WDR5 interaction and thus selectively reduced MLL1-dependent H3K4 methylation. Importantly, MLL1 depletion induced gene expression that was similar to that induced by Piribedil and rendered the MLL-r cells resistant to Piribedil-induced toxicity, revealing Piribedil exerted anti-leukemia effects by targeting MLL1. Furthermore, both the Piribedil treatment and MLL1 depletion sensitized the MLL-r cells to doxorubicin-induced apoptosis. Our study support the hypothesis that Piribedil could serve as a new drug for the treatment of MLL-r AML and provide new insight for further optimization of targeting MLL1 HMT activity.
Collapse
Affiliation(s)
- Xiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xingling Zheng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong Yang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Rongrui Wei
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xiaowei Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Zhuqing Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Aisong Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Kaixin Zhou
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Jian Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
4
|
Peng T, Nagy G, Trinidad JC, Jackson JM, Pohl NLB. A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases. Chembiochem 2017; 18:2306-2311. [PMID: 28960712 DOI: 10.1002/cbic.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/10/2022]
Abstract
The most commonly employed glycosidase assays rely on bulky ultraviolet or fluorescent tags at the anomeric position in potential carbohydrate substrates, thereby limiting the utility of these assays for broad substrate characterization. Here we report a qualitative mass spectrometry-based glycosidase assay amenable to high-throughput screening for the identification of the biochemical functions of putative glycosidases. The assay utilizes a library of methyl glycosides and is demonstrated on a high-throughput robotic liquid handling system for enzyme substrate screening. Identification of glycosidase biochemical function is achieved through the observation of an appropriate decrease in mass between a potential sugar substrate and its corresponding product by electrospray ionization mass spectrometry (ESI-MS). In addition to screening known glycosidases, the assay was demonstrated to characterize the biochemical function and enzyme substrate competency of the recombinantly expressed product of a putative glycosidase gene from the thermophilic bacterium Thermus thermophilus.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Joy Marie Jackson
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|
5
|
Xie J, Wang C, Gore JC. High Throughput Screening for Colorectal Cancer Specific Compounds. Comb Chem High Throughput Screen 2016; 19:180-8. [PMID: 26830359 DOI: 10.2174/1386207319666160202120928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/21/2015] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
The development of new anti-cancer therapeutic agents is necessary to improve antitumor efficacy and reduce toxicities. Here we report using a systematic anticancer drug screening approach we developed previously, to concurrently screen colon and glioma cancer cell lines for 2000 compounds with known bioactivity and 1920 compounds with unknown activity. The hits specific to each tumor cell line were then selected, and further tested with the same cells transfected with EGFP (Enhanced Green Fluorescent Protein) alone. By comparing the percentage of signal reduction from the same cells transfected with the sensor-conjugated reporter system; hits preferably causing apoptosis were identified. Among the known lead compounds, many cardiac glycosides used as cardiotonic drugs were found to effectively and specifically kill colon cancer cells, while statins (hypolipidemic agents) used as cholesterol lowering drugs were relatively more effective in killing glioma cells.
Collapse
Affiliation(s)
- Jingping Xie
- VUIIS, Vanderbilt University, Nashville, TN 37232, USA.
| | | | - John C Gore
- VUIIS, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Sekar TV, Foygel K, Devulapally R, Paulmurugan R. Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals. ACS Chem Biol 2015; 10:165-74. [PMID: 25489787 PMCID: PMC4301175 DOI: 10.1021/cb5008037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lysine
methylation of histone H3 and H4 has been identified as
a promising therapeutic target in treating various cellular diseases.
The availability of an in vivo assay that enables
rapid screening and preclinical evaluation of drugs that potentially
target this cellular process will significantly expedite the pace
of drug development. This study is the first to report the development
of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation
status of a specific histone lysine methylation mark (H3-K9) in live
animals. The sensitivity of this sensor was assessed in various cell
lines, in response to down-regulation of methyltransferase EHMT2 by
specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase
inhibitors BIX01294 and Chaetocin in mice reveals the potential of
this sensor for preclinical drug evaluation. This biosensor thus has
demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development.
Collapse
Affiliation(s)
- Thillai V. Sekar
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Kira Foygel
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Rammohan Devulapally
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|