1
|
Richaud AD, Mandal S, Das A, Roche SP. Tunable CH/π Interactions within a Tryptophan Zipper Motif to Stabilize the Fold of Long β-Hairpin Peptides. ACS Chem Biol 2023; 18:2555-2563. [PMID: 37976523 DOI: 10.1021/acschembio.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The tryptophan zipper (Trpzip) is an iconic folding motif of β-hairpin peptides capitalizing on two pairs of cross-strand tryptophans, each stabilized by an aromatic-aromatic stacking in an edge-to-face (EtF) geometry. Yet, the origins and the contribution of this EtF packing to the unique Trpzip stability remain poorly understood. To address this question of structure-stability relationship, a library of Trpzip hairpins was developed by incorporating readily accessible nonproteinogenic tryptophans of varying electron densities. We found that each EtF geometry was, in fact, stabilized by an intricate combination of XH/π interactions. By tuning the π-electron density of Trpface rings, CH/π interactions are strengthened to gain additional stability. On the contrary, our DFT calculations support the notion that Trpedge modulations are challenging due to their simultaneous paradoxical engagement as H-bond donors in CH/π and acceptors in NH/π interactions.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Sourav Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pashan, Pune 411008, India
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
2
|
Gupta A, Mahalakshmi R. Reversible folding energetics of Yersinia Ail barrel reveals a hyperfluorescent intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183097. [PMID: 31672545 DOI: 10.1016/j.bbamem.2019.183097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Deducing the molecular details of membrane protein folding has lately become an important area of research in biology. Using Ail, an outer membrane protein (OMP) from Yersina pestis as our model, we explore details of β-barrel folding, stability, and unfolding. Ail displays a simple transmembrane β-barrel topology. Here, we find that Ail follows a simple two-state mechanism in its folding and unfolding thermodynamics. Interestingly, Ail displays multi-step folding kinetics. The early kinetic intermediates in the folding pathway populate near the unfolded state (βT ≈ 0.20), and do not display detectable changes in the local environment of the two interface indoles. Interestingly, tryptophans regulate the late events of barrel rearrangement, and Ail thermodynamic stability. We show that W149 → Y/F/A substitution destabilizes Ail by ~0.13-1.7 kcal mol-1, but retains path-independent thermodynamic equilibrium of Ail. In surprising contrast, substituting W42 and retaining W149 shifts the thermodynamic equilibrium to an apparent kinetic retardation of only the unfolding process, which gives rise to an associated increase in scaffold stability by ~0.3-1.1 kcal mol-1. This is accompanied by the formation of an unusual hyperfluorescent state in the unfolding pathway that is more structured, and represents a conformationally dynamic unfolding intermediate with the interface W149 now lipid solvated. The defined role of each tryptophan and poorer folding efficiency of Trp mutants together presents compelling evidence for the importance of interface aromatics in the unique (un)folding pathway of Ail, and offers interesting insight on alternative pathways in generalized OMP assembly and unfolding mechanisms.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066. India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066. India.
| |
Collapse
|
3
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
4
|
Mahalakshmi R. Aromatic interactions in β-hairpin scaffold stability: A historical perspective. Arch Biochem Biophys 2018; 661:39-49. [PMID: 30395808 DOI: 10.1016/j.abb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between naturally occurring aromatic residues have been widely exploited as scaffold stabilizing agents in de novo designed peptides and in Nature - inspired structures. Our understanding of the factors driving aromatic interactions and their observed interaction geometries have advanced remarkably with improvements in conventional structural studies, availability of novel molecular methods and in silico studies, which have together provided atomistic information on aromatic interactions and interaction strengths. This review attempts to recapitulate the early advances in our understanding of aromatic interactions as stabilizing agents of peptide β-hairpins.
Collapse
Affiliation(s)
- Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India.
| |
Collapse
|
5
|
Diana D, Di Salvo C, Celentano V, De Rosa L, Romanelli A, Fattorusso R, D'Andrea LD. Conformational stabilization of a β-hairpin through a triazole–tryptophan interaction. Org Biomol Chem 2018; 16:787-795. [DOI: 10.1039/c7ob02815f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triazole and indole rings stabilize a β-hairpin conformation through an aromatic–aromatic interaction.
Collapse
Affiliation(s)
| | | | | | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini
- CNR
- Napoli
- Italy
| | | | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali
- Biologiche e Farmaceutiche
- Università della Campania “L. Vanvitelli”
- Caserta
- Italy
| | | |
Collapse
|
6
|
Chaturvedi D, Mahalakshmi R. Position-Specific contribution of interface tryptophans on membrane protein energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:451-457. [PMID: 29128310 DOI: 10.1016/j.bbamem.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Interface tryptophans are key residues that facilitate the folding and stability of membrane proteins. Escherichia coli OmpX possesses two unique interface tryptophans, namely Trp76, which is present at the interface and is solvent-exposed, and Trp140, which is relatively more lipid solvated than Trp76 in symmetric lipid membranes. Here, we address the requirement for tryptophan and the consequences of aromatic amino acid substitutions on the folding and stability of OmpX. Using spectroscopic measurements of OmpX-Trp/Tyr/Phe mutants, we show that the specific mutation W76→Y allows barrel assembly >1.5-fold faster than native OmpX, and increases stability by ~0.4kcalmol-1. In contrast, mutating W140→F/Y lowers OmpX thermodynamic stability by ~0.4kcalmol-1, without affecting the folding kinetics. We conclude that the stabilizing effect of tryptophan at the membrane interface can be position-and local environment-specific. We propose that the thermodynamic contributions for interface residues be interpreted with caution.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
7
|
Pellach M, Mondal S, Harlos K, Mance D, Baldus M, Gazit E, Shimon LJW. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure. Angew Chem Int Ed Engl 2017; 56:3252-3255. [PMID: 28191715 PMCID: PMC5412914 DOI: 10.1002/anie.201609877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 11/29/2022]
Abstract
The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level.
Collapse
Affiliation(s)
- Michal Pellach
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityRamat Aviv69978Israel
| | - Sudipta Mondal
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityRamat Aviv69978Israel
| | - Karl Harlos
- Division of Structural BiologyWellcome Trust Centre for Human GeneticsUniversity of OxfordRoosevelt DriveOxfordOX3 7BNUK
| | - Deni Mance
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Ehud Gazit
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityRamat Aviv69978Israel
- Department of Materials Science and EngineeringIby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityRamat Aviv69978Israel
| | - Linda J. W. Shimon
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
8
|
Pellach M, Mondal S, Harlos K, Mance D, Baldus M, Gazit E, Shimon LJW. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michal Pellach
- Department of Molecular Microbiology and Biotechnology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv 69978 Israel
| | - Sudipta Mondal
- Department of Molecular Microbiology and Biotechnology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv 69978 Israel
| | - Karl Harlos
- Division of Structural Biology; Wellcome Trust Centre for Human Genetics; University of Oxford; Roosevelt Drive Oxford OX3 7BN UK
| | - Deni Mance
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv 69978 Israel
- Department of Materials Science and Engineering; Iby and Aladar Fleischman Faculty of Engineering; Tel Aviv University; Ramat Aviv 69978 Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
9
|
Makwana KM, Mahalakshmi R. Capping β-hairpin with N-terminal d-amino acid stabilizes peptide scaffold. Biopolymers 2017; 106:260-6. [PMID: 26999275 DOI: 10.1002/bip.22837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
Abstract
Various strategies exist to stabilize de novo designed synthetic peptide β-hairpins or β-sheets structures, especially at the non-hydrogen bonding position. However, strategies to stabilize strand termini, which are affected by fraying, are highly limited. Here, by substituting N-terminal aliphatic amino acid with its mirror image counterpart, we achieve a significant increase in scaffold stabilization, resulting from the formation of a terminal aliphatic-aromatic hydrophobic CH…pi cluster. Our extensive solution NMR studies support the incorporation of an N-terminal d-aliphatic amino acid in the design of short β-hairpins, while successfully retaining the overall structural scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 260-266, 2016.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, Madhya Pradesh, India
| |
Collapse
|
10
|
Anderson JM, Kier BL, Jurban B, Byrne A, Shu I, Eidenschink LA, Shcherbakov AA, Hudson M, Fesinmeyer RM, Andersen NH. Aryl-aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization. Biopolymers 2016; 105:337-356. [PMID: 26850220 PMCID: PMC5638712 DOI: 10.1002/bip.22821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
We have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation. Designated as an edge-to-face (EtF or FtE) interaction, large ring current shifts are produced at the edge aryl ring hydrogens and, in most cases, large exciton couplets appear in the far UV circular dichroic (CD) spectrum. The preference for the face aryl in FtE clusters is W ≫ Y ≥ F (there are some exceptions in the Y/F order); this sequence corresponds to the order of fold stability enhancement and always predicts the amplitude of the lower energy feature of the exciton couplet in the CD spectrum. The CD spectra for FtE W/W, W/Y, Y/W, and Y/Y pairs all include an intense feature at 225-232 nm. An additional couplet feature seen for W/Y, W/F, Y/Y, and F/Y clusters, is a negative feature at 197-200 nm. Tyr/Tyr (as well as F/Y and F/F) interactions produce much smaller exciton couplet amplitudes. The Trp-cage fold was employed to search for the CD effects of other Trp/Trp and Trp/Tyr cluster geometries: several were identified. In this account, we provide additional examples of the application of cross-strand aryl/aryl clusters for the design of stable β-sheet models and a scale of fold stability increments associated with all possible FtE Ar/Ar clusters in several structural contexts. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 337-356, 2016.
Collapse
Affiliation(s)
- Jordan M Anderson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brandon L Kier
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brice Jurban
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Irene Shu
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | | - Mike Hudson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - R M Fesinmeyer
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| |
Collapse
|
11
|
Makwana KM, Mahalakshmi R. Stereopositional Outcome in the Packing of Dissimilar Aromatics in Designed β-Hairpins. Chemistry 2016; 22:4147-56. [DOI: 10.1002/chem.201504428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory; Department of Biological Sciences; Indian Institute of Science Education and Research, Bhopal; 462023 Madhya Pradesh India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory; Department of Biological Sciences; Indian Institute of Science Education and Research, Bhopal; 462023 Madhya Pradesh India
| |
Collapse
|
12
|
Makwana KM, Mahalakshmi R. Nature of aryl-tyrosine interactions contribute to β-hairpin scaffold stability: NMR evidence for alternate ring geometry. Phys Chem Chem Phys 2016; 17:4220-30. [PMID: 25569770 DOI: 10.1039/c4cp04991h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The specific contribution of the acidic-aromatic β-sheet favouring amino acid tyrosine to the stability of short octapeptide β-hairpin structures is presented here. Solution NMR analysis in near-apolar environments suggests the energetically favourable mode of interaction to be T-shaped face-to-edge (FtE) and that a Trp-Tyr interacting pair is the most stabilizing. Alternate aryl geometries also exist in solution, which readily equilibrate between a preferred π···π conformation to an aromatic-amide conformation, without any change in the backbone structure. While the phenolic ring is readily accommodated at the "edge" of FtE aryl interactions, it exhibits an overall lowered contribution to scaffold stability in the "face" orientation. Such differential tyrosine interactions are key to its dual nature in proteins.
Collapse
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India.
| | | |
Collapse
|
13
|
Madhusudan Makwana K, Mahalakshmi R. Implications of aromatic-aromatic interactions: From protein structures to peptide models. Protein Sci 2015; 24:1920-33. [PMID: 26402741 DOI: 10.1002/pro.2814] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
With increasing structural information on proteins, the opportunity to understand physical forces governing protein folding is also expanding. One of the significant non-covalent forces between the protein side chains is aromatic-aromatic interactions. Aromatic interactions have been widely exploited and thoroughly investigated in the context of folding, stability, molecular recognition, and self-assembly processes. Through this review, we discuss the contribution of aromatic interactions to the activity and stability of thermophilic, mesophilic, and psychrophilic proteins. Being hydrophobic, aromatic amino acids tend to reside in the protein hydrophobic interior or transmembrane segments of proteins. In such positions, it can play a diverse role in soluble and membrane proteins, and in α-helix and β-sheet stabilization. We also highlight here some excellent investigations made using peptide models and several approaches involving aryl-aryl interactions, as an increasingly popular strategy in protein and peptide engineering. A recent survey described the existence of aromatic clusters (trimer, tetramer, pentamer, and higher order assemblies), revealing the self-associating property of aryl groups, even in folded protein structures. The application of this self-assembly of aromatics in the generation of modern bionanomaterials is also discussed.
Collapse
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| |
Collapse
|
14
|
Makwana KM, Mahalakshmi R. Trp-Trp Cross-Linking: A Structure–Reactivity Relationship in the Formation and Design of Hyperstable Peptide β-Hairpin and α-Helix Scaffolds. Org Lett 2015; 17:2498-501. [DOI: 10.1021/acs.orglett.5b01017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kamlesh M. Makwana
- Molecular Biophysics Laboratory,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|
15
|
Makwana KM, Mahalakshmi R. NMR Analysis of Tuning Cross-Strand Phe/Tyr/Trp-Trp Interactions in Designed β-Hairpin Peptides: Terminal Switch from L to D Amino Acid as a Strategy for β-Hairpin Capping. J Phys Chem B 2015; 119:5376-85. [PMID: 25849307 DOI: 10.1021/acs.jpcb.5b00554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interaction among the side chains of aromatic amino acids is a well-known mechanism of protein and peptide structure stabilization, particularly in β sheets. Using short β-hairpin models bearing the sequence Ac-Leu-Xxx-Val-DPro-Gly-Leu-Trp-Val-NH2, we report the surprising observation of significant destabilization in aryl–tryptophan interactions, which results in poorly folded peptide populations accompanied by lowering of stability. We find that such destabilization arises from forced occupancy of the indole ring in the shielded Edge position, in T-shaped aryl geometries. We demonstrate that this destabilizing effect can be efficiently salvaged by replacing the N-terminal LLeu with DLeu, which causes an increase in the folded hairpin population, while retaining Trp in the Edge position. Our observation of unique cross strand NOEs and data from temperature-dependent NMR and CD measurements reveals the formation of a locally stabilized aliphatic–aromatic network, leading to an overall increase in ΔGF° by ∼ −0.6 to −1.2 kcal/mol. Our results suggest that a contextual evaluation of stabilization by tryptophan is necessary in β hairpins. Furthermore, we report for the first time that the use of D isomers of aliphatic amino acids at the terminus is stabilizing, which can serve as a new strategy for increasing β-hairpin stability.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|