1
|
Sharma S, Naldrett MJ, Gill MJ, Checco JW. Affinity-Driven Aryl Diazonium Labeling of Peptide Receptors on Living Cells. J Am Chem Soc 2024; 146:13676-13688. [PMID: 38693710 PMCID: PMC11149697 DOI: 10.1021/jacs.4c04672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.
Collapse
Affiliation(s)
- Sheryl Sharma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Makayla J Gill
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
2
|
Yates NDJ, Hatton NE, Fascione MA, Parkin A. Site-Selective Aryl Diazonium Installation onto Protein Surfaces at Neutral pH using a Maleimide-Functionalized Triazabutadiene. Chembiochem 2023; 24:e202300313. [PMID: 37311168 DOI: 10.1002/cbic.202300313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Aryl diazonium cations are versatile bioconjugation reagents due to their reactivity towards electron-rich aryl residues and secondary amines, but historically their usage has been hampered by both their short lifespan in aqueous solution and the harsh conditions required to generate them in situ. Triazabutadienes address many of these issues as they are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV-exposure rapidly release aryl diazonium cations under biologically-relevant conditions. This paper describes the synthesis of a novel maleimide-functionalized triazabutadiene suitable for site-selectively installing aryl diazonium cations into proteins at neutral pH; we show reaction with this molecule and a surface-cysteine of a thiol disulfide oxidoreductase. Through photoactivation of the site-selectively installed triazabutadiene motifs, we generate aryl diazonium functionality, which we further derivatize via azo-bond formation to electron-rich aryl species, showcasing the potential utility of this strategy for the generation of photoswitches or protein-drug conjugates.
Collapse
Affiliation(s)
- Nicholas D J Yates
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Alison Parkin
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Davis GJ, Townsend JA, Morrow MG, Hamie M, Shepard AJ, Hsieh CC, Marty MT, Jewett JC. Protein Modification via Mild Photochemical Isomerization of Triazenes to Release Aryl Diazonium Ions. Bioconjug Chem 2021; 32:2432-2438. [PMID: 34730351 PMCID: PMC8820681 DOI: 10.1021/acs.bioconjchem.1c00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes the development of phenyl diazenyl piperidine triazene derivatives that can be activated to release aryl diazonium ions for labeling of proteins using light. These probes show marked bench stability at room temperature and can be photoisomerized via low-intensity UVA irradiation at physiological pH. Upon isomerization, the triazenes are rendered more basic and readily protonate to release reactive aryl diazonium ions. It was discovered that the intensity and duration of the UV light was essential to the observed diazonium ion reactivity in competition with the traditionally observed photolytic radical pathways. The combination of their synthetic efficiency coupled with their overall stability makes triazenes an attractive candidate for use in bioconjugation applications. Bioorthogonal handles on the triazenes are used to demonstrate the ease by which proteins can be modified.
Collapse
Affiliation(s)
- Garrett J. Davis
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Julia A. Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Madeline G. Morrow
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Mohamed Hamie
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Abigail J. Shepard
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Chih-Chieh Hsieh
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | - John C. Jewett
- Department of Chemistry and Biochemistry, University of Arizona, Building 41, Room 104, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| |
Collapse
|
4
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Baccile JA, Voorhees PJ, Chillo AJ, Berry M, Morgenstern R, Schwertfeger TJ, Rossi FM, Nelson CDS. Site-Specific Small Molecule Labeling of an Internal Loop in JC Polyomavirus Pentamers Using the π-Clamp-Mediated Cysteine Conjugation. Chembiochem 2021; 22:3037-3041. [PMID: 34018291 DOI: 10.1002/cbic.202100188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Indexed: 12/21/2022]
Abstract
The major capsid protein VP1 of JC Polyomavirus assembles into pentamers that serve as a model for studying viral entry of this potentially severe human pathogen. Previously, labeling of viral proteins utilized large fusion proteins or non-specific amine- or cysteine-functionalization with fluorescent dyes. Imaging of these sterically hindered fusion proteins or heterogeneously labeled virions limits reproducibility and could prevent the detection of subtle trafficking phenomena. Here we advance the π-clamp-mediated cysteine conjugation for site-selective fluorescent labeling of VP1-pentamers. We demonstrate a one-step synthesis of a probe consisting of a bio-orthogonal click chemistry handle bridged to a perfluoro-biphenyl π-clamp reactive electrophile by a polyethylene glycol linker. We expand the scope of the π-clamp conjugation by demonstrating selective labeling of an internal, surface exposed loop in VP1. Thus, the π-clamp conjugation offers a general method to selectively bioconjugate tags-of-interest to viral proteins without impeding their ability to bind and enter cells.
Collapse
Affiliation(s)
- Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Peter J Voorhees
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, 13045, USA
| | - Anthony J Chillo
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, 13045, USA
| | - Madeline Berry
- Department of Chemistry, SUNY Cortland, Cortland, NY, 13045, USA
| | | | | | - Francis M Rossi
- Department of Chemistry, SUNY Cortland, Cortland, NY, 13045, USA
| | | |
Collapse
|
6
|
Shepard AJ, Townsend JA, Foley C, Hulme C, Marty MT, Jewett JC. Suzuki Coupling of Protected Aryl Diazonium Ions: Expanding the Knowledge of Triazabutadiene Compatible Reactions. Org Lett 2021; 23:1851-1855. [PMID: 33570414 DOI: 10.1021/acs.orglett.1c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aryl diazonium ions are important in synthesis and chemical biology, and the acid-labile triazabutadiene can protect this handle for future use. We report a Suzuki coupling strategy that is compatible with the triazabutadiene scaffold, expanding the scope of synthetically available triazabutadienes. Shown herein, the triazabutadiene scaffold remains intact and reactive after coupling, as demonstrated by releasing the aryl diazonium ion to label a tyrosine-rich model protein.
Collapse
Affiliation(s)
- Abigail J Shepard
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Julia A Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Foley
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John C Jewett
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Heras Martinez HM, Chavez Flores D, Hillesheim PC, Patil S, Bugarin A. Crystal structure and spectroscopic properties of ( E)-1,3-dimethyl-2-[3-(4-nitro-phen-yl)triaz-2-enyl-idene]-2,3-di-hydro-1 H-imidazole. Acta Crystallogr E Crystallogr Commun 2021; 77:130-133. [PMID: 33614140 PMCID: PMC7869543 DOI: 10.1107/s2056989021000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/11/2022]
Abstract
The title compound (E)-1,3-dimethyl-2-[3-(4-nitro-phen-yl)triaz-2-enyl-idene]-2,3-di-hydro-1H-imidazole, C11H12N6O2, has monoclinic (C2/c) symmetry at 100 K. This triazene derivative was synthesized by the coupling reaction of 1,3-di-methyl-imidazolium iodide with 1-azido-4-nitro benzene in the presence of sodium hydride (60% in mineral oil) and characterized by 1H NMR, 13C NMR, IR, mass spectrometry, and single-crystal X-ray diffraction. The mol-ecule consists of six-membered and five-membered rings, which are connected by a triazene moiety (-N=N-N-). In the solid-state, the mol-ecule is found to be planar due to conjugation throughout the mol-ecule. The extended structure shows two layers of mol-ecules, which present weak inter-molecular inter-actions that facilitate the stacked arrangement of the mol-ecules forming the extended structure. Furthermore, there are several weak pseudo-cyclical inter-actions between the nitro oxygen atoms and symmetry-adjacent H atoms, which help to arrange the mol-ecules.
Collapse
Affiliation(s)
- Hector Mario Heras Martinez
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA
| | - David Chavez Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario, Chihuahua, Chih., CP 31125, Mexico
| | - Patrick C. Hillesheim
- Department of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Blvd, Ave Maria, FL 34142, USA
| | - Siddappa Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA
| |
Collapse
|
8
|
Wijetunge AN, Davis GJ, Shadmehr M, Townsend JA, Marty MT, Jewett JC. Copper-Free Click Enabled Triazabutadiene for Bioorthogonal Protein Functionalization. Bioconjug Chem 2021; 32:254-258. [PMID: 33492934 DOI: 10.1021/acs.bioconjchem.0c00677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aryl diazonium ions have long been used in bioconjugation due to their reactivity toward electron-rich aryl residues, such as tyrosine. However, their utility in biological systems has been restricted due to the requirement of harsh conditions for their generation in situ, as well as limited hydrolytic stability. Previous work describing a scaffold known as triazabutadiene (TBD) has shown the ability to protect aryl diazonium ions allowing for increased synthetic utility, as well as triggered release under biologically relevant conditions. Herein, we describe the synthesis and application of a novel TBD, capable of installation of a cyclooctyne on protein surfaces for later use of copper-free click reactions involving functional azides. The probe shows efficient protein labeling across a wide pH range that can be accomplished in a convenient and timely manner. Orthogonality of the cyclooctyne modification was showcased by labeling a model protein in the presence of hen egg proteins, using an azide-containing fluorophore. We further confirmed that the azobenzene modification can be cleaved using sodium dithionite treatment.
Collapse
Affiliation(s)
- Anjalee N Wijetunge
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Garrett J Davis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Mehrdad Shadmehr
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Julia A Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John C Jewett
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Addy PS, Erickson SB, Italia JS, Chatterjee A. Labeling Proteins at Site-Specifically Incorporated 5-Hydroxytryptophan Residues Using a Chemoselective Rapid Azo-Coupling Reaction. Methods Mol Biol 2019; 2033:239-251. [PMID: 31332758 DOI: 10.1007/978-1-4939-9654-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemoselective protein labeling is a valuable tool in the arsenal of modern chemical biology. The unnatural amino acid mutagenesis technology provides a powerful way to site-specifically introduce nonnatural chemical functionalities into recombinant proteins, which can be subsequently functionalized in a chemoselective manner. Even though several strategies currently exist to selectively label recombinant proteins in this manner, there is considerable interest for the development of additional chemoselective reactions that are fast, catalyst-free, use readily available reagents, and are compatible with existing conjugation chemistries. Here we describe a method to express recombinant proteins in E. coli site-specifically incorporating 5-hydroxytryptophan, followed by the chemoselective labeling of this residue using a chemoselective rapid azo-coupling reaction.
Collapse
Affiliation(s)
| | | | - James S Italia
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
10
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
11
|
Shadmehr M, Davis GJ, Mehari BT, Jensen SM, Jewett JC. Coumarin Triazabutadienes for Fluorescent Labeling of Proteins. Chembiochem 2018; 19:2550-2552. [PMID: 30341988 PMCID: PMC6457986 DOI: 10.1002/cbic.201800599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 11/06/2022]
Abstract
The use of small-molecule fluorophores to label proteins with minimal perturbation in response to an external stimulus is a powerful tool to probe chemical and biochemical environments. Herein, we describe the use of a coumarin-modified triazabutadiene that can deliver aryl diazonium ions to fluorescently label proteins by tyrosine-selective modification. The labeling can be triggered by low-pH-induced liberation of the diazonium species, thus making the fluorophore especially useful in labeling biochemical surroundings such as those found within the late endosome. Additionally, we show that a variety of coumarin triazabutadienes might also be prone to releasing their diazonium cargo after irradiation with UV light.
Collapse
Affiliation(s)
- Mehrdad Shadmehr
- Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ, 85721, USA
| | - Garrett J Davis
- Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ, 85721, USA
| | - Bereketab T Mehari
- Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ, 85721, USA
| | - Stephanie M Jensen
- Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ, 85721, USA
| | - John C Jewett
- Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ, 85721, USA
| |
Collapse
|
12
|
Addy PS, Erickson SB, Italia JS, Chatterjee A. A Chemoselective Rapid Azo-Coupling Reaction (CRACR) for Unclickable Bioconjugation. J Am Chem Soc 2017; 139:11670-11673. [PMID: 28787141 DOI: 10.1021/jacs.7b05125] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemoselective modification of complex biomolecules has become a cornerstone of chemical biology. Despite the exciting developments of the past two decades, the demand for new chemoselective reactions with unique abilities, and those compatible with existing chemistries for concurrent multisite-directed labeling, remains high. Here we show that 5-hydroxyindoles exhibit remarkably high reactivity toward aromatic diazonium ions and this reaction can be used to chemoselectively label proteins. We have previously genetically encoded the noncanonical amino acid 5-hydroxytryptophan in both E. coli and eukaryotes, enabling efficient site-specific incorporation of 5-hydroxyindole into virtually any protein. The 5-hydroxytryptophan residue was shown to allow rapid, chemoselective protein modification using the azo-coupling reaction, and the utility of this bioconjugation strategy was further illustrated by generating a functional antibody-fluorophore conjugate. Although the resulting azo-linkage is otherwise stable, we show that it can be efficiently cleaved upon treatment with dithionite. Our work establishes a unique chemoselective "unclickable" bioconjugation strategy to site-specifically modify proteins expressed in both bacteria and eukaryotes.
Collapse
Affiliation(s)
- Partha Sarathi Addy
- Department of Chemistry, Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Sarah B Erickson
- Department of Chemistry, Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - James S Italia
- Department of Chemistry, Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
13
|
Knyazeva DC, Kimani FW, Blanche JL, Jewett JC. Hexyl triazabutadiene as a potent alkylating agent. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|