1
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Srivastava I, Misra SK, Bangru S, Boateng KA, Soares JANT, Schwartz-Duval AS, Kalsotra A, Pan D. Complementary Oligonucleotide Conjugated Multicolor Carbon Dots for Intracellular Recognition of Biological Events. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16137-16149. [PMID: 32182420 PMCID: PMC7982005 DOI: 10.1021/acsami.0c02463] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
By using complementary DNA sequences as surface ligands, we selectively allow two individual diffusing "dual-color" carbon dots to interact in situ and in vitro. Spontaneous nanoscale oxidation of surface-abundant nitroso-/nitro-functionalities leads to two distinctly colored carbon dots (CD) which are isolated by polarity driven chromatographic separation. Green- and red-emitting carbon dots (gCD and rCD) were decorated by complementary single-stranded DNAs which produce a marked increase in the fluorescence emission of the respective carbon dots. Mutual colloidal interactions are achieved through hybridization of complementary DNA base pairs attached to the respective particles, resulting in quenching of their photoluminescence. The observed post-hybridization quenching is presumably due to a combined effect from an aggregation of CDs post duplex DNA formation and close proximity of multicolored CDs, having overlapped spectral regions leading to a nonradiative energy transfer process possibly released as heat. This strategy may contribute to the rational design of mutually interacting carbon dots for a better control over the resulting assembly structure for studying different biological phenomenon including molecular cytogenetics. One of the newly synthesized CDs was successfully used to image intracellular location of GAPDH mRNA using an event of change in fluorescence intensity (FI) of CDs. This selectivity was introduced by conjugating an oligonucleotide harboring complementary sequence to GAPDH mRNA. FI of this conjugated carbon dot, rCD-GAPDH, was also found to decrease in the presence of Ca2+, varied in relation to H+ concentrations, and could serve as a tool to quantify the intracellular concentrations of Ca2+ and pH value (H+) which can give important information about cell survival. Therefore, CD-oligonucleotide conjugates could serve as efficient probes for cellular events and interventions.
Collapse
Affiliation(s)
- Indrajit Srivastava
- Departments of Bioengineering, Materials Science and Engineering and Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Santosh K. Misra
- Departments of Bioengineering, Materials Science and Engineering and Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center @ Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kingsley A. Boateng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Julio A. N. T. Soares
- Frederick Seitz Materials Research Laboratories Central Facilities, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aaron S. Schwartz-Duval
- Departments of Bioengineering, Materials Science and Engineering and Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Auinash Kalsotra
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center @ Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering and Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, 61801, USA
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, Maryland, 21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, Maryland, 21250, United States
| |
Collapse
|
3
|
Fang X, Ju B, Liu Z, Wang F, Xi G, Sun Z, Chen H, Sui C, Wang M, Wu C. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging. Chembiochem 2018; 20:521-525. [DOI: 10.1002/cbic.201800438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaofeng Fang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
- College of Life SciencesNankai University Tianjin 300071 China
| | - Bo Ju
- College of ChemistryJilin University Changchun 130012 China
| | - Zhihe Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Fei Wang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Guan Xi
- College of ChemistryJilin University Changchun 130012 China
| | - Zezhou Sun
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Haobin Chen
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Changxiang Sui
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Mingxue Wang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|