1
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
2
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Huang Y, Hou R, Lam FS, Jia Y, Zhou Y, He X, Li G, Xiong F, Cao Y, Wang D, Li X. Agonist Discovery for Membrane Proteins on Live Cells by Using DNA-encoded Libraries. J Am Chem Soc 2024; 146:24638-24653. [PMID: 39171830 DOI: 10.1021/jacs.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Identifying biologically active ligands for membrane proteins is an important task in chemical biology. We report an approach to directly identify small molecule agonists against membrane proteins by selecting DNA-encoded libraries (DELs) on live cells. This method connects extracellular ligand binding with intracellular biochemical transformation, thereby biasing the selection toward agonist identification. We have demonstrated the methodology with three membrane proteins: epidermal growth factor receptor (EGFR), thrombopoietin receptor (TPOR), and insulin receptor (INSR). A ∼30 million and a 1.033 billion-compound DEL were selected against these targets, and novel agonists with subnanomolar affinity and low micromolar cellular activities have been discovered. The INSR agonists activated the receptor by possibly binding to an allosteric site, exhibited clear synergistic effects with insulin, and activated the downstream signaling pathways. Notably, the agonists did not activate the insulin-like growth factor 1 receptor (IGF-1R), a highly homologous receptor whose activation may lead to tumor progression. Collectively, this work has developed an approach toward "functional" DEL selections on the cell surface and may provide a widely applicable method for agonist discovery for membrane proteins.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yunxuan Jia
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Xun He
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Xiong
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dongyao Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Balsollier C, Bijkerk S, de Smit A, van Eekelen K, Bozovičar K, Husstege D, Tomašič T, Anderluh M, Pieters RJ. Discovery of two non-UDP-mimic inhibitors of O-GlcNAc transferase by screening a DNA-encoded library. Bioorg Chem 2024; 147:107321. [PMID: 38604018 DOI: 10.1016/j.bioorg.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Arjan de Smit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Kevin van Eekelen
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Krištof Bozovičar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dirk Husstege
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands.
| |
Collapse
|
6
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
7
|
Chen B, Sultan MM, Karaletsos T. Compositional Deep Probabilistic Models of DNA-Encoded Libraries. J Chem Inf Model 2024; 64:1123-1133. [PMID: 38335055 DOI: 10.1021/acs.jcim.3c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
DNA-encoded library (DEL) has proven to be a powerful tool that utilizes combinatorially constructed small molecules to facilitate highly efficient screening experiments. These selection experiments, involving multiple stages of washing, elution, and identification of potent binders via unique DNA barcodes, often generate complex data. This complexity can potentially mask the underlying signals, necessitating the application of computational tools, such as machine learning, to uncover valuable insights. We introduce a compositional deep probabilistic model of DEL data, DEL-Compose, which decomposes molecular representations into their monosynthon, disynthon, and trisynthon building blocks and capitalizes on the inherent hierarchical structure of these molecules by modeling latent reactions between embedded synthons. Additionally, we investigate methods to improve the observation models for DEL count data, such as integrating covariate factors to more effectively account for data noise. Across two popular public benchmark data sets (CA-IX and HRP), our model demonstrates strong performance compared to count baselines, enriches the correct pharmacophores, and offers valuable insights via its intrinsic interpretable structure, thereby providing a robust tool for the analysis of DEL data.
Collapse
Affiliation(s)
- Benson Chen
- Insitro, South San Francisco, California 94080, United States
| | | | | |
Collapse
|
8
|
Zhang S, Zhang H, Liu X, Qi P, Tan T, Wang S, Gao H, Xu H, Zhou Z, Yi W. Mask and Release Strategy-Enabled Diversity-Oriented Synthesis for DNA-Encoded Library. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307049. [PMID: 38044314 PMCID: PMC10853742 DOI: 10.1002/advs.202307049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Indexed: 12/05/2023]
Abstract
An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.
Collapse
Affiliation(s)
- Silin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Ping Qi
- Guangzhou Institute for Food InspectionGuangzhou511400China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
9
|
Qin S, Feng L, Zhao Q, Yan Z, Lyu X, Li K, Mu B, Chen Y, Lu W, Wang C, Suo Y, Yue J, Cui M, Li Y, Zhao Y, Duan Z, Zhu J, Lu X. Discovery and Optimization of WDR5 Inhibitors via Cascade Deoxyribonucleic Acid-Encoded Library Selection Approach. J Med Chem 2024; 67:1079-1092. [PMID: 38166388 DOI: 10.1021/acs.jmedchem.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The DNA-encoded library (DEL) is a powerful hit generation tool for chemical biology and drug discovery; however, the optimization of DEL hits remained a daunting challenge for the medicinal chemistry community. In this study, hit compounds targeting the WIN binding domain of WDR5 were discovered by the initial three-cycle linear DEL selection, and their potency was further enhanced by a cascade DEL selection from the focused DEL designed based on the original first run DEL hits. As expected, these new compounds from the second run of focused DEL were more potent WDR5 inhibitors in the protein binding assay confirmed by the off-DNA synthesis. Interestingly, selected inhibitors exhibited good antiproliferative activity in two human acute leukemia cell lines. Taken together, this new cascade DEL selection strategy may have tremendous potential for finding high-affinity leads against WDR5 and provide opportunities to explore and optimize inhibitors for other targets.
Collapse
Affiliation(s)
- Shaozhao Qin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lijian Feng
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Qingyi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Kaige Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yingjie Li
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jidong Zhu
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Wang H, Zhao G, Zhang T, Li Y, Zhang G, Li Y. Comparative Study of DNA Barcode Integrity Evaluation Approaches in the Early-Stage Development of DNA-Compatible Chemical Transformation. ACS Pharmacol Transl Sci 2023; 6:1724-1733. [PMID: 37974618 PMCID: PMC10644510 DOI: 10.1021/acsptsci.3c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 11/19/2023]
Abstract
DNA-encoded libraries (DEL) have emerged as an important drug discovery technical platform for target-based compound library selection. The success rate of DEL depends on both the chemical diversity of combinatorial libraries and the accuracy of DNA barcoding. Therefore, it is critical that the chemistry applied to library construction should efficiently transform on a wide range of substrates while preserving the integrity of DNA tags. Although several analytical methods have been developed to measure DNA damage caused by DEL chemical reactions, efficient and cost-effective evaluation criteria for DNA damage detection are still demanding. Herein, we set standards for evaluating the DNA compatibility of chemistry development at the laboratory level. Based on four typical DNA damage models of three different DEL formats, we evaluated the detection capabilities of four analytical methods, including ultraperformance liquid chromatography (UPLC-MS), electrophoresis, quantitative polymerase chain reaction (qPCR), and Sanger sequencing. This work systematically revealed the scope and capability of different analytical methods in assessing DNA damages caused by chemical transformation. Based on the results, we recommended UPLC-MS and qPCR as efficient methods for DNA barcode integrity analysis in the early-stage development of DNA-compatible chemistry. Meanwhile, we identified that Sanger sequencing was unreliable to assess DNA damage in this application.
Collapse
Affiliation(s)
- Huicong Wang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Tianyang Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Prudent R, Lemoine H, Walsh J, Roche D. Affinity selection mass spectrometry speeding drug discovery. Drug Discov Today 2023; 28:103760. [PMID: 37660985 DOI: 10.1016/j.drudis.2023.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Affinity selection mass spectrometry (AS-MS) has gained momentum in drug discovery. This review summarizes how this technology has slowly risen as a new paradigm in hit identification and its potential synergy with DNA encoded library technology. It presents an overview of the recent results on challenging targets and perspectives on new areas of research, such as RNA targeting with small molecules. The versatility of the approach is illustrated and strategic drivers discussed in terms of the experience of a small-medium CRO and a big pharma organization.
Collapse
Affiliation(s)
| | | | - Jarrod Walsh
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Didier Roche
- Edelris, Bioparc, Bioserra 1 Building, Lyon, France.
| |
Collapse
|
12
|
Zhang C, Pitman M, Dixit A, Leelananda S, Palacci H, Lawler M, Belyanskaya S, Grady L, Franklin J, Tilmans N, Mobley DL. Building Block-Based Binding Predictions for DNA-Encoded Libraries. J Chem Inf Model 2023; 63:5120-5132. [PMID: 37578123 PMCID: PMC10466377 DOI: 10.1021/acs.jcim.3c00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/15/2023]
Abstract
DNA-encoded libraries (DELs) provide the means to make and screen millions of diverse compounds against a target of interest in a single experiment. However, despite producing large volumes of binding data at a relatively low cost, the DEL selection process is susceptible to noise, necessitating computational follow-up to increase signal-to-noise ratios. In this work, we present a set of informatics tools to employ data from prior DEL screen(s) to gain information about which building blocks are most likely to be productive when designing new DELs for the same target. We demonstrate that similar building blocks have similar probabilities of forming compounds that bind. We then build a model from the inference that the combined behavior of individual building blocks is predictive of whether an overall compound binds. We illustrate our approach on a set of three-cycle OpenDEL libraries screened against soluble epoxide hydrolase (sEH) and report performance of more than an order of magnitude greater than random guessing on a holdout set, demonstrating that our model can serve as a baseline for comparison against other machine learning models on DEL data. Lastly, we provide a discussion on how we believe this informatics workflow could be applied to benefit researchers in their specific DEL campaigns.
Collapse
Affiliation(s)
- Chris Zhang
- Department
of Chemistry, University of California,
Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States
| | - Mary Pitman
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| | - Sumudu Leelananda
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Henri Palacci
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Meghan Lawler
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Svetlana Belyanskaya
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - LaShadric Grady
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Joe Franklin
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Nicolas Tilmans
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - David L. Mobley
- Department
of Chemistry, University of California,
Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| |
Collapse
|
13
|
Wen X, Zhang M, Duan Z, Suo Y, Lu W, Jin R, Mu B, Li K, Zhang X, Meng L, Hong Y, Wang X, Hu H, Zhu J, Song W, Shen A, Lu X. Discovery, SAR Study of GST Inhibitors from a Novel Quinazolin-4(1 H)-one Focused DNA-Encoded Library. J Med Chem 2023; 66:11118-11132. [PMID: 37552553 DOI: 10.1021/acs.jmedchem.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The DNA-encoded library (DEL) is a powerful hit-generation tool in drug discovery. This study describes a new DEL with a privileged scaffold quinazolin-4(3H)-one developed by a robust DNA-compatible multicomponent reaction and a series of novel glutathione S-transferase (GST) inhibitors that were identified through affinity-mediated DEL selection. A novel inhibitor 16 was subsequently verified with an inhibitory potency value of 1.55 ± 0.02 μM against SjGST and 2.02 ± 0.20 μM against hGSTM2. Further optimization was carried out via various structure-activity relationship studies. And especially, the co-crystal structure of the compound 16 with the SjGST was unveiled, which clearly demonstrated its binding mode was quite different from the known GSH-like compounds. This new type of probe is likely to play a different role compared with the GSH, which may provide new opportunities to discover more potent GST inhibitors.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minmin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linghua Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jian Zhu
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Weixiao Song
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Aijun Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
14
|
An Y, Lee J, Seo H, Bae S, Kang J, Lee J, Kim J, Nam MH, Song M, Hwang GT. Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology. Org Lett 2023; 25:4445-4450. [PMID: 37310879 DOI: 10.1021/acs.orglett.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.
Collapse
Affiliation(s)
- Yujin An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Seri Bae
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jihee Kang
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Hou R, Xie C, Gui Y, Li G, Li X. Machine-Learning-Based Data Analysis Method for Cell-Based Selection of DNA-Encoded Libraries. ACS OMEGA 2023; 8:19057-19071. [PMID: 37273617 PMCID: PMC10233830 DOI: 10.1021/acsomega.3c02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is a powerful ligand discovery technology that has been widely adopted in the pharmaceutical industry. DEL selections are typically performed with a purified protein target immobilized on a matrix or in solution phase. Recently, DELs have also been used to interrogate the targets in the complex biological environment, such as membrane proteins on live cells. However, due to the complex landscape of the cell surface, the selection inevitably involves significant nonspecific interactions, and the selection data are much noisier than the ones with purified proteins, making reliable hit identification highly challenging. Researchers have developed several approaches to denoise DEL datasets, but it remains unclear whether they are suitable for cell-based DEL selections. Here, we report the proof-of-principle of a new machine-learning (ML)-based approach to process cell-based DEL selection datasets by using a Maximum A Posteriori (MAP) estimation loss function, a probabilistic framework that can account for and quantify uncertainties of noisy data. We applied the approach to a DEL selection dataset, where a library of 7,721,415 compounds was selected against a purified carbonic anhydrase 2 (CA-2) and a cell line expressing the membrane protein carbonic anhydrase 12 (CA-12). The extended-connectivity fingerprint (ECFP)-based regression model using the MAP loss function was able to identify true binders and also reliable structure-activity relationship (SAR) from the noisy cell-based selection datasets. In addition, the regularized enrichment metric (known as MAP enrichment) could also be calculated directly without involving the specific machine-learning model, effectively suppressing low-confidence outliers and enhancing the signal-to-noise ratio. Future applications of this method will focus on de novo ligand discovery from cell-based DEL selections.
Collapse
Affiliation(s)
- Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| |
Collapse
|
16
|
Proj M, Bozovičar K, Hrast M, Frlan R, Gobec S. DNA-encoded library screening on two validated enzymes of the peptidoglycan biosynthetic pathway. Bioorg Med Chem Lett 2022; 73:128915. [DOI: 10.1016/j.bmcl.2022.128915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
|
17
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
18
|
Abstract
Compounds acting through irreversible covalent interactions with therapeutic targets represent an important mechanism of drug action. Here I describe a selection method for DNA-encoded libraries to discover irreversible covalent binders to target proteins. This method offers an enabling tool in drug discovery for therapeutic targets that may be undruggable for reversible inhibition.
Collapse
|
19
|
Shi EX. High-Throughput Binder Confirmation Using Affinity Selection Mass Spectrometry. Methods Mol Biol 2022; 2541:215-223. [PMID: 36083560 DOI: 10.1007/978-1-0716-2545-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity selection mass spectrometry (AS-MS) was recently applied to a new high-throughput binder confirmation (HTBC) platform. The HTBC-AS-MS platform can assess target engagement for hundreds of chemical series per target and is used at GSK to prioritize synthesis decisions for follow-up organic synthesis of DNA-encoded library technology (ELT) hits.
Collapse
Affiliation(s)
- Eric X Shi
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA.
| |
Collapse
|
20
|
DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M pro inhibitors. Proc Natl Acad Sci U S A 2021; 118:2111172118. [PMID: 34426525 PMCID: PMC8433497 DOI: 10.1073/pnas.2111172118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [K i] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (K i = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (K i = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.
Collapse
|
21
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Zhou Y, Shen W, Peng J, Deng Y, Li X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem 2021; 45:116328. [PMID: 34364223 DOI: 10.1016/j.bmc.2021.116328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged to be a powerful ligand screening technology in drug discovery. Recently, we reported a DNA-encoded dynamic library (DEDL) approach that combines the principle of traditional dynamic combinatorial library (DCL) with DEL. DEDL has shown excellent potential in fragment-based ligand discovery with a variety of protein targets. Here, we further tested the utility of DEDL in identifying low molecular weight fragments that are selective for different isoforms or domains of the same protein family. A 10,000-member DEDL was selected against sirtuin-1, 2, and 5 (SIRT1, 2, 5) and the BD1 and BD2 domains of bromodomain 4 (BRD4), respectively. Albeit with modest potency, a series of isoform/domain-selective fragments were identified and the corresponding inhibitors were derived by fragment linking.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Innovation and Technology Commission, Hong Kong Special Administrative Region
| |
Collapse
|
23
|
Daguer JP, Gonse A, Shchukin Y, Farrera-Soler L, Barluenga S, Winssinger N. Dual Bcl-X L /Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorg Med Chem 2021; 44:116282. [PMID: 34216984 DOI: 10.1016/j.bmc.2021.116282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.
Collapse
Affiliation(s)
- Jean-Pierre Daguer
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Arthur Gonse
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yevhenii Shchukin
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
24
|
Shan J, Ling X, Liu J, Wang X, Lu X. DNA-encoded CH functionality via photoredox-mediated hydrogen atom transformation catalysis. Bioorg Med Chem 2021; 42:116234. [PMID: 34098191 DOI: 10.1016/j.bmc.2021.116234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023]
Abstract
We described a mode of catalytic activation that accomplished the α-alkylation of N-Boc saturated heterocycles with DNA-linked acrylamide via photoredox-mediated hydrogen atom transfer (HAT) catalysis. This C(sp3)-C(sp3) bond formation reaction tolerated five-, six- and seven-membered cyclic substrates, substantially streamline synthetic efforts to functionalize the α-position of heterocycles with native CH functional handle. This photoredox catalyzed CH functionalization proceeded in mild DNA-compatible condition, and suited for the construction of DNA-encoded libraries.
Collapse
Affiliation(s)
- Jinming Shan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - JiaXiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
25
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
26
|
Liu S, Qi J, Lu W, Wang X, Lu X. Synthetic Studies toward DNA-Encoded Heterocycles Based on the On-DNA Formation of α,β-Unsaturated Ketones. Org Lett 2021; 23:908-913. [PMID: 33444029 DOI: 10.1021/acs.orglett.0c04118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taking advantage of the diversity-oriented synthesis strategy with α,β-unsaturated carbonyl compounds, we have successfully established the DNA-compatible transformations for various heterocyclic scaffolds. The ring-closure reactions for pyrrole, pyrrolidine, pyrazole, pyrazoline, isoxazoline, pyridine, piperidine, cyclohexenone, and 5,8-dihydroimidazo[1,2-a]pyrimidine were elegantly demonstrated in a DNA-compatible format. These efforts paved the way for preparing DNA-encoded libraries with more extensive chemical space.
Collapse
Affiliation(s)
- Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
27
|
Conole D, H Hunter J, J Waring M. The maturation of DNA encoded libraries: opportunities for new users. Future Med Chem 2021; 13:173-191. [PMID: 33275046 DOI: 10.4155/fmc-2020-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost-effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
28
|
Takemura H, Goto S, Hosoya T, Yoshida S. 2-Azidoacrylamides as compact platforms for efficient modular synthesis. Chem Commun (Camb) 2020; 56:15541-15544. [PMID: 33241832 DOI: 10.1039/d0cc07212e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient methods to assemble modules with compact platform molecules by triazole formations and Michael reactions are disclosed. The good electrophilicity of 2-triazolylacrylamides realized Michael additions using various nucleophiles. An iterative synthesis of a tetrakis(triazole) was accomplished by orthogonal triazole formations and Michael reactions.
Collapse
Affiliation(s)
- Hinano Takemura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
29
|
Kölmel DK, Ratnayake AS, Flanagan ME. Photoredox cross-electrophile coupling in DNA-encoded chemistry. Biochem Biophys Res Commun 2020; 533:201-208. [DOI: 10.1016/j.bbrc.2020.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
|
30
|
Prati L, Bigatti M, Donckele EJ, Neri D, Samain F. On-DNA hit validation methodologies for ligands identified from DNA-encoded chemical libraries. Biochem Biophys Res Commun 2020; 533:235-240. [DOI: 10.1016/j.bbrc.2020.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/16/2023]
|
31
|
Wen H, Ge R, Qu Y, Sun J, Shi X, Cui W, Yan H, Zhang Q, An Y, Su W, Yang H, Kuai L, Satz AL, Peng X. Synthesis of 1,2-Amino Alcohols by Photoredox-Mediated Decarboxylative Coupling of α-Amino Acids and DNA-Conjugated Carbonyls. Org Lett 2020; 22:9484-9489. [DOI: 10.1021/acs.orglett.0c03461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huanan Wen
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yi Qu
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jialin Sun
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Yan
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yulong An
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
32
|
Exploring new targets and chemical space with affinity selection-mass spectrometry. Nat Rev Chem 2020; 5:62-71. [PMID: 37118102 DOI: 10.1038/s41570-020-00229-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Affinity selection-mass spectrometry (AS-MS) is a high-throughput screening (HTS) technique for drug discovery that enables rapid screening of large collections of compounds to identify ligands for a specific biomolecular target. AS-MS is a binding assay that is insensitive to the functional effects a ligand might have, which is important because it lets us identify novel ligands irrespective of their binding site. This approach is gaining popularity, notably due to its role in the emergence of useful agents for targeted protein degradation. This Perspective highlights the use of AS-MS techniques to explore broad chemical space and identify small-molecule ligands for biological targets that have proven challenging to address with other screening paradigms. We present chemical structures of reported AS-MS hits to illustrate the potential of this screening approach to deliver high-quality hits for further optimization. AS-MS has, thus, evolved from being an infrequent alternative to traditional HTS or DNA-encoded library strategies to now firmly establishing itself as a HTS approach for drug discovery.
Collapse
|
33
|
Paul Greengard: A persistent desire to comprehend the brain, and also to fix it. ADVANCES IN PHARMACOLOGY 2020; 90:1-18. [PMID: 33706929 DOI: 10.1016/bs.apha.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard's name is and will remain profoundly associated with Neuroscience, with brain signaling and chemical transmission, with Parkinson's and Alzheimer's diseases, with fundamental discoveries and solving paradoxes, but much less perhaps with drug discovery. This should not be mistaken as disdain. Paul in fact did contemplate developing therapeutic avenues to actually treat brain diseases much more than it is known, perhaps during his entire career, and certainly over the last two decades. As a matter of fact, he did more than contemplate it, he directly and indirectly contributed in the development of treatments for neurological diseases and disorders. Paul's impact on fundamental aspects of the brain has been so gargantuan that any other aspect of Paul's life will have difficulty to shine. It is precisely this less known aspect of Paul's career that will be covered in this review. We will discover how Paul very early on moved away from biophysics to avoid working on nuclear weapons and instead started his career in the pharmacological spheres of a large pharmaceutical company.
Collapse
|
34
|
Abstract
DNA-encoded library (DEL) technology is a novel ligand identification strategy that allows the synthesis and screening of unprecedented chemical diversity more efficiently than conventional methods. However, no reports have been published to systematically study how to increase the diversity and improve the molecular property space that can be covered with DEL. This report describes the development and application of eDESIGNER, an algorithm that comprehensively generates all possible library designs, enumerates and profiles samples from each library and evaluates them to select the libraries to be synthesized. This tool utilizes suitable on-DNA chemistries and available building blocks to design and identify libraries with a pre-defined molecular weight distribution and maximal diversity compared with compound collections from other sources.
Collapse
|
35
|
Rossetti M, Bertucci A, Patiño T, Baranda L, Porchetta A. Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry 2020; 26:9826-9834. [PMID: 32428310 DOI: 10.1002/chem.202001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The fundamental concept of effective molarity is observed in a variety of biological processes, such as protein compartmentalization within organelles, membrane localization and signaling paths. To control molecular encountering and promote effective interactions, nature places biomolecules in specific sites inside the cell in order to generate a high, localized concentration different from the bulk concentration. Inspired by this mechanism, scientists have artificially recreated in the lab the same strategy to actuate and control artificial DNA-based functional systems. Here, it is discussed how harnessing effective molarity has led to the development of a number of proximity-induced strategies, with applications ranging from DNA-templated organic chemistry and catalysis, to biosensing and protein-supported DNA assembly.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorena Baranda
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
36
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA‐Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| |
Collapse
|
37
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA-Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020; 59:14965-14972. [PMID: 32436364 DOI: 10.1002/anie.202005070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 11/11/2022]
Abstract
Dynamic combinatorial libraries (DCLs) is a powerful tool for ligand discovery in biomedical research; however, the application of DCLs has been hampered by their low diversity. Recently, the concept of DNA encoding has been employed in DCLs to create DNA-encoded dynamic libraries (DEDLs); however, all current DEDLs are limited to fragment identification, and a challenging process of fragment linking is required after selection. We report an anchor-directed DEDL approach that can identify full ligand structures from large-scale DEDLs. This method is also able to convert unbiased libraries into focused ones targeting specific protein classes. We demonstrated this method by selecting DEDLs against five proteins, and novel inhibitors were identified for all targets. Notably, several selective BD1/BD2 inhibitors were identified from the selections against bromodomain 4 (BRD4), an important anti-cancer drug target. This work may provide a broadly applicable method for inhibitor discovery.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology China, 1088 Xueyuan Road, Shenzhen, China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
38
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
39
|
Taylor DM, Anglin J, Park S, Ucisik MN, Faver JC, Simmons N, Jin Z, Palaniappan M, Nyshadham P, Li F, Campbell J, Hu L, Sankaran B, Prasad BV, Huang H, Matzuk MM, Palzkill T. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis 2020; 6:1214-1227. [PMID: 32182432 PMCID: PMC7673237 DOI: 10.1021/acsinfecdis.0c00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial resistance to β-lactam antibiotics is largely mediated by β-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. β-Lactamases that hydrolyze the last resort carbapenem class of β-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent β-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency (Ki = 0.53 ± 0.08 μM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with β-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into E. coli. Despite the low in vivo activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify β-lactamase binders and to study β-lactamase inhibition, leading to clinically useful inhibitors.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suhyeorn Park
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melek N. Ucisik
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John C. Faver
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhuang Jin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James Campbell
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Lab, CA, 94720, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbing Huang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
40
|
Zhou Y, Peng J, Shen W, Li X. Psoralen as an interstrand DNA crosslinker in the selection of DNA-Encoded dynamic chemical library. Biochem Biophys Res Commun 2020; 533:215-222. [PMID: 32359876 DOI: 10.1016/j.bbrc.2020.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged as a powerful technology for ligand discovery in biomedical research. Recently, we have developed a DNA-encoded dynamic library (DEDL) approach by incorporating the concept of dynamic combinatorial library (DCL) with DELs. DEDL has shown excellent potential in ligand discovery towards a variety of protein targets. However, the requirement of having a pair of unnatural p-stilbazoles as the interstrand DNA crosslinker has limited the chemical diversity of DEDLs. Here, we replaced p-stilbazole with psoralen (PS) and tested the feasibility of psoralen as the crosslinker in DEDL selection. Since psoralen is commercially available and does not require any special crosslinking partner, existing DELs may be directly used to create high-diversity DEDLs. This study is expected to greatly facilitate the development of DEDLs as a versatile tool in drug discovery.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
41
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
42
|
Wu W, Sun Z, Wang X, Lu X, Dai D. Construction of Thiazole-Fused Dihydropyrans via Formal [4 + 2] Cycloaddition Reaction on DNA. Org Lett 2020; 22:3239-3244. [PMID: 32243186 DOI: 10.1021/acs.orglett.0c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile formal [4 + 2] cycloaddition reaction was developed to synthesize diverse thiazole-fused dihydropyrans (TFDP) on DNA. Mild reaction conditions, broad substrate scope, and compatibility with subsequent enzymatic ligation demonstrated the utility of this methodology in DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Zhen Sun
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xuan Wang
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| |
Collapse
|
43
|
Kölmel DK, Ratnayake AS, Flanagan ME, Tsai MH, Duan C, Song C. Photocatalytic [2 + 2] Cycloaddition in DNA-Encoded Chemistry. Org Lett 2020; 22:2908-2913. [PMID: 32239950 DOI: 10.1021/acs.orglett.0c00574] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The on-DNA synthesis of highly substituted cyclobutanes was achieved through a photocatalytic [2 + 2] cycloaddition reaction in aqueous solution. Readily available DNA-tagged styrene derivatives were reacted with structurally diverse cinnamates in the presence of an iridium-based photocatalyst, Ir(ppy)2(dtbbpy)PF6, to forge two new C(sp3)-C(sp3) bonds. This transformation was demonstrated to have excellent functional group tolerance and allowed for the facile installation of a variety of heteroaromatic substituents on a densely functionalized cyclobutane scaffold.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Anokha S Ratnayake
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mark E Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mei-Hsuan Tsai
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Cong Duan
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Chao Song
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| |
Collapse
|
44
|
Monty OBC, Nyshadham P, Bohren KM, Palaniappan M, Matzuk MM, Young DW, Simmons N. Homogeneous and Functional Group Tolerant Ring-Closing Metathesis for DNA-Encoded Chemical Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:80-88. [PMID: 31913011 PMCID: PMC7014401 DOI: 10.1021/acscombsci.9b00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reaction heterogeneity, poor pH control, and catalyst decomposition in the ring-closing metathesis (RCM) of DNA-chemical conjugates lead to poor yields of the cyclized products. Herein we address these issues with a RCM reaction system that includes a novel aqueous solvent combination to enable reaction homogeneity, an acidic buffer system which masks traditionally problematic functional groups, and a decomposition-resistant catalyst which maximizes conversion to the cyclized product. Additionally, we provide a systematic study of the substrate scope of the on-DNA RCM reaction, a demonstration of its applicability to a single-substrate DNA-encoded chemical library that includes sequencing analysis, and the first successful stapling of an unprotected on-DNA [i, i+4] peptide.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pranavanand Nyshadham
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kurt M. Bohren
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Murugesan Palaniappan
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Nicholas Simmons
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
45
|
Liu W, Deng W, Sun S, Yu C, Su X, Wu A, Yuan Y, Ma Z, Li K, Yang H, Peng X, Dietrich J. A Strategy for the Synthesis of Sulfonamides on DNA. Org Lett 2019; 21:9909-9913. [DOI: 10.1021/acs.orglett.9b03843] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Liu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Wei Deng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Saisai Sun
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Chunyan Yu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xubo Su
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Aliang Wu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Youlang Yuan
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Zhonglin Ma
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Ke Li
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Justin Dietrich
- Research and Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
46
|
Gironda-Martínez A, Neri D, Samain F, Donckele EJ. DNA-Compatible Diazo-Transfer Reaction in Aqueous Media Suitable for DNA-Encoded Chemical Library Synthesis. Org Lett 2019; 21:9555-9558. [DOI: 10.1021/acs.orglett.9b03726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Florent Samain
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | | |
Collapse
|
47
|
Kölmel DK, Meng J, Tsai MH, Que J, Loach RP, Knauber T, Wan J, Flanagan ME. On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water. ACS COMBINATORIAL SCIENCE 2019; 21:588-597. [PMID: 31283168 DOI: 10.1021/acscombsci.9b00076] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new catalytic manifold that merges photoredox with nickel catalysis in aqueous solution is presented. Specifically, the combination of a highly active, yet air-stable, nickel precatalyst with a new electron-deficient pyridyl carboxamidine ligand was key to the development of a water-compatible nickel catalysis platform, which is a crucial requirement for the preparation of DNA-encoded libraries (DELs). Together with an iridium-based photocatalyst and a powerful light source, this dual catalysis approach enabled the efficient decarboxylative arylation of α-amino acids with DNA-tagged aryl halides. This C(sp2)-C(sp3) coupling tolerates a wide variety of functional groups on both the amino acid and the aryl halide substrates. Due to the mild and DNA-compatible reaction conditions, the presented transformation holds great potential for the construction of DELs. This was further evidenced by showing that well plate-compatible LED arrays can serve as competent light sources to facilitate parallel synthesis. Lastly, we demonstrate that this procedure can serve as a blueprint toward the adaptation of other established nickel metallaphotoredox transformations to the idiosyncratic requirements of a DEL.
Collapse
Affiliation(s)
- Dominik K. Kölmel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jiang Meng
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Mei-Hsuan Tsai
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Jiamin Que
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Richard P. Loach
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jinqiao Wan
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Mark E. Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
48
|
Gerry CJ, Wawer MJ, Clemons PA, Schreiber SL. DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. J Am Chem Soc 2019; 141:10225-10235. [PMID: 31184885 DOI: 10.1021/jacs.9b01203] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is challenging to incorporate stereochemical diversity and topographic complexity into DNA-encoded libraries (DELs) because DEL syntheses cannot fully exploit the capabilities of modern synthetic organic chemistry. Here, we describe the design, construction, and validation of DOS-DEL-1, a library of 107 616 DNA-barcoded chiral 2,3-disubsituted azetidines and pyrrolidines. We used stereospecific C-H arylation chemistry to furnish complex scaffolds primed for DEL synthesis, and we developed an improved on-DNA Suzuki reaction to maximize library quality. We then studied both the structural diversity of the library and the physicochemical properties of individual compounds using Tanimoto multifusion similarity analysis, among other techniques. These analyses revealed not only that most DOS-DEL-1 members have "drug-like" properties, but also that the library more closely resembles compound collections derived from diversity synthesis than those from other sources (e.g., commercial vendors). Finally, we performed validation screens against horseradish peroxidase and carbonic anhydrase IX, and we developed a novel, Poisson-based statistical framework to analyze the results. A set of assay positives were successfully translated into potent carbonic anhydrase inhibitors (IC50 = 20.1-68.7 nM), which confirmed the success of the synthesis and screening procedures. These results establish a strategy to synthesize DELs with scaffold-based stereochemical diversity and complexity that does not require the development of novel DNA-compatible chemistry.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.,Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.,Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
49
|
Zhao G, Huang Y, Zhou Y, Li Y, Li X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov 2019; 14:735-753. [DOI: 10.1080/17460441.2019.1614559] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guixian Zhao
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yiran Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yizhou Li
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Dickson P, Kodadek T. Chemical composition of DNA-encoded libraries, past present and future. Org Biomol Chem 2019; 17:4676-4688. [PMID: 31017595 PMCID: PMC6520149 DOI: 10.1039/c9ob00581a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries represent an exciting and powerful modality for high-throughput screening. In this article, we highlight recent important advances in this field and also suggest some important directions that would make the technology even more powerful.
Collapse
Affiliation(s)
- Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|