1
|
He XY, Frackowiak J, Dobkin C, Brown WT, Yang SY. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2023; 24:17604. [PMID: 38139430 PMCID: PMC10743717 DOI: 10.3390/ijms242417604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17β-HSD10 by sirtuins helps regulate its catalytic activities. 17β-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17β-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aβ peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aβ, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17β-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aβ-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17β-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17β-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jannusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - William Ted Brown
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center of the City, University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Schmidt M, Vaskova M, Rotterova A, Fiandova P, Miskerikova M, Zemanova L, Benek O, Musilek K. Physiologically relevant fluorescent assay for identification of 17β-hydroxysteroid dehydrogenase type 10 inhibitors. J Neurochem 2023; 167:154-167. [PMID: 37458164 DOI: 10.1111/jnc.15917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is a potential molecular target for treatment of mitochondrial-related disorders such as Alzheimer's disease (AD). Its over-expression in AD brains is one of the critical factors disturbing the homeostasis of neuroprotective steroids and exacerbating amyloid beta (Aβ)-mediated mitochondrial toxicity and neuronal stress. This study was focused on revalidation of the most potent HSD10 inhibitors derived from benzothiazolyl urea scaffold using fluorescent-based enzymatic assay with physiologically relevant substrates of 17β-oestradiol and allopregnanolone. The oestradiol-based assay led to the identification of two nanomolar inhibitors (IC50 70 and 346 nM) differing from HSD10 hits revealed from the formerly used assay. Both identified inhibitors were found to be effective also in allopregnanolone-based assay with non-competitive or uncompetitive mode of action. In addition, both inhibitors were confirmed to penetrate the HEK293 cells and they were able to inhibit the HSD10 enzyme in the cellular environment. Both molecules seem to be potential lead structures for further research and development of HDS10 inhibitors.
Collapse
Affiliation(s)
- Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michaela Vaskova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavlina Fiandova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Radagdam S, Khaki-Khatibi F, Rahbarghazi R, Shademan B, Nourazarian SM, Nikanfar M, Nourazarian A. Evaluation of dihydrotestosterone and dihydroprogesterone levels and gene expression of genes involved in neurosteroidogenesis in the SH-SY5Y Alzheimer disease cell model. Front Neurosci 2023; 17:1163806. [PMID: 37304028 PMCID: PMC10252120 DOI: 10.3389/fnins.2023.1163806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common form of dementia worldwide. This study investigated the effects of lipopolysaccharide on neurosteroidogenesis and its relationship to growth and differentiation using SH-SY5Y cells. Methods In this study, we used the MTT assay to assess the impact of LPS on SH-SY5Y cell viability. We also evaluated apoptotic effects using FITC Annexin V staining to detect phosphatidylserine in the cell membrane. To identify gene expression related to human neurogenesis, we utilized the RT2 Profiler TM PCR array human neurogenesis PAHS-404Z. Results Our study found that LPS had an IC50 level of 0.25 μg/mL on the SH-SY5Y cell line after 48 h. We observed Aβ deposition in SH-SY5Y cells treated with LPS, and a decrease in DHT and DHP levels in the cells. Our analysis showed that the total rate of apoptosis varied with LPS dilution: 4.6% at 0.1 μg/mL, 10.5% at 10 μg/mL, and 44.1% at 50 μg/mL. We also observed an increase in the expression of several genes involved in human neurogenesis, including ASCL1, BCL2, BDNF, CDK5R1, CDK5RAP2, CREB1, DRD2, HES1, HEYL, NOTCH1, STAT3, and TGFB1, after treatment with LPS at 10 μg/mL and 50 μg/mL. LPS at 50 μg/mL increased the expression of FLNA and NEUROG2, as well as the other genes mentioned. Conclusion Our study showed that LPS treatment altered the expression of human neurogenesis genes and decreased DHT and DHP levels in SH-SY5Y cells. These findings suggest that targeting LPS, DHT, and DHP could be potential therapeutic strategies to treat AD or improve its symptoms.
Collapse
Affiliation(s)
- Saeed Radagdam
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Nepovimova E, Svobodova L, Dolezal R, Hepnarova V, Junova L, Jun D, Korabecny J, Kucera T, Gazova Z, Motykova K, Kubackova J, Bednarikova Z, Janockova J, Jesus C, Cortes L, Pina J, Rostohar D, Serpa C, Soukup O, Aitken L, Hughes RE, Musilek K, Muckova L, Jost P, Chvojkova M, Vales K, Valis M, Chrienova Z, Chalupova K, Kuca K. Tacrine - Benzothiazoles: Novel class of potential multitarget anti-Alzheimeŕs drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorg Chem 2020; 107:104596. [PMID: 33421953 DOI: 10.1016/j.bioorg.2020.104596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid β (Aβ) aggregation and mitochondrial enzyme ABAD, whose interaction with Aβ leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aβ aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lucie Svobodova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lucie Junova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Katarina Motykova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Jana Kubackova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Jana Janockova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Catarina Jesus
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Luisa Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joao Pina
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Danijela Rostohar
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnici 828, 252 41 Dolni Brezany, Czech Republic
| | - Carlos Serpa
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Ondrej Soukup
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Laura Aitken
- School of Biology, Medical and Biological Sciences Building, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Rebecca E Hughes
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Petr Jost
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Martin Valis
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870/13, 500 03 Hradec Kralove, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer's Disease: Toward Multi-Interaction Biomolecular Processes. Biomolecules 2020; 10:E1214. [PMID: 32825572 PMCID: PMC7563123 DOI: 10.3390/biom10091214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Progressive mitochondrial dysfunction due to the accumulation of amyloid beta (Aβ) peptide within the mitochondrial matrix represents one of the key characteristics of Alzheimer's disease (AD) and appears already in its early stages. Inside the mitochondria, Aβ interacts with a number of biomolecules, including cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), and affects their physiological functions. However, despite intensive ongoing research, the exact mechanisms through which Aβ impairs mitochondrial functions remain to be explained. In this work, we studied the interactions of Aβ with cypD and 17β-HSD10 in vitro using the surface plasmon resonance (SPR) method and determined the kinetic parameters (association and dissociation rates) of these interactions. This is the first work which determines all these parameters under the same conditions, thus, enabling direct comparison of relative affinities of Aβ to its mitochondrial binding partners. Moreover, we used the determined characteristics of the individual interactions to simulate the concurrent interactions of Aβ with cypD and 17β-HSD10 in different model situations associated with the progression of AD. This study not only advances the understanding of Aβ-induced processes in mitochondria during AD, but it also provides a new perspective on research into complex multi-interaction biomolecular processes in general.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Zdeňka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| |
Collapse
|
6
|
Steroids and Alzheimer's Disease: Changes Associated with Pathology and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21134812. [PMID: 32646017 PMCID: PMC7370115 DOI: 10.3390/ijms21134812] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial age-related neurodegenerative disease that today has no effective treatment to prevent or slow its progression. Neuroactive steroids, including neurosteroids and sex steroids, have attracted attention as potential suitable candidates to alleviate AD pathology. Accumulating evidence shows that they exhibit pleiotropic neuroprotective properties that are relevant for AD. This review focuses on the relationship between selected neuroactive steroids and the main aspects of AD disease, pointing out contributions and gaps with reference to sex differences. We take into account the regulation of brain steroid concentrations associated with human AD pathology. Consideration is given to preclinical studies in AD models providing current knowledge on the neuroprotection offered by neuroactive (neuro)steroids on major AD pathogenic factors, such as amyloid-β (Aβ) and tau pathology, mitochondrial impairment, neuroinflammation, neurogenesis and memory loss. Stimulating endogenous steroid production opens a new steroid-based strategy to potentially overcome AD pathology. This article is part of a Special Issue entitled Steroids and the Nervous System.
Collapse
|
7
|
Dresser L, Hunter P, Yendybayeva F, Hargreaves AL, Howard JAL, Evans GJO, Leake MC, Quinn SD. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods 2020; 193:80-95. [PMID: 32544592 PMCID: PMC8336786 DOI: 10.1016/j.ymeth.2020.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Method enables investigation of amyloid-β oligomer stoichiometry without requiring extrinsic fluorescent probes. Uses single-molecule stepwise photobleaching in vitro. Unveils heterogeneity within populations of oligomers. Assays oligomer-induced dysregulation of intracellular Ca2+ homeostasis in living cells.
A major hallmark of Alzheimer’s disease is the misfolding and aggregation of the amyloid- β peptide (Aβ). While early research pointed towards large fibrillar- and plaque-like aggregates as being the most toxic species, recent evidence now implicates small soluble Aβ oligomers as being orders of magnitude more harmful. Techniques capable of characterizing oligomer stoichiometry and assembly are thus critical for a deeper understanding of the earliest stages of neurodegeneration and for rationally testing next-generation oligomer inhibitors. While the fluorescence response of extrinsic fluorescent probes such as Thioflavin-T have become workhorse tools for characterizing large Aβ aggregates in solution, it is widely accepted that these methods suffer from many important drawbacks, including an insensitivity to oligomeric species. Here, we integrate several biophysics techniques to gain new insight into oligomer formation at the single-molecule level. We showcase single-molecule stepwise photobleaching of fluorescent dye molecules as a powerful method to bypass many of the traditional limitations, and provide a step-by-step guide to implementing the technique in vitro. By collecting fluorescence emission from single Aβ(1–42) peptides labelled at the N-terminal position with HiLyte Fluor 555 via wide-field total internal reflection fluorescence (TIRF) imaging, we demonstrate how to characterize the number of peptides per single immobile oligomer and reveal heterogeneity within sample populations. Importantly, fluorescence emerging from Aβ oligomers cannot be easily investigated using diffraction-limited optical microscopy tools. To assay oligomer activity, we also demonstrate the implementation of another biophysical method involving the ratiometric imaging of Fura-2-AM loaded cells which quantifies the rate of oligomer-induced dysregulation of intracellular Ca2+ homeostasis. We anticipate that the integrated single-molecule biophysics approaches highlighted here will develop further and in principle may be extended to the investigation of other protein aggregation systems under controlled experimental conditions.
Collapse
Affiliation(s)
- Lara Dresser
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | - Patrick Hunter
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | | | - Alex L Hargreaves
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK.
| |
Collapse
|
8
|
Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J Neurochem 2020; 155:231-249. [PMID: 32306391 DOI: 10.1111/jnc.15027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
17β-hydroxysteroid dehydrogenase (17β-HSD10) is a multifunctional human enzyme with important roles both as a structural component and also as a catalyst of many metabolic pathways. This mitochondrial enzyme has important functions in the metabolism, development and aging of the neural system, where it is involved in the homeostasis of neurosteroids, especially in regard to estradiol, changes in which make it an essential part of neurodegenerative pathology. These roles therefore, indicate that 17β-HSD10 may be a possible druggable target for neurodegenerative diseases including Alzheimer's disease (AD), and in hormone-dependent cancer. The objective of this review was to provide a summary about physiological functions and pathological roles of 17β-HSD10 and the modulators of its activity.
Collapse
Affiliation(s)
- Lucie Vinklarova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
ABAD/17β-HSD10 reduction contributes to the protective mechanism of huperzine a on the cerebral mitochondrial function in APP/PS1 mice. Neurobiol Aging 2019; 81:77-87. [DOI: 10.1016/j.neurobiolaging.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
|
10
|
Novel Benzothiazole-based Ureas as 17β-HSD10 Inhibitors, A Potential Alzheimer's Disease Treatment. Molecules 2019; 24:molecules24152757. [PMID: 31362457 PMCID: PMC6696238 DOI: 10.3390/molecules24152757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
It has long been established that mitochondrial dysfunction in Alzheimer’s disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17β-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17β-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.
Collapse
|
11
|
Hiltunen JK, Kastaniotis AJ, Autio KJ, Jiang G, Chen Z, Glumoff T. 17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes. Mol Cell Endocrinol 2019; 489:107-118. [PMID: 30508570 DOI: 10.1016/j.mce.2018.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (HSD17B) catalyze the oxidation/reduction of 17β-hydroxy/keto group in position C17 in C18- and C19 steroids. Most HSD17Bs are also catalytically active with substrates other than steroids. A subset of these enzymes is able to process thioesters of carboxylic acids. This group of enzymes includes HSD17B4, HSD17B8, HSD17B10 and HSD17B12, which execute reactions in intermediary metabolism, participating in peroxisomal β-oxidation of fatty acids, mitochondrial oxidation of 3R-hydroxyacyl-groups, breakdown of isoleucine and fatty acid chain elongation in endoplasmic reticulum. Divergent substrate acceptance capabilities exemplify acquirement of catalytic site adaptiveness during evolution. As an additional common feature these HSD17Bs are multifunctional enzymes that arose either via gene fusions (HSD17B4) or are incorporated as subunits into multifunctional protein complexes (HSD17B8 and HSD17B10). Crystal structures of HSD17B4, HSD17B8 and HSD17B10 give insight into their structure-function relationships. Thus far, deficiencies of HSD17B4 and HSD17B10 have been assigned to inborn errors in humans, underlining their significance as enzymes of metabolism.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| | | | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Guangyu Jiang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Zhijun Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Aitken L, Baillie G, Pannifer A, Morrison A, Jones PS, Smith TK, McElroy SP, Gunn-Moore FJ. In Vitro Assay Development and HTS of Small-Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer’s Disease. SLAS DISCOVERY 2017; 22:676-685. [DOI: 10.1177/2472555217697964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A major hallmark of Alzheimer’s disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-β peptide (Aβ). Aβ has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aβ-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.
Collapse
Affiliation(s)
- Laura Aitken
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, UK
| | - Gemma Baillie
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Andrew Pannifer
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Angus Morrison
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Philip S. Jones
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, UK
| | - Stuart P. McElroy
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Frank J. Gunn-Moore
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, UK
| |
Collapse
|