1
|
Boyd R, Kennebeck M, Miranda A, Liu Z, Silverman S. Site-specific N-alkylation of DNA oligonucleotide nucleobases by DNAzyme-catalyzed reductive amination. Nucleic Acids Res 2024; 52:8702-8716. [PMID: 39051544 PMCID: PMC11347174 DOI: 10.1093/nar/gkae639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
DNA and RNA nucleobase modifications are biologically relevant and valuable in fundamental biochemical and biophysical investigations of nucleic acids. However, directly introducing site-specific nucleobase modifications into long unprotected oligonucleotides is a substantial challenge. In this study, we used in vitro selection to identify DNAzymes that site-specifically N-alkylate the exocyclic nucleobase amines of particular cytidine, guanosine, and adenosine (C, G and A) nucleotides in DNA substrates, by reductive amination using a 5'-benzaldehyde oligonucleotide as the reaction partner. The new DNAzymes each require one or more of Mg2+, Mn2+, and Zn2+ as metal ion cofactors and have kobs from 0.04 to 0.3 h-1, with rate enhancement as high as ∼104 above the splinted background reaction. Several of the new DNAzymes are catalytically active when an RNA substrate is provided in place of DNA. Similarly, several new DNAzymes function when a small-molecule benzaldehyde compound replaces the 5'-benzaldehyde oligonucleotide. These findings expand the scope of DNAzyme catalysis to include nucleobase N-alkylation by reductive amination. Further development of this new class of DNAzymes is anticipated to facilitate practical covalent modification and labeling of DNA and RNA substrates.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Morgan M Kennebeck
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Aurora A Miranda
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Zehui Liu
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Ito Y, Takemori C, Hari Y. Chemical Conversion of 5-Fluoromethyl- and 5-Difluoromethyl-Uracil Bases in Oligonucleotides Using Postsynthetic Modification Strategy. Curr Protoc 2023; 3:e837. [PMID: 37494600 DOI: 10.1002/cpz1.837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This article describes the postsynthetic modification of oligonucleotides (ONs) containing 2'-deoxy-5-fluoromethyluridine (dUCH2F ) and 2'-deoxy-5-difluoromethyluridine (dUCHF2 ). Reactions of fully protected and controlled pore glass (CPG)-attached ONs containing dUCH2F and dUCHF2 in basic solutions result in deprotection of all protecting groups except for the 4,4'-dimethoxytrityl group, cleavage from CPG, and conversion of the fluoromethyl or difluoromethyl groups to afford the corresponding ONs containing 5-substituted 2'-deoxyuridines. Moreover, the difluoromethyl group can be converted to formyl, oxime, or hydrazone via the postsynthetic conversion of protection- and CPG-free ON containing dUCHF2 . © 2023 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine Basic Protocol 2: Postsynthetic modification of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine Basic Protocol 3: Postsynthetic modification of fully protected and CPG-attached oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Basic Protocol 4: Postsynthetic modification of protection- and CPG-free oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Support Protocol: Synthesis of 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine phosphoramidites.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Chisa Takemori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
3
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
4
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
5
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
6
|
Alamudi SH, Liu X, Chang YT. Azide-based bioorthogonal chemistry: Reactions and its advances in cellular and biomolecular imaging. BIOPHYSICS REVIEWS 2021; 2:021301. [PMID: 38505123 PMCID: PMC10903415 DOI: 10.1063/5.0050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 03/21/2024]
Abstract
Since the term "bioorthogonal" was first demonstrated in 2003, new tools for bioorthogonal chemistry have been rapidly developed. Bioorthogonal chemistry has now been widely utilized for applications in imaging various biomolecules, such as proteins, glycoconjugates, nucleic acids, and lipids. Contrasting the chemical reactions or synthesis that are typically executed in vitro with organic solvents, bioorthogonal reactions can occur inside cells under physiological conditions. Functional groups or chemical reporters for bioorthogonal chemistry are highly selective and will not perturb the native functions of biological systems. Advances in azide-based bioorthogonal chemical reporters make it possible to perform chemical reactions in living systems for wide-ranging applications. This review discusses the milestones of azide-based bioorthogonal reactions, from Staudinger ligation and copper(I)-catalyzed azide-alkyne cycloaddition to strain-promoted azide-alkyne cycloaddition. The development of bioorthogonal reporters and their capability of being built into biomolecules in vivo have been extensively applied in cellular imaging. We focus on strategies used for metabolic incorporation of chemically tagged molecular building blocks (e.g., amino acids, carbohydrates, nucleotides, and lipids) into cells via cellular machinery systems. With the aid of exogenous bioorthogonally compatible small fluorescent probes, we can selectively visualize intracellular architectures, such as protein, glycans, nucleic acids, and lipids, with high specificity to help in answering complex biological problems.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (ASTAR), 31 Biopolis Way, #07‐01, Singapore 138669
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | |
Collapse
|
7
|
Krasheninina OA, Thaler J, Erlacher MD, Micura R. Amine-to-Azide Conversion on Native RNA via Metal-Free Diazotransfer Opens New Avenues for RNA Manipulations. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7046-7050. [PMID: 38504956 PMCID: PMC10947191 DOI: 10.1002/ange.202015034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Indexed: 03/21/2024]
Abstract
A major challenge in the field of RNA chemistry is the identification of selective and quantitative conversion reactions on RNA that can be used for tagging and any other RNA tool development. Here, we introduce metal-free diazotransfer on native RNA containing an aliphatic primary amino group using the diazotizing reagent fluorosulfuryl azide (FSO2N3). The reaction provides the corresponding azide-modified RNA in nearly quantitatively yields without affecting the nucleobase amino groups. The obtained azido-RNA can then be further processed utilizing well-established bioortho-gonal reactions, such as azide-alkyne cycloadditions (Click) or Staudinger ligations. We exemplify the robustness of this approach for the synthesis of peptidyl-tRNA mimics and for the pull-down of 3-(3-amino-3-carboxypropyl)uridine (acp3U)- and lysidine (k2C)-containing tRNAs of an Escherichia coli tRNA pool isolated from cellular extracts. Our approach therefore adds a new dimension to the targeted chemical manipulation of diverse RNA species.
Collapse
Affiliation(s)
- Olga A. Krasheninina
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Julia Thaler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Matthias D. Erlacher
- Institute of Genomics and RNomicsBiocenterMedical University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
8
|
Krasheninina OA, Thaler J, Erlacher MD, Micura R. Amine-to-Azide Conversion on Native RNA via Metal-Free Diazotransfer Opens New Avenues for RNA Manipulations. Angew Chem Int Ed Engl 2021; 60:6970-6974. [PMID: 33400347 PMCID: PMC8048507 DOI: 10.1002/anie.202015034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Indexed: 12/12/2022]
Abstract
A major challenge in the field of RNA chemistry is the identification of selective and quantitative conversion reactions on RNA that can be used for tagging and any other RNA tool development. Here, we introduce metal-free diazotransfer on native RNA containing an aliphatic primary amino group using the diazotizing reagent fluorosulfuryl azide (FSO2 N3 ). The reaction provides the corresponding azide-modified RNA in nearly quantitatively yields without affecting the nucleobase amino groups. The obtained azido-RNA can then be further processed utilizing well-established bioortho-gonal reactions, such as azide-alkyne cycloadditions (Click) or Staudinger ligations. We exemplify the robustness of this approach for the synthesis of peptidyl-tRNA mimics and for the pull-down of 3-(3-amino-3-carboxypropyl)uridine (acp3 U)- and lysidine (k2 C)-containing tRNAs of an Escherichia coli tRNA pool isolated from cellular extracts. Our approach therefore adds a new dimension to the targeted chemical manipulation of diverse RNA species.
Collapse
Affiliation(s)
- Olga A. Krasheninina
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Julia Thaler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Matthias D. Erlacher
- Institute of Genomics and RNomicsBiocenterMedical University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
9
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
10
|
Ito Y, Hayashi H, Fuchi Y, Hari Y. Post-synthetic modification of oligonucleotides containing 5-mono- and 5-di-fluoromethyluridines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Lartia R, Vallée C, Defrancq E. Post-synthetic transamination at position N4 of cytosine in oligonucleotides assembled with routinely used phosphoramidites. Org Biomol Chem 2020; 18:9632-9638. [PMID: 33206749 DOI: 10.1039/d0ob02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The commercially available and cheap nucleotide phosphoramidites are routinely used for the oligonucleotide (ODN) assembly. T, isobutyryl-dG (iBudG), benzoyl-dA (BzdA), acetyl-dC (AcdC) and benzoyl-dC (BzdC) derivatives are sufficient to produce orthogonally protected ODNs. Clean and efficient (ca. 30%-70% yield) post-synthetic amination of an ODN assembled with such phosphoramidites was selectively achieved at the N4 position of a singly introduced BzdC. Such a method represents a novel and cheap strategy for the user-friendly post-modification of oligonucleotides at the internal position.
Collapse
Affiliation(s)
- Rémy Lartia
- Univ. Grenoble Alpes, CNRS, DCM UMR5250, F-38000 Grenoble, France.
| | | | | |
Collapse
|
12
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
13
|
Gray MD, Deore PS, Chung AJ, Van Riesen AJ, Manderville RA, Prabhakar PS, Wetmore SD. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjug Chem 2020; 31:2596-2606. [PMID: 33156614 DOI: 10.1021/acs.bioconjchem.0c00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.
Collapse
Affiliation(s)
- Micaela D Gray
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Prashant S Deore
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew J Chung
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abigail J Van Riesen
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Preethi Seelam Prabhakar
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
14
|
Bartosik K, Debiec K, Czarnecka A, Sochacka E, Leszczynska G. Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post-Synthetic Approach. Molecules 2020; 25:E3344. [PMID: 32717917 PMCID: PMC7436257 DOI: 10.3390/molecules25153344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The chemical synthesis of modified oligoribonucleotides represents a powerful approach to study the structure, stability, and biological activity of RNAs. Selected RNA modifications have been proven to enhance the drug-like properties of RNA oligomers providing the oligonucleotide-based therapeutic agents in the antisense and siRNA technologies. The important sites of RNA modification/functionalization are the nucleobase residues. Standard phosphoramidite RNA chemistry allows the site-specific incorporation of a large number of functional groups to the nucleobase structure if the building blocks are synthetically obtainable and stable under the conditions of oligonucleotide chemistry and work-up. Otherwise, the chemically modified RNAs are produced by post-synthetic oligoribonucleotide functionalization. This review highlights the post-synthetic RNA modification approach as a convenient and valuable method to introduce a wide variety of nucleobase modifications, including recently discovered native hypermodified functional groups, fluorescent dyes, photoreactive groups, disulfide crosslinks, and nitroxide spin labels.
Collapse
Affiliation(s)
| | | | | | | | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.B.); (K.D.); (A.C.); (E.S.)
| |
Collapse
|
15
|
Tera M, Luedtke NW. Cross-linking cellular nucleic acids via a target-directing double click reagent. Methods Enzymol 2020; 641:433-457. [PMID: 32713534 DOI: 10.1016/bs.mie.2020.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bioorthogonal ligation reactions are powerful tools for characterizing DNA metabolism, DNA-protein binding interactions, and they even provide new leads for therapeutic strategies. Nucleoside analogs can deliver bioorthogonal functional groups into chromatin via cellular metabolic pathways, however, insufficient phosphorylation by endogenous kinases often limits the efficiency of their incorporation. Even when successfully metabolized into biopolymers, steric hindrance of the modified nucleotide by chromatin can inhibit subsequent click reactions. In this chapter, we describe methods that overcome these limitations. Nucleotide monophosphate triesterers can bypass the need for cellular nucleoside kinase activity and thereby enable efficient incorporation of azide groups into cellular DNA. Steric access to and modification of the azide groups within natively folded chromatin can then be accomplished using a bioorthogonal "intercalating reagent" comprised of a cationic Sondheimer diyne that reversibly intercalates into duplexes where it undergoes tandem, strain-promoted cross-linking of two azides to give DNA-DNA interstrand crosslinks or DNA-fluorophore conjugation, depending on the relative number and spatial orientation of the azide groups in the DNA.
Collapse
Affiliation(s)
- Masayuki Tera
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
16
|
Synthetic Sphingolipids with 1,2-Pyridazine Appendages Improve Antiproliferative Activity in Human Cancer Cell Lines. ACS Med Chem Lett 2020; 11:686-690. [PMID: 32435371 PMCID: PMC7236038 DOI: 10.1021/acsmedchemlett.9b00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.5- to 9-fold reduction in IC50 in these cell lines was observed relative to the lead compound, which lacked the appended heterocycle.
Collapse
|
17
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Tera M, Luedtke NW. Three-Component Bioorthogonal Reactions on Cellular DNA and RNA. Bioconjug Chem 2019; 30:2991-2997. [DOI: 10.1021/acs.bioconjchem.9b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
20
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate-Modified Nucleotides and DNA for Specific Cross-Linking with Lysine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019; 58:13345-13348. [PMID: 31328344 PMCID: PMC6771961 DOI: 10.1002/anie.201906737] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Indexed: 01/31/2023]
Abstract
Squaramate-linked 2'-deoxycytidine 5'-O-triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate-linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys-containing peptides. Squaramate-linked DNA formed covalent cross-links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| |
Collapse
|
21
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate‐Modified Nucleotides and DNA for Specific Cross‐Linking with Lysine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
22
|
Reisacher U, Groitl B, Strasser R, Cserép GB, Kele P, Wagenknecht HA. Triazine-Modified 7-Deaza-2'-deoxyadenosines: Better Suited for Bioorthogonal Labeling of DNA by PCR than 2'-Deoxyuridines. Bioconjug Chem 2019; 30:1773-1780. [PMID: 31117344 DOI: 10.1021/acs.bioconjchem.9b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
6-Ethynyl-1,2,4-triazine is a small bioorthogonally reactive group we applied for fluorescent labeling of oligonucleotides by Diels-Alder reactions with inverse electron demand. We synthetically attached this functional group to the 7-position of 7-deaza-2'-deoxyadenosine triphosphate and to the 5-position of 2'-deoxyuridine triphosphate. Both modified nucleotide triphosphates were used in comparison for primer extension experiments (PEX) and PCR amplification to finally yield multilabeled oligonucleotides by the postsynthetic reaction with a highly reactive bicyclo[6.1.0]nonyne-rhodamine conjugate. These experiments show that 6-ethynyl-1,2,4-triazine is much better tolerated by the DNA polymerase when attached to the 7-position of 7-deaza-2'-deoxyadenosine in comparison to the attachment at the 5-position of 2'-deoxyuridine. This became evident both by PAGE analysis of the PCR products and real-time kinetic observation of DNA polymerase activity during primer extension using switchSENSE. Generally, our results imply that bioorthogonal labeling strategies are better suited for 7-deaza-2'-adenosines than conventional and available 2'-deoxyuridines.
Collapse
Affiliation(s)
- Ulrike Reisacher
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Bastian Groitl
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Gergely B Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| |
Collapse
|
23
|
Destito P, Sousa-Castillo A, Couceiro JR, López F, Correa-Duarte MA, Mascareñas JL. Hollow nanoreactors for Pd-catalyzed Suzuki-Miyaura coupling and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem Sci 2019; 10:2598-2603. [PMID: 30996975 PMCID: PMC6419927 DOI: 10.1039/c8sc04390f] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
We describe the fabrication of hollow microspheres consisting of mesoporous silica nanoshells decorated with an inner layer of palladium nanoparticles and their use as Pd-nanoreactors in aqueous media. These palladium-equipped capsules can be used to promote the uncaging of propargyl-protected phenols, as well as Suzuki-Miyaura cross-coupling, in water and at physiologically compatible temperatures. Importantly, the depropargylation reaction can be accomplished in a bioorthogonal manner in the presence of relatively high concentrations of biomolecular components and even in the presence of mammalian cells.
Collapse
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| | - Ana Sousa-Castillo
- Department of Physical Chemistry , Center for Biomedical Research (CINBIO) , Southern Galicia Institute of Health Research (IISGS) , Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain .
| | - José R Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
- Instituto de Química Orgánica General CSIC , Juan de la Cierva 3 , 28006 , Madrid , Spain .
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry , Center for Biomedical Research (CINBIO) , Southern Galicia Institute of Health Research (IISGS) , Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain .
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| |
Collapse
|
24
|
Pomplun S, Mohamed MYH, Oelschlaegel T, Wellner C, Bergmann F. Efficient Pictet-Spengler Bioconjugation with N
-Substituted Pyrrolyl Alanine Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Pomplun
- Roche Diagnostics GmbH; Nonnenwald 2 82377 Penzberg Germany
- Current address: Massachusetts Institute of Technology; Department of Chemistry; 77 Massachusetts Ave Cambridge MA 02139 USA
| | | | | | | | - Frank Bergmann
- Roche Diagnostics GmbH; Nonnenwald 2 82377 Penzberg Germany
| |
Collapse
|
25
|
Pomplun S, Mohamed MYH, Oelschlaegel T, Wellner C, Bergmann F. Efficient Pictet-Spengler Bioconjugation with N-Substituted Pyrrolyl Alanine Derivatives. Angew Chem Int Ed Engl 2019; 58:3542-3547. [PMID: 30653800 DOI: 10.1002/anie.201814200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Indexed: 01/06/2023]
Abstract
We discovered N-pyrrolyl alanine derivatives as efficient reagents for the fast and selective Pictet-Spengler reaction with aldehyde-containing biomolecules. Other aldehyde-labeling methods described so far have several drawbacks, like hydrolytic instability, slow reaction kinetics or not readily available labeling reagents. Pictet-Spengler cyclizations of pyrrolyl 2-ethylamine substituted at the pyrrole nitrogen are significantly faster than with analogues substituted at the α- and β- position. Functionalized N-pyrrolyl alanine derivatives can be synthesized in only 2-3 steps from commercially available materials. The small size of the reagent, the high reaction rate, and the easy synthesis make pyrrolyl alanine Pictet-Spengler (PAPS) an attractive choice for bioconjugation reactions. PAPS was shown as an efficient strategy for the site-selective biotinylation of an antibody as well as for the condensation of nucleic-acid derivatives, demonstrating the versatility of this reagent.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany.,Current address: Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | | | | | - Frank Bergmann
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| |
Collapse
|
26
|
Tera M, Harati Taji Z, Luedtke NW. Intercalation‐enhanced “Click” Crosslinking of DNA. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masayuki Tera
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Bioorganic Research InstituteSuntory Foundation for Life Sciences (SUNBOR) 8-1-1 Seikadai, Seika, Soraku Kyoto 619-0284 Japan
| | - Zahra Harati Taji
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
27
|
Ito Y, Matsuo M, Yamamoto K, Yamashita W, Osawa T, Hari Y. Post-synthetic modification of oligonucleotides containing 5-trifluoromethylpyrimidine bases. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Tera M, Harati Taji Z, Luedtke NW. Intercalation-enhanced "Click" Crosslinking of DNA. Angew Chem Int Ed Engl 2018; 57:15405-15409. [PMID: 30240107 DOI: 10.1002/anie.201808054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/22/2018] [Indexed: 01/05/2023]
Abstract
DNA-DNA cross-linking agents constitute an important family of chemotherapeutics that non-specifically react with endogenous nucleophiles and therefore exhibit undesirable side effects. Here we report a cationic Sondheimer diyne derivative "DiMOC" that exhibits weak, reversible intercalation into duplex DNA (Kd =15 μm) where it undergoes tandem strain-promoted cross-linking of azide-containing DNA to give DNA-DNA interstrand crosslinks (ICLs) with an exceptionally high apparent rate constant kapp =2.1×105 m-1 s-1 . This represents a 21 000-fold rate enhancement as compared the reaction between DIMOC and 5-(azidomethyl)-2'-deoxyuridine (AmdU) nucleoside. As single agents, 5'-bispivaloyloxymethyl (POM)-AmdU and DiMOC exhibited low cytotoxicity, but highly toxic DNA-DNA ICLs were generated by metabolic incorporation of AmdU groups into cellular DNA, followed by treatment of the cells with DiMOC. These results provide the first examples of intercalation-enhanced bioorthogonal chemical reactions on DNA, and furthermore, the first strain-promoted double click (SPDC) reactions inside of living cells.
Collapse
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Zahra Harati Taji
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
29
|
Saito Y, Hudson RH. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Ploschik D, Rönicke F, Beike H, Strasser R, Wagenknecht HA. DNA Primer Extension with Cyclopropenylated 7-Deaza-2'-deoxyadenosine and Efficient Bioorthogonal Labeling in Vitro and in Living Cells. Chembiochem 2018; 19:1949-1953. [PMID: 29968274 DOI: 10.1002/cbic.201800354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 01/06/2023]
Abstract
A deoxyadenosine triphosphate (dATP) analogue for DNA labeling was synthesized with the 1-methylcyclopropene (1MCP) group at the 7-position of 7-deaza-2'-deoxyadenosine and applied for primer extension experiments. The real-time kinetic data reveals that this 1MCP-modified dATP analogue is incorporated into DNA much faster than that of the similarly 1MCP-modified deoxyuridine triphosphate (dUTP) analogue. The postsynthetic fluorescent labeling of these oligonucleotides works efficiently according to PAGE analysis, and can be applied for immobilization of a functional antibody on a surface. Site-specific labeling at two different positions in DNA was achieved and the bioorthogonality of the postsynthetic fluorescent labeling was demonstrated in living HeLa cells.
Collapse
Affiliation(s)
- Damian Ploschik
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Hanna Beike
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
31
|
Tera M, Glasauer SMK, Luedtke NW. In Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018; 19:1939-1943. [PMID: 29953711 DOI: 10.1002/cbic.201800351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Metabolic incorporation of bioorthogonal functional groups into cellular nucleic acids can be impeded by insufficient phosphorylation of nucleosides. Previous studies found that 5azidomethyl-2'-deoxyuridine (AmdU) was incorporated into the DNA of HeLa cells expressing a low-fidelity thymidine kinase, but not by wild-type HeLa cells. Here we report that membrane-permeable phosphotriester derivatives of AmdU can exhibit enhanced incorporation into the DNA of wild-type cells and animals. AmdU monophosphate derivatives bearing either 5'-bispivaloyloxymethyl (POM), 5'-bis-(4-acetoxybenzyl) (AB), or "Protide" protective groups were used to mask the phosphate group of AmdU prior to its entry into cells. The POM derivative "POM-AmdU" exhibited better chemical stability, greater metabolic incorporation efficiency, and lower toxicity than "AB-AmdU". Remarkably, the addition of POM-AmdU to the water of zebrafish larvae enabled the biosynthesis of azide-modified DNA throughout the body.
Collapse
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, 619-0284, Kyoto, Japan
| | - Stella M K Glasauer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
32
|
Wu Y, Hu J, Sun C, Cao Y, Li Y, Xie F, Zeng T, Zhou B, Du J, Tang Y. Nature-Inspired Bioorthogonal Reaction: Development of β-Caryophyllene as a Chemical Reporter in Tetrazine Ligation. Bioconjug Chem 2018; 29:2287-2295. [PMID: 29851464 DOI: 10.1021/acs.bioconjchem.8b00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nature-inspired bioorthogonal reaction has been developed, hinging on an inverse-electron-demand Diels-Alder reaction of tetrazine with β-caryophyllene. Readily accessible from the cheap starting material through a scalable synthesis, the newly developed β-caryophyllene chemical reporter displays appealing reaction kinetics and excellent biocompatibility, which renders it applicable to both in vitro protein labeling and live cell imaging. Moreover, it can be used orthogonally to the strain-promoted alkyne-azide cycloaddition for dual protein labeling. This work not only provides an alternative to the existing bioorthogonal reaction toolbox, but also opens a new avenue to utilize naturally occurring scaffolds as bioorthogonal chemical reporters.
Collapse
Affiliation(s)
- Yunfei Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School , Sichuan University , Chengdu 610041 , China
| | - Jiulong Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Chen Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yuanhe Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Tianyin Zeng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
33
|
Walunj MB, Tanpure AA, Srivatsan SG. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res 2018; 46:e65. [PMID: 29546376 PMCID: PMC6009664 DOI: 10.1093/nar/gky185] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
34
|
Panattoni A, Pohl R, Hocek M. Flexible Alkyne-Linked Thymidine Phosphoramidites and Triphosphates for Chemical or Polymerase Synthesis and Fast Postsynthetic DNA Functionalization through Copper-Catalyzed Alkyne–Azide 1,3-Dipolar Cycloaddition. Org Lett 2018; 20:3962-3965. [DOI: 10.1021/acs.orglett.8b01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
35
|
Chen L, Leslie D, Coleman MG, Mack J. Recyclable heterogeneous metal foil-catalyzed cyclopropenation of alkynes and diazoacetates under solvent-free mechanochemical reaction conditions. Chem Sci 2018; 9:4650-4661. [PMID: 29899959 PMCID: PMC5969500 DOI: 10.1039/c8sc00443a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Silver and copper foil were found to be effective, versatile and selective heterogeneous catalysts for the cyclopropenation of terminal and internal alkynes under mechanochemical reaction conditions.
Silver and copper foil were found to be effective, versatile and selective heterogeneous catalysts for the cyclopropenation of terminal and internal alkynes under mechanochemical reaction conditions. This methodology enables the functionalization of a wide range of terminal or internal alkynes under ambient, aerobic, and solvent-free conditions. Finally, we have demonstrated a unique and versatile one-pot domino Sonogashira-cyclopropenation mechanochemical reaction for the formation of complex cyclopropenes.
Collapse
Affiliation(s)
- Longrui Chen
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0037 , USA .
| | - Devonna Leslie
- School of Chemistry and Materials Science , Rochester Institute of Technology , Rochester , New York 14623-5604 , USA .
| | - Michael G Coleman
- School of Chemistry and Materials Science , Rochester Institute of Technology , Rochester , New York 14623-5604 , USA .
| | - James Mack
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0037 , USA .
| |
Collapse
|
36
|
Gubu A, Li L, Ning Y, Zhang X, Lee S, Feng M, Li Q, Lei X, Jo K, Tang X. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide. Chemistry 2018; 24:5895-5900. [PMID: 29443432 DOI: 10.1002/chem.201705917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions.
Collapse
Affiliation(s)
- Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Long Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Yan Ning
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Xiaoyun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Republic of Korea
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Qiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Republic of Korea
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| |
Collapse
|
37
|
Steinmeyer J, Wagenknecht HA. Synthesis of DNA Modified with Boronic Acid: Compatibility to Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Bioconjug Chem 2018; 29:431-436. [DOI: 10.1021/acs.bioconjchem.7b00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeannine Steinmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc Natl Acad Sci U S A 2018; 115:E1366-E1373. [PMID: 29378947 DOI: 10.1073/pnas.1714790115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many drugs require extensive metabolism en route to their targets. High-resolution visualization of prodrug metabolism should therefore utilize analogs containing a small modification that does not interfere with its metabolism or mode of action. In addition to serving as mechanistic probes, such analogs provide candidates for theranostics when applied in both therapeutic and diagnostic modalities. Here a traceable mimic of the widely used anticancer prodrug cytarabine (ara-C) was generated by converting a single hydroxyl group to azide, giving "AzC." This compound exhibited the same biological profile as ara-C in cell cultures and zebrafish larvae. Using azide-alkyne "click" reactions, we uncovered an apparent contradiction: drug-resistant cells incorporated relatively large quantities of AzC into their genomes and entered S-phase arrest, whereas drug-sensitive cells incorporated only small quantities of AzC. Fluorescence microscopy was used to elucidate structural features associated with drug resistance by characterizing the architectures of stalled DNA replication foci containing AzC, EdU, γH2AX, and proliferating cell nuclear antigen (PCNA). Three-color superresolution imaging revealed replication foci containing one, two, or three partially resolved replication forks. Upon removing AzC from the media, resumption of DNA synthesis and completion of the cell cycle occurred before complete removal of AzC from genomes in vitro and in vivo. These results revealed an important mechanism for the low toxicity of ara-C toward normal tissues and drug-resistant cancer cells, where its efficient incorporation into DNA gives rise to highly stable, stalled replication forks that limit further incorporation of the drug, yet allow for the resumption of DNA synthesis and cellular division following treatment.
Collapse
|
39
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
40
|
Lehmann B, Wagenknecht HA. Fluorogenic “photoclick” labelling of DNA using a Cy3 dye. Org Biomol Chem 2018; 16:7579-7582. [DOI: 10.1039/c8ob02068j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two 2′-deoxyuridines as new building blocks for automated DNA synthesis carry a small aryltetrazole as a “photoclickable” group at their 5-positions.
Collapse
Affiliation(s)
- Benjamin Lehmann
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
41
|
Anhäuser L, Rentmeister A. Enzyme-mediated tagging of RNA. Curr Opin Biotechnol 2017; 48:69-76. [DOI: 10.1016/j.copbio.2017.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
|
42
|
Farzan VM, Ulashchik EA, Martynenko-Makaev YV, Kvach MV, Aparin IO, Brylev VA, Prikazchikova TA, Maklakova SY, Majouga AG, Ustinov AV, Shipulin GA, Shmanai VV, Korshun VA, Zatsepin TS. Automated Solid-Phase Click Synthesis of Oligonucleotide Conjugates: From Small Molecules to Diverse N-Acetylgalactosamine Clusters. Bioconjug Chem 2017; 28:2599-2607. [PMID: 28921968 DOI: 10.1021/acs.bioconjchem.7b00462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed a novel technique for the efficient conjugation of oligonucleotides with various alkyl azides such as fluorescent dyes, biotin, cholesterol, N-acetylgalactosamine (GalNAc), etc. using copper-catalysed alkyne-azide cycloaddition on the solid phase and CuI·P(OEt)3 as a catalyst. Conjugation is carried out in an oligonucleotide synthesizer in fully automated mode and is coupled to oligonucleotide synthesis and on-column deprotection. We also suggest a set of reagents for the construction of diverse conjugates. The sequential double-click procedure using a pentaerythritol-derived tetraazide followed by the addition of a GalNAc or Tris-GalNAc alkyne gives oligonucleotide-GalNAc dendrimer conjugates in good yields with minimal excess of sophisticated alkyne reagents. The approach is suitable for high-throughput synthesis of oligonucleotide conjugates ranging from fluorescent DNA probes to various multi-GalNAc derivatives of 2'-modified siRNA.
Collapse
Affiliation(s)
- Valentina M Farzan
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia
| | - Egor A Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Yury V Martynenko-Makaev
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Maksim V Kvach
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Ilya O Aparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Tatiana A Prikazchikova
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia
| | - Svetlana Yu Maklakova
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia.,National University of Science and Technology "MISiS" , Leninskiy Prospect 4, Moscow 119991, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - German A Shipulin
- Central Research Institute of Epidemiology , Novogireevskaya 3a, Moscow 111123, Russia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia.,Gause Institute of New Antibiotics , Bolshaya Pirogovskaya 11, Moscow 119021, Russia
| | - Timofei S Zatsepin
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia.,Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia.,Central Research Institute of Epidemiology , Novogireevskaya 3a, Moscow 111123, Russia
| |
Collapse
|
43
|
Light-induced functions in DNA. Curr Opin Chem Biol 2017; 40:119-126. [DOI: 10.1016/j.cbpa.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022]
|
44
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
45
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anu Naik
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jawad Alzeer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Therese Triemer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anna Bujalska
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
46
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017; 56:10850-10853. [PMID: 28561928 DOI: 10.1002/anie.201702554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Indexed: 11/10/2022]
Abstract
A new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×103 m-1 s-1 . PTAD derivatives selectively reacted with VdU-containing oligonucleotides in a conformation-selective manner, with higher yields observed for G-quadruplex versus duplex DNA. These results demonstrate a new strategy for copper-free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.
Collapse
Affiliation(s)
- Anu Naik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
47
|
Png ZM, Zeng H, Ye Q, Xu J. Inverse-Electron-Demand Diels-Alder Reactions: Principles and Applications. Chem Asian J 2017; 12:2142-2159. [DOI: 10.1002/asia.201700442] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Zhuang Mao Png
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Huining Zeng
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Qun Ye
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
48
|
Peewasan K, Wagenknecht HA. 1,2,4-Triazine-Modified 2'-Deoxyuridine Triphosphate for Efficient Bioorthogonal Fluorescent Labeling of DNA. Chembiochem 2017; 18:1473-1476. [PMID: 28485853 DOI: 10.1002/cbic.201700185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 12/25/2022]
Abstract
In order to establish the Diels-Alder reaction with inverse electron demand for postsynthetic DNA modification, a 1,2,4-triazine-modified 2'-deoxyuridine triphosphate was synthesized. The bioorthogonally reactive 1,2,4-triazine group was attached at the 5-position of 2'-deoxyuridine by a flexible alkyl linker to facilitate its acceptance by DNA polymerases. The screening of four DNA polymerases showed successful primer extensions, using a mixture of dATP, dGTP, dCTP, and the modified 2'-deoxyuridine triphosphate, by using KOD XL or Vent polymerase. The triazine moiety was stable under the conditions of primer extension, which was evidenced by labeling with a BCN-modified rhodamine at room temperature in yields of up to 82 %. Two or three modified bases could be incorporated in quantitative yields when the modification sites were separated by three base pairs. These results establish the 1,2,4-triazene group as a bioorthogonally reactive moiety in DNA, thereby replacing the problematic 1,2,4,5-tetrazine for postsynthetic labeling by the Diels-Alder reaction with inverse electron demand.
Collapse
Affiliation(s)
- Krisana Peewasan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
49
|
Steinmeyer J, Rönicke F, Schepers U, Wagenknecht HA. Synthesis of Wavelength-Shifting Fluorescent DNA and RNA with Two Photostable Cyanine-Styryl Dyes as the Base Surrogate Pair. ChemistryOpen 2017; 6:514-518. [PMID: 28794946 PMCID: PMC5542753 DOI: 10.1002/open.201700059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 01/19/2023] Open
Abstract
Two nucleic acid building blocks were synthesized, consisting of two photostable green‐ and red‐emitting cyanine–styryl dyes and (S)‐3‐amino‐1,2‐propanediol as a substitute for the ribofuranoside, and incorporated as base‐pair surrogates by using automated phosphoramidte chemistry in the solid phase. The optical properties and, in particular, the energy‐transfer properties were screened in a range of DNA duplexes, in which the “counter bases” of the two dyes were varied and the distance between the two dyes was enlarged to up to three intervening adenosine–thymidine pairs. The DNA duplex with the best optical properties and the best red/green emission ratio as the readout bore adenosine and thymidine opposite to the dyes, and the two dyes directly adjacent to each other as the base surrogate pair. This structural arrangement can be transferred to RNA to obtain similarly fluorescent RNA probes. Representatively, the positively evaluated DNA duplex was applied to verify the fluorescence readout in living HeLa cells by using fluorescence confocal microscopy.
Collapse
Affiliation(s)
- Jeannine Steinmeyer
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Franziska Rönicke
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Ute Schepers
- Institute of Toxicology and Genetics Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
50
|
Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods 2017; 120:28-38. [DOI: 10.1016/j.ymeth.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
|