1
|
Harmon NM, Huang X, Hsiao CHC, Wiemer AJ, Wiemer DF. Incorporation of a FRET pair within a phosphonate diester. Bioorg Chem 2021; 114:105048. [PMID: 34126576 DOI: 10.1016/j.bioorg.2021.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cell-cleavable protecting groups are an effective tactic for construction of biological probes because such compounds can improve problems with instability, solubility, and cellular uptake. Incorporation of fluorescent groups in the protecting groups may afford useful probes of cellular functions, especially for payloads containing phosphonates that would be highly charged if not protected, but little is known about the steric or electronic factors that impede release of the payload. In this report we present a strategy for the synthesis of a coumarin fluorophore and a 4-((4-(dimethylamino)phenyl)diazenyl)benzoic acid (DABCYL) ester chromophore incorporated as a FRET pair within a single phosphonate. Such compounds were designed to deliver a BTN3A1 ligand payload to its intracellular receptor. Both final products and some synthetic intermediates were evaluated for their ability to undergo metabolic activation in γδ T cell functional assays, and for their photophysical properties by spectrophotometry. One phosphonate bearing a DABCYL acyloxyester and a novel tyramine-linked coumarin fluorophore exhibited strong, rapid, and potent cellular activity for γδ T cell stimulation and also showed FRET interactions. This strategy demonstrates that bioactivatable phosphonates containing FRET pairs can be utilized to develop probes to monitor cellular uptake of otherwise charged payloads.
Collapse
Affiliation(s)
- Nyema M Harmon
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, United States
| | - David F Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
2
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Lentini NA, Hsiao CHC, Crull GB, Wiemer AJ, Wiemer DF. Synthesis and Bioactivity of the Alanyl Phosphonamidate Stereoisomers Derived from a Butyrophilin Ligand. ACS Med Chem Lett 2019; 10:1284-1289. [PMID: 31531198 DOI: 10.1021/acsmedchemlett.9b00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Aryloxy phosphonamidate derivatives of a butyrophilin 3A1 ligand are stimulants of Vγ9 Vδ2 T cells. However, when bonded to an aryl ester and an amine, the phosphorus is stereogenic, and past compounds were studied as racemates. To determine the impact of stereochemistry on the activity, we now have prepared phosphonate derivatives of l- and d-alanine ethyl ester, separated the diastereomers, and evaluated their biological activity as single stereoisomers. The results demonstrate that phosphonamidates substituted with l-alanine stimulate Vγ9 Vδ2 T cells at lower concentrations than the racemic glycine counterpart, while those derived from d-alanine require higher concentrations. All four diastereomers are more active than charged phosphoantigens such as HMBPP. Surprisingly, only a 2-fold difference was observed between the l-alanine phosphorus isomers, with the R P isomer more potent. This suggests that the small phosphoantigen scaffold reduces but does not eliminate dependence upon phosphorus stereochemistry for cellular activity.
Collapse
Affiliation(s)
- Nicholas A. Lentini
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - George B. Crull
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
4
|
Foust BJ, Li J, Hsiao CHC, Wiemer DF, Wiemer AJ. Stability and Efficiency of Mixed Aryl Phosphonate Prodrugs. ChemMedChem 2019; 14:1597-1603. [PMID: 31226236 PMCID: PMC6726502 DOI: 10.1002/cmdc.201900344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/16/2022]
Abstract
A set of phosphonate prodrugs of a butyrophilin ligand was synthesized and evaluated for plasma stability and cellular activity. The mixed aryl acyloxy esters were prepared either via a standard sequence through the phosphonic acid chloride, or through the more recently reported, and more facile, triflate activation. In the best of cases, this class of prodrugs shows cellular potency similar to that of bis-acyloxyalkyl phosphonate prodrugs and plasma stability similar to that of aryl phosphonamidates. For example, {[((3E)-5-hydroxy-4-methylpent-3-en-1-yl) (naphthalen-2-yloxy)phosphoryl]oxy}methyl 2,2-dimethylpropanoate can activate BTN3A1 in K562 cells after just 15 minutes of exposure (at an EC50 value of 31 nm) and is only partially metabolized (60 % remaining) after 20 hours in human plasma. Other related novel analogues showed similar potency/stability profiles. Therefore, mixed aryl acyloxyalkyl phosphonate prodrugs are an exciting new strategy for the delivery of phosphonate-containing drugs.
Collapse
Affiliation(s)
- Benjamin J Foust
- Department of Chemistry, University of Iowa, E531 Chemistry Building, Iowa City, IA, 52242, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269, USA
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, E531 Chemistry Building, Iowa City, IA, 52242, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Poe MM, Agabiti SS, Liu C, Li V, Teske KA, Hsiao CHC, Wiemer AJ. Probing the Ligand-Binding Pocket of BTN3A1. J Med Chem 2019; 62:6814-6823. [PMID: 31268699 DOI: 10.1021/acs.jmedchem.9b00825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small-molecule phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate stimulate human Vγ9Vδ2 T cells after binding to the intracellular B30.2 domain of the immune receptor butyrophilin 3 isoform A1 (BTN3A1). To understand the ligand-target interaction in greater detail, we performed molecular docking. Based on the docking results, we synthesized the novel ligand (E)-(7-hydroxy-6-methylhept-5-en-1-yl)phosphonate and mutated proposed binding site residues. We evaluated the impact on butyrophilin binding of existing and novel ligands using a newly developed high-throughput fluorescence polarization assay. We also evaluated the ability of the compounds to stimulate proliferation and interferon-γ production of Vγ9Vδ2 T cells. Mutation of H381 fully blocked ligand binding, whereas mutations to charged surface residues impacted diphosphate interactions. Monophosphonate analogs bind similarly to BTN3A1, although they differ in their antigenicity, demonstrating that binding and efficacy are not linearly correlated. These results further define the structure-activity relationships underlying BTN3A1 ligand binding and antigenicity and support further structure-guided drug design.
Collapse
Affiliation(s)
| | | | | | | | - Kelly A Teske
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | | | | |
Collapse
|
6
|
Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem 2019; 11:1057-1082. [PMID: 31140865 DOI: 10.4155/fmc-2018-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural coumarins and their derivatives isolated from various plants or microorganisms have inherent antioxidant, antibacterial, antifungal, antiviral and anticancer properties among many biological activities. Some of these coumarins and their derivatives lead to self-programmed cancer cell death (apoptosis) via different mechanisms, which will be discussed. The link between bacterial and viral infections to cancer compels us to highlight fascinating reports from coumarin isolation from microorganisms; comment on the recent bioavailability studies of natural or derived coumarins; and discuss our perspectives with respect to bioisosterism in coumarins, p-glycoprotein inhibition and covalent modification, and bioprobes. Overall, this review hopes to stimulate and offer in particular medicinal chemists and the reader in general an outlook on natural coumarins and their derivatives with potential for cancer therapy.
Collapse
|
7
|
Hsiao CHC, Wiemer AJ. A power law function describes the time- and dose-dependency of Vγ9Vδ2 T cell activation by phosphoantigens. Biochem Pharmacol 2018; 158:298-304. [PMID: 30391478 DOI: 10.1016/j.bcp.2018.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023]
Abstract
Phosphoantigens stimulate Vγ9Vδ2 T cells after binding to BTN3A1 in target cells and cell-cell contact. We evaluated phosphoantigens including diphosphates, bisphosphonates, and prodrugs for ability to induce leukemia cells to stimulate Vγ9Vδ2 T cell interferon-γ secretion. Most compounds displayed time-dependent activity at exposure times between 15 and 240 min. Potency (EC50 values) ranged between 8.4 nM and >100 µM. The diphosphate C-HMBPP displayed a shallow dose-response slope (Hill slope = 0.71), while the bisphosphonate slopes were steep (Hill slopes > 2), and the prodrugs intermediate. The bis-acyloxyalkyl POM2-C-HMBP showed low nanomolar potency even at an exposure time of 1 min. Mixed aryl-POM prodrugs also retained excellent potency at 15 min, while aryl-amidates were time dependent below 240 min. The sum of the dose and time logarithms is often constant, while a power law function fits most compounds. Collectively, these findings illustrate the exquisite activity of prodrugs relative to diphosphates and bisphosphonates.
Collapse
Affiliation(s)
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
8
|
Lentini NA, Foust BJ, Hsiao CHC, Wiemer AJ, Wiemer DF. Phosphonamidate Prodrugs of a Butyrophilin Ligand Display Plasma Stability and Potent Vγ9 Vδ2 T Cell Stimulation. J Med Chem 2018; 61:8658-8669. [PMID: 30199251 PMCID: PMC6703555 DOI: 10.1021/acs.jmedchem.8b00655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organophosphorus compounds stimulate Vγ9 Vδ2 T cells if they serve as ligands of butyrophilin 3A1. Because the most potent natural ligand is ( E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), which is the last intermediate in bacterial biosynthesis of isoprenoids that is not found in mammalian metabolism, activation of these T cells represents an important component of the immune response to bacterial infections. To identify butyrophilin ligands that may have greater plasma stability, and clinical potential, we have prepared a set of aryl phosphonamidate derivatives (9a-i) of the natural ligand. Testing of these new compounds in assays of T cell response has revealed that this strategy can provide compounds with high potency for expansion of Vγ9 Vδ2 T cells (9f, EC50 = 340 pM) and interferon γ production in response to loaded K562 cells (9e, EC50 = 62 nM). Importantly, all compounds of this class display extended plasma stability ( t1/2 > 24 h). These findings increase our understanding of metabolism of butyrophilin ligands and the structure-activity relationships of phosphonamidate prodrugs.
Collapse
Affiliation(s)
- Nicholas A Lentini
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Benjamin J Foust
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
- Institute for Systems Genomics , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - David F Wiemer
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
- Department of Pharmacology , University of Iowa , Iowa City , Iowa 52242-1109 , United States
| |
Collapse
|
9
|
Foust BJ, Poe MM, Lentini NA, Hsiao CHC, Wiemer AJ, Wiemer DF. Mixed Aryl Phosphonate Prodrugs of a Butyrophilin Ligand. ACS Med Chem Lett 2017; 8:914-918. [PMID: 28947936 DOI: 10.1021/acsmedchemlett.7b00245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Studies of aryl phosphonate derivatives of a butyrophilin 3A1 ligand have resulted in identification of a potent stimulant of Vγ9 Vδ2 T cells. This compound, a mixed ester bearing one pivaloyloxymethyl substituent and one 1-naphthyl ester displayed an EC50 of 0.79 nM as a stimulant of T cell proliferation, and a 9.0 nM EC50 in an assay designed to measure interferon gamma production. In both assays, this is the most potent butyrophilin ligand prodrug yet reported, and thus it should be a valuable tool for studies of T cell function. Furthermore, mixed aryl/acyloxyalkyl esters may represent a new class of phosphonate prodrugs with high efficacy.
Collapse
Affiliation(s)
- Benjamin J. Foust
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department
of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092 United States
| | - Nicholas A. Lentini
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092 United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092 United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
10
|
Dual Fluorescence and Solvatochromic Study on 3-Acyl Coumarins. J Fluoresc 2017; 27:1247-1255. [PMID: 28374266 DOI: 10.1007/s10895-017-2052-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/19/2017] [Indexed: 10/19/2022]
|
11
|
Shippy RR, Lin X, Agabiti SS, Li J, Zangari BM, Foust BJ, Poe MM, Hsiao CHC, Vinogradova O, Wiemer DF, Wiemer AJ. Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. J Med Chem 2017; 60:2373-2382. [PMID: 28218845 DOI: 10.1021/acs.jmedchem.6b00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Butyrophilin 3A1 (BTN3A1) binds small phosphorus-containing molecules, which initiates transmembrane signaling and activates butyrophilin-responsive cells. We synthesized several phosphinophosphonates and their corresponding tris-pivaloyloxymethyl (tris-POM) prodrugs and examined their effects on BTN3A1. An analog of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) bound to BTN3A1 with intermediate affinity, which was enthalpy-driven. Docking studies revealed binding to the basic surface pocket and interactions between the allylic hydroxyl group and the BTN3A1 backbone. The phosphinophosphonate stimulated proliferation of Vγ9Vδ2 T cells with moderate activity (EC50 = 26 μM). Cellular potency was enhanced >600-fold in the tris-POM prodrug (EC50 = 0.041 μM). The novel prodrug also induced T cell mediated leukemia cell lysis. Analysis of dose-response data reveals HMBPP-induced Hill coefficients of 0.69 for target cell lysis and 0.68 in interferon secretion. Together, tris-POM prodrugs enhance the cellular activity of phosphinophosphonates, reveal structure-activity relationships of butyrophilin ligands, and support a negatively cooperative model of cellular butyrophilin activation.
Collapse
Affiliation(s)
- Rebekah R Shippy
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Xiaochen Lin
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Brendan M Zangari
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Benjamin J Foust
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Michael M Poe
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|