1
|
Kielkowski P, Buchsbaum IY, Becker T, Bach K, Cappello S, Sieber SA. A Pronucleotide Probe for Live-Cell Imaging of Protein AMPylation. Chembiochem 2020; 21:1285-1287. [PMID: 32027064 PMCID: PMC7317759 DOI: 10.1002/cbic.201900716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Conjugation of proteins to AMP (AMPylation) is a prevalent post‐translational modification (PTM) in human cells, involved in the regulation of unfolded protein response and neural development. Here we present a tailored pronucleotide probe suitable for in situ imaging and chemical proteomics profiling of AMPylated proteins. Using straightforward strain‐promoted azide–alkyne click chemistry, the probe provides stable fluorescence labelling in living cells.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Isabel Y Buchsbaum
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804, Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Grosshaderner Strasse 2, 82152, Munich, Germany
| | - Tobias Becker
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Kathrin Bach
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804, Munich, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
2
|
Abstract
Acetylation is a posttranslational modification conserved in all domains of life that is carried out by N-acetyltransferases. While acetylation can occur on Nα-amino groups, this review will focus on Nε-acetylation of lysyl residues and how the posttranslational modification changes the cellular physiology of bacteria. Up until the late 1990s, acetylation was studied in eukaryotes in the context of chromatin maintenance and gene expression. At present, bacterial protein acetylation plays a prominent role in central and secondary metabolism, virulence, transcription, and translation. Given the diversity of niches in the microbial world, it is not surprising that the targets of bacterial protein acetyltransferases are very diverse, making their biochemical characterization challenging. The paradigm for acetylation in bacteria involves the acetylation of acetyl-CoA synthetase, whose activity must be tightly regulated to maintain energy charge homeostasis. While this paradigm has provided much mechanistic detail for acetylation and deacetylation, in this review we discuss advances in the field that are changing our understanding of the physiological role of protein acetylation in bacteria.
Collapse
Affiliation(s)
- Chelsey M VanDrisse
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA;
| | | |
Collapse
|
3
|
Perkins AL, Peterson KL, Beito TG, Flatten KS, Kaufmann SH, Harki DA. Synthesis of a peptide-universal nucleotide antigen: towards next-generation antibodies to detect topoisomerase I-DNA covalent complexes. Org Biomol Chem 2018; 14:4103-9. [PMID: 27113574 DOI: 10.1039/c5ob02049b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The topoisomerase (topo) I-DNA covalent complex represents an attractive target for developing diagnostic antibodies to measure responsiveness to drugs. We report a new antigen, peptide , and four murine monoclonal antibodies raised against that exhibit excellent specificity for recognition of in comparison to structurally similar peptides by enzyme-linked immunosorbent assays. Although topo I-DNA complex detection was not achieved in cellular samples by these new antibodies, a new strategy for antigen design is reported.
Collapse
Affiliation(s)
- Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Thomas G Beito
- Monoclonal Antibody Core, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Truttmann MC, Ploegh HL. rAMPing Up Stress Signaling: Protein AMPylation in Metazoans. Trends Cell Biol 2017; 27:608-620. [PMID: 28433487 DOI: 10.1016/j.tcb.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Protein AMPylation - the covalent attachment of an AMP residue to amino acid side chains using ATP as the donor - is a post-translational modification (PTM) increasingly appreciated as relevant for both normal and pathological cell signaling. In metazoans single copies of filamentation induced by cAMP (fic)-domain-containing AMPylases - the enzymes responsible for AMPylation - preferentially modify a set of dedicated targets and contribute to the perception of cellular stress and its regulation. Pathogenic bacteria can exploit AMPylation of eukaryotic target proteins to rewire host cell signaling machinery in support of their propagation and survival. We review endogenous as well as parasitic protein AMPylation in metazoans and summarize current views of how fic-domain-containing AMPylases contribute to cellular proteostasis.
Collapse
Affiliation(s)
| | - Hidde L Ploegh
- Boston Children's Hospital, Boston, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Nascimento Santos L, Carvalho Pacheco LG, Silva Pinheiro C, Alcantara-Neves NM. Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Trop 2017; 166:202-211. [PMID: 27871775 DOI: 10.1016/j.actatropica.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
The inverse relationship between helminth infections and the development of immune-mediated diseases is a cornerstone of the hygiene hypothesis and studies were carried out to elucidate the mechanisms by which helminth-derived molecules can suppress immunological disorders. These studies have fostered the idea that parasitic worms may be used as a promising therapeutic alternative for prevention and treatment of immune-mediated diseases. We discuss the current approaches for identification of helminth proteins with potential immunoregulatory properties, including the strategies based on high-throughput technologies. We also explore the methodological approaches and expression systems used for production of the recombinant forms of more than 20 helminth immunomodulatory proteins, besides their performances when evaluated as immunotherapeutic molecules to treat different immune-mediated conditions, including asthma and inflammatory bowel diseases. Finally, we discuss the perspectives of using these parasite-derived recombinant molecules as tools for future immunotherapy and immunoprophylaxis of human inflammatory diseases.
Collapse
|
6
|
Wang P, Silverman SK. DNA-Catalyzed Introduction of Azide at Tyrosine for Peptide Modification. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Puzhou Wang
- Department of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Scott K. Silverman
- Department of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
7
|
Gavriljuk K, Schartner J, Seidel H, Dickhut C, Zahedi RP, Hedberg C, Kötting C, Gerwert K. Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX. Biochemistry 2016; 55:4375-85. [PMID: 27404583 DOI: 10.1021/acs.biochem.6b00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intracellular pathogen Legionella pneumophila infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of host-pathogen interactions.
Collapse
Affiliation(s)
- Konstantin Gavriljuk
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Jonas Schartner
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Hans Seidel
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Rene P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Christian Hedberg
- Department of Chemistry and Umeå Center for Microbial Research, Umeå University , SE-90187 Umeå, Sweden
| | - Carsten Kötting
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Wang P, Silverman SK. DNA-Catalyzed Introduction of Azide at Tyrosine for Peptide Modification. Angew Chem Int Ed Engl 2016; 55:10052-6. [PMID: 27391404 PMCID: PMC4993102 DOI: 10.1002/anie.201604364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/12/2022]
Abstract
We show that DNA enzymes (deoxyribozymes) can introduce azide functional groups at tyrosine residues in peptide substrates. Using in vitro selection, we identified deoxyribozymes that transfer the 2′‐azido‐2′‐deoxyadenosine 5′‐monophosphoryl group (2′‐Az‐dAMP) from the analogous 5′‐triphosphate (2′‐Az‐dATP) onto the tyrosine hydroxyl group of a peptide, which is either tethered to a DNA anchor or free. Some of the new deoxyribozymes are general with regard to the amino acid residues surrounding the tyrosine, while other DNA enzymes are sequence‐selective. We use one of the new deoxyribozymes to modify free peptide substrates by attaching PEG moieties and fluorescent labels.
Collapse
Affiliation(s)
- Puzhou Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Hentchel KL, Escalante-Semerena JC. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Microbiol Mol Biol Rev 2015; 79:321-46. [PMID: 26179745 PMCID: PMC4503791 DOI: 10.1128/mmbr.00020-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
10
|
Abstract
In the cell, proteins are frequently modified covalently at specific amino acids with post-translational modifications, leading to a diversification of protein functions and activities. Since the introduction of high-resolution mass spectrometry, new post-translational modifications are constantly being discovered. One particular modification is the adenylylation of mammalian proteins. In adenylylation, adenosine triphosphate (ATP) is utilized to attach an adenosine monophosphate at protein threonine or tyrosine residues via a phosphodiester linkage. Adenylylation is particularly interesting in the context of infections by bacterial pathogens during which mammalian proteins are manipulated through AMP attachment via secreted bacterial factors. In this review, we summarize the role and regulation of enzymatic adenylylation and the mechanisms of catalysis. We also refer to recent methods for the detection of adenylylated proteins by modification-specific antibodies, ATP analogues equipped with chemical handles, and mass spectrometry approaches. Additionally, we review screening approaches for inhibiting adenylylation and briefly discuss related modifications such as phosphocholination and phosphorylation.
Collapse
Affiliation(s)
- Christian Hedberg
- Chemical
Biology Center (KBC), Institute of Chemistry, Umeå University, Umeå, 90187, Sweden
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Dortmund 44227, Germany
| | - Aymelt Itzen
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
11
|
Brandsen BM, Velez TE, Sachdeva A, Ibrahim NA, Silverman SK. DNA-catalyzed lysine side chain modification. Angew Chem Int Ed Engl 2014; 53:9045-50. [PMID: 24981820 DOI: 10.1002/anie.201404622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 02/03/2023]
Abstract
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys-modified proteins. We previously reported the DNA-catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5'-phosphorimidazolide (5'-Imp) rather than 5'-triphosphate (5'-ppp) enables the DNA-catalyzed modification of Lys in a DNA-anchored peptide substrate. The DNA-catalyzed reaction of Lys with 5'-Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5'-ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.
Collapse
Affiliation(s)
- Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA) http://www.scs.illinois.edu/silverman/
| | | | | | | | | |
Collapse
|
12
|
Brandsen BM, Velez TE, Sachdeva A, Ibrahim NA, Silverman SK. DNA-Catalyzed Lysine Side Chain Modification. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Gavriljuk K, Schartner J, Itzen A, Goody RS, Gerwert K, Kötting C. Reaction mechanism of adenylyltransferase DrrA from Legionella pneumophila elucidated by time-resolved fourier transform infrared spectroscopy. J Am Chem Soc 2014; 136:9338-45. [PMID: 24950229 DOI: 10.1021/ja501496d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Modulation of the function of small GTPases that regulate vesicular trafficking is a strategy employed by several human pathogens. Legionella pneumophila infects lung macrophages and injects a plethora of different proteins into its host cell. Among these is DrrA/SidM, which catalyzes stable adenylylation of Rab1b, a regulator of endoplasmatic reticulum to Golgi trafficking, and thereby alters the function and interactions of this small GTPase. We employed time-resolved FTIR-spectroscopy to monitor the DrrA-catalyzed AMP-transfer to Tyr77 of Rab1b. A transient complex between DrrA, adenylylated Rab1b, and the pyrophosphate byproduct was resolved, allowing us to analyze the interactions at the active site. Combination of isotopic labeling and site-directed mutagenesis allowed us to derive the catalytic mechanism of DrrA from the FTIR difference spectra. DrrA shares crucial residues in the ATP-binding pocket with similar AMP-transferring enzymes such as glutamine synthetase adenylyltransferase or kanamycin nucleotidyltransferase, but provides the complete active site on a single subunit. We determined that Asp112 of DrrA functions as the catalytic base for deprotonation of Tyr77 of Rab1b to enable nucleophilic attack on the ATP. The study provides detailed understanding of the Legionella pneumophila protein DrrA and of AMP-transfer reactions in general.
Collapse
Affiliation(s)
- Konstantin Gavriljuk
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|