1
|
Aktar A, Bhuia S, Chowdhury R, Ferdous J, Khatun M, Hasan SA, Mia E, Hasan R, Islam MT. An Insight of Plant Source, Toxicological Profile, and Pharmacological Activities of Iridoid Loganic Acid: A ComprehensiveReview. Chem Biodivers 2024; 21:e202400874. [PMID: 39113595 DOI: 10.1002/cbdv.202400874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024]
Abstract
This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| |
Collapse
|
2
|
Li N, Li C, Zheng A, Liu W, Shi Y, Jiang M, Xiao Y, Qiu Z, Qiu Y, Jia A. Ultra-high-performance liquid chromatography-mass spectrometry combined with molecular docking and molecular dynamics simulation reveals the source of bitterness in the traditional Chinese medicine formula Runchang-Tongbian. Biomed Chromatogr 2024; 38:e5929. [PMID: 38881323 DOI: 10.1002/bmc.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
The Runchang-Tongbian (RCTB) formula is a traditional Chinese medicine (TCM) formula consisting of four herbs, namely Cannabis Fructus (Huomaren), Rehmanniae Radix (Dihuang), Atractylodis Macrocephalae Rhizoma (Baizhu), and Aurantii Fructus (Zhiqiao). It is widely used clinically because of its beneficial effect on constipation. However, its strong bitter taste leads to poor patient compliance. The bitter components of TCM compounds are complex and numerous, and inhibiting the bitter taste of TCM has become a major clinical challenge. Here, we use ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) and high-resolution mass spectrometry to identify 59 chemical components in the TCM compound RCTB formula. Next, four bitter taste receptors, TAS2R39, TAS2R14, TAS2R7, and TAS2R5, which are tightly bound to the compounds in RCTB, were screened as molecular docking receptors using the BitterX database. The top-three-scoring receptor-small-molecule complexes for each of the four receptors were selected for molecular dynamics simulation. Finally, seven bitter components were identified, namely six flavonoids (rhoifolin, naringin, poncirin, diosmin, didymin, and narirutin) and one phenylpropanoid (purpureaside C). Thus, we proposed a new method for identifying the bitter components in TCM compounds, which provides a theoretical reference for bitter taste inhibition in TCM compounds.
Collapse
Affiliation(s)
- Na Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunyu Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Aizhu Zheng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weipeng Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuwen Shi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mengcheng Jiang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yusheng Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ailing Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Jędrzejewski M, Szeleszczuk Ł, Pisklak DM. The Reaction Mechanism of Loganic Acid Methyltransferase: A Molecular Dynamics Simulation and Quantum Mechanics Study. Molecules 2023; 28:5767. [PMID: 37570737 PMCID: PMC10420828 DOI: 10.3390/molecules28155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, the catalytic mechanism of loganic acid methyltransferase was characterized at the molecular level. This enzyme is responsible for the biosynthesis of loganin, which is a precursor for a wide range of biologically active compounds. Due to the lack of detailed knowledge about this process, the aim of this study was the analysis of the structure and activity of loganic acid methyltransferase. Using molecular dynamics (MD) simulations, the native structure of the complex was reconstructed, and the key interactions between the substrate and loganic acid methyltransferase were investigated. Subsequently, the structures obtained from the simulations were used for quantum chemical (QM) calculations. The QM calculations allowed for the exploration of the energetic aspects of the reaction and the characterization of its mechanism. The results obtained in this study suggest the existence of two patterns of interactions between loganic acid methyltransferase and the substrate. The role of residue Q38 in the binding and orientation of the substrate's carboxyl group was also demonstrated. By employing a combined MD and QM approach, the experimental reaction barrier was reproduced, and detailed insights into the enzymatic activity mechanism of loganic acid methyltransferase were revealed.
Collapse
Affiliation(s)
| | | | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; (M.J.); (Ł.S.)
| |
Collapse
|
4
|
Ren R, Zhang S, Guo T, Long J, Peng C. Genome-wide identification and expression pattern analysis of the SABATH gene family in Neolamarckia cadamba. FORESTRY RESEARCH 2023; 3:13. [PMID: 39526264 PMCID: PMC11524262 DOI: 10.48130/fr-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 11/16/2024]
Abstract
Plant SABATH methyltransferases are a class of enzymes that catalyze the transfer of the methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group or the nitrogen group of the substrate to form small molecule methyl esters or N-methylated compounds, which are involved in various secondary metabolite biosynthesis and have important impacts on plant growth, development, and defense reactions. We previously reported the monoterpenoid indole alkaloids (MIAs) cadambine biosynthetic pathway in Neolamarckia cadamba, a woody tree species that provides an important traditional medicine widely used to treat diseases such as diabetes, leprosy, and cancer in Southeast Asia. However, the functions of NcSABATHs in cadambine biosynthesis remain unclear. In this study, 23 NcSABATHs were identified and found to be distributed on 12 of the total 22 chromosomes. Gene structure, conserved motifs, and phylogenetic analysis showed that NcSABATHs could be divided into three groups. According to cis-element analysis, the NcSABATH promoters contained a large number of elements involved in light, plant hormone, and environmental stress responses, as well as binding sites for the BBR-BPC, DOF, and MYB transcription factor families. Based on RNA-seq data and qRT-PCR analysis, the NcSABATH genes exhibited diverse tissue expression patterns. Furthermore, NcSABATH7/22, which clustered with LAMT in the same clade, were both up-regulated under MeJA treatment. The correlation analysis between gene expression and cadambine content showed that NcSABATH7 potentially participated in cadambine biosynthesis. Taken together, our study not only enhanced our understanding of SABATH in N. cadamba but also identified potential candidate genes involved in cadambine biosynthesis.
Collapse
Affiliation(s)
- Rongrong Ren
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Suxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ting Guo
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changcao Peng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Lin Z, Hu Z, Zhou L, Liu B, Huang X, Deng Z, Qu X. A large conserved family of small-molecule carboxyl methyltransferases identified from microorganisms. Proc Natl Acad Sci U S A 2023; 120:e2301389120. [PMID: 37155856 PMCID: PMC10193983 DOI: 10.1073/pnas.2301389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Small-molecule carboxyl methyltransferases (CbMTs) constitute a small proportion of the reported methyltransferases, but they have received extensive attention due to their important physiological functions. Most of the small-molecule CbMTs isolated to date originate from plants and are members of the SABATH family. In this study, we identified a type of CbMT (OPCMT) from a group of Mycobacteria, which has a distinct catalytic mechanism from the SABATH methyltransferases. The enzyme contains a large hydrophobic substrate-binding pocket (~400 Å3) and utilizes two conserved residues, Thr20 and Try194, to retain the substrate in a favorable orientation for catalytic transmethylation. The OPCMT_like MTs have a broad substrate scope and can accept diverse carboxylic acids enabling efficient production of methyl esters. They are widely (more than 10,000) distributed in microorganisms, including several well-known pathogens, whereas no related genes are found in humans. In vivo experiments implied that the OPCMT_like MTs was indispensable for M. neoaurum, suggesting that these proteins have important physiological functions.
Collapse
Affiliation(s)
- Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiwei Hu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Linjun Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education & Abiochem Biotech Joint Center for Pharmaceutical Innovation, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Benben Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaowei Huang
- Department of Gastroenterology and Hepatology, Tongji Hospital affiliated to Huazhong University of Science and Technology, Wuhan430071, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education & Abiochem Biotech Joint Center for Pharmaceutical Innovation, School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| |
Collapse
|
6
|
Wang YJ, Tain T, Yu JY, Li J, Xu B, Chen J, D’Auria J, Huang JP, Huang SX. Genomic and structural basis for evolution of tropane alkaloid biosynthesis. Proc Natl Acad Sci U S A 2023; 120:e2302448120. [PMID: 37068250 PMCID: PMC10151470 DOI: 10.1073/pnas.2302448120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing Erythroxylum novogranatense (Erythroxylaceae, rosids clade) and hyoscyamine-producing Anisodus acutangulus (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/N-methyltransferase (EnSPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of CYP81AN15 through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.
Collapse
Affiliation(s)
- Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| | - Tian Tain
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jia-Yi Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Bingyan Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming650223, China
| | - John C. D’Auria
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research Ortsteil Gatersleben, SeelandD-06466, Germany
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming650201, China
| |
Collapse
|
7
|
Hao X, Wang C, Zhou W, Ruan Q, Xie C, Yang Y, Xiao C, Cai Y, Wang J, Wang Y, Zhang X, Maoz I, Kai G. OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:133-149. [PMID: 36194508 DOI: 10.1111/jipb.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Camptothecin (CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. Ophiorrhiza pumila, the herbaceous plant from the Rubiaceae family, has emerged as a model plant for studying camptothecin biosynthesis and regulation. In this study, a high-quality reference genome of O. pumila with estimated size of ~456.90 Mb was reported, and the accumulation level of camptothecin in roots was higher than that in stems and leaves. Based on its spatial distribution in the plant, we examined gene functions and expression by combining genomics with transcriptomic analysis. Two loganic acid O-methyltransferase (OpLAMTs) were identified in strictosidine-producing plant O. pumila, and enzyme catalysis assays showed that OpLAMT1 and not OpLAMT2 could convert loganic acid into loganin. Further knock-out of OpLAMT1 expression led to the elimination of loganin and camptothecin accumulation in O. pumila hairy roots. Four key residues were identified in OpLAMT1 protein crucial for the catalytic activity of loganic acid to loganin. By co-expression network, we identified a NAC transcription factor, OpNAC1, as a candidate gene for regulating camptothecin biosynthesis. Transgenic hairy roots and biochemical assays demonstrated that OpNAC1 suppressed OpLAMT1 expression. Here, we reported on two camptothecin metabolic engineering strategies paving the road for industrial-scale production of camptothecin in CPT-producing plants.
Collapse
Affiliation(s)
- Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingyan Ruan
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenhong Xie
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinkai Yang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengyu Xiao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Cai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
8
|
Ward LC, McCue HV, Rigden DJ, Kershaw NM, Ashbrook C, Hatton H, Goulding E, Johnson JR, Carnell AJ. Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis. Angew Chem Int Ed Engl 2022; 61:e202117324. [PMID: 35138660 PMCID: PMC9307002 DOI: 10.1002/anie.202117324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
Carboxyl methyltransferase (CMT) enzymes catalyse the biomethylation of carboxylic acids under aqueous conditions and have potential for use in synthetic enzyme cascades. Herein we report that the enzyme FtpM from Aspergillus fumigatus can methylate a broad range of aromatic mono- and dicarboxylic acids in good to excellent conversions. The enzyme shows high regioselectivity on its natural substrate fumaryl-l-tyrosine, trans, trans-muconic acid and a number of the dicarboxylic acids tested. Dicarboxylic acids are generally better substrates than monocarboxylic acids, although some substituents are able to compensate for the absence of a second acid group. For dicarboxylic acids, the second methylation shows strong pH dependency with an optimum at pH 5.5-6. Potential for application in industrial biotechnology was demonstrated in a cascade for the production of a bioplastics precursor (FDME) from bioderived 5-hydroxymethylfurfural (HMF).
Collapse
Affiliation(s)
- Lucy C. Ward
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hannah V. McCue
- GeneMill, Institute of Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Neil M. Kershaw
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Chloe Ashbrook
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Harry Hatton
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Ellie Goulding
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - James R. Johnson
- GeneMill, Institute of Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Andrew J. Carnell
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
9
|
Ward LC, McCue HV, Rigden DJ, Kershaw NM, Ashbrook C, Hatton H, Goulding E, Johnson JR, Carnell AJ. Carboxyl Methyltransferase Catalysed Formation of Mono‐ and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy C. Ward
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Hannah V. McCue
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Neil M. Kershaw
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Chloe Ashbrook
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Harry Hatton
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Ellie Goulding
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - James R. Johnson
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB UK
| | - Andrew J. Carnell
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
10
|
Dubs NM, Davis BR, de Brito V, Colebrook KC, Tiefel IJ, Nakayama MB, Huang R, Ledvina AE, Hack SJ, Inkelaar B, Martins TR, Aartila SM, Albritton KS, Almuhanna S, Arnoldi RJ, Austin CK, Battle AC, Begeman GR, Bickings CM, Bradfield JT, Branch EC, Conti EP, Cooley B, Dotson NM, Evans CJ, Fries AS, Gilbert IG, Hillier WD, Huang P, Hyde KW, Jevtovic F, Johnson MC, Keeler JL, Lam A, Leach KM, Livsey JD, Lo JT, Loney KR, Martin NW, Mazahem AS, Mokris AN, Nichols DM, Ojha R, Okorafor NN, Paris JR, Reboucas TF, Sant'Anna PB, Seitz MR, Seymour NR, Slaski LK, Stemaly SO, Ulrich BR, Van Meter EN, Young ML, Barkman TJ. A collaborative classroom investigation of the evolution of SABATH methyltransferase substrate preference shifts over 120 million years of flowering plant history. Mol Biol Evol 2022; 39:6503504. [PMID: 35021222 PMCID: PMC8890502 DOI: 10.1093/molbev/msac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the “tip of the iceberg” since thousands of sequences remain uncharacterized in this enzyme family alone.
Collapse
Affiliation(s)
- Nicole M Dubs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Breck R Davis
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Victor de Brito
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kate C Colebrook
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ian J Tiefel
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Madison B Nakayama
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ruiqi Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Audrey E Ledvina
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Samantha J Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Brent Inkelaar
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Talline R Martins
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sarah M Aartila
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kelli S Albritton
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sarah Almuhanna
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ryan J Arnoldi
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Clara K Austin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber C Battle
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Gregory R Begeman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Caitlin M Bickings
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jonathon T Bradfield
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Eric C Branch
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Eric P Conti
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Breana Cooley
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nicole M Dotson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Cheyone J Evans
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber S Fries
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ivan G Gilbert
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weston D Hillier
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Pornkamol Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kaitlin W Hyde
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Filip Jevtovic
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Mark C Johnson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Julie L Keeler
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Albert Lam
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kyle M Leach
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jeremy D Livsey
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jonathan T Lo
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kevin R Loney
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nich W Martin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber S Mazahem
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Aurora N Mokris
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Destiny M Nichols
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ruchi Ojha
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nnanna N Okorafor
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Joshua R Paris
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | | | | | - Mathew R Seitz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nathan R Seymour
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Lila K Slaski
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Stephen O Stemaly
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Benjamin R Ulrich
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Emile N Van Meter
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Meghan L Young
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| |
Collapse
|
11
|
Giri GR, Saxena P. Mycobacterial MMAR_2193 catalyzes O-methylation of diverse polyketide cores. PLoS One 2022; 17:e0262241. [PMID: 34986163 PMCID: PMC8730385 DOI: 10.1371/journal.pone.0262241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
O-methylation of small molecules is a common modification widely present in most organisms. Type III polyketides undergo O-methylation at hydroxyl end to play a wide spectrum of roles in bacteria, plants, algae, and fungi. Mycobacterium marinum harbours a distinctive genomic cluster with a type III pks gene and genes for several polyketide modifiers including a methyltransferase gene, mmar_2193. This study reports functional analyses of MMAR_2193 and reveals multi-methylating potential of the protein. Comparative sequence analyses revealed conservation of catalytically important motifs in MMAR_2193 protein. Homology-based structure-function and molecular docking studies suggested type III polyketide cores as possible substrates for MMAR_2193 catalysis. In vitro enzymatic characterization revealed the capability of MMAR_2193 protein to utilize diverse polyphenolic substrates to methylate several hydroxyl positions on a single substrate molecule. High-resolution mass spectrometric analyses identified multi-methylations of type III polyketides in cell-free reconstitution assays. Notably, our metabolomics analyses identified some of these methylated molecules in biofilms of wild type Mycobacterium marinum. This study characterizes a novel mycobacterial O-methyltransferase protein with multi-methylating enzymatic ability that could be exploited to generate a palette of structurally distinct bioactive molecules.
Collapse
Affiliation(s)
- Gorkha Raj Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
12
|
Physicochemical Characterization of the Loganic Acid-IR, Raman, UV-Vis and Luminescence Spectra Analyzed in Terms of Quantum Chemical DFT Approach. Molecules 2021; 26:molecules26227027. [PMID: 34834118 PMCID: PMC8622970 DOI: 10.3390/molecules26227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular structure and vibrational spectra of loganic acid (LA) were calculated using B3LYP density functional theory, the 6–311G(2d,2p) basis set, and the GAUSSIAN 03W program. The solid-phase FTIR and FT-Raman spectra of LA were recorded in the 100–4000 cm−1 range. The assignment of the observed bands to the respective normal modes was proposed on the basis of the PED approach. The stability of the LA molecule was considered using NBO analysis. The electron absorption and luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO, and LUMO electron energies. The Stokes shift derived from the optical spectra was 20,915 cm−1.
Collapse
|
13
|
Yang M, Wang Q, Liu Y, Hao X, Wang C, Liang Y, Chen J, Xiao Y, Kai G. Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol 2021; 19:122. [PMID: 34134716 PMCID: PMC8207662 DOI: 10.1186/s12915-021-01051-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anticancer drug camptothecin (CPT), first isolated from Camptotheca acuminata, was subsequently discovered in unrelated plants, including Ophiorrhiza pumila. Unlike known monoterpene indole alkaloids, CPT in C. acuminata is biosynthesized via the key intermediate strictosidinic acid, but how O. pumila synthesizes CPT has not been determined. RESULTS In this study, we used nontargeted metabolite profiling to show that 3α-(S)-strictosidine and 3-(S), 21-(S)-strictosidinic acid coexist in O. pumila. After identifying the enzymes OpLAMT, OpSLS, and OpSTR as participants in CPT biosynthesis, we compared these enzymes to their homologues from two other representative CPT-producing plants, C. acuminata and Nothapodytes nimmoniana, to elucidate their phylogenetic relationship. Finally, using labelled intermediates to resolve the CPT biosynthesis pathway in O. pumila, we showed that 3α-(S)-strictosidine, not 3-(S), 21-(S)-strictosidinic acid, is the exclusive intermediate in CPT biosynthesis. CONCLUSIONS In our study, we found that O. pumila, another representative CPT-producing plant, exhibits metabolite diversity in its central intermediates consisting of both 3-(S), 21-(S)-strictosidinic acid and 3α-(S)-strictosidine and utilizes 3α-(S)-strictosidine as the exclusive intermediate in the CPT biosynthetic pathway, which differs from C. acuminata. Our results show that enzymes likely to be involved in CPT biosynthesis in O. pumila, C. acuminata, and N. nimmoniana have evolved divergently. Overall, our new data regarding CPT biosynthesis in O. pumila suggest evolutionary divergence in CPT-producing plants. These results shed new light on CPT biosynthesis and pave the way towards its industrial production through enzymatic or metabolic engineering approaches.
Collapse
Affiliation(s)
- Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Core Facility Centre, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Qiang Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Yining Liu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Core Facility Centre, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| | - Yuchen Liang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Core Facility Centre, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jianbo Chen
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Core Facility Centre, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
14
|
Kang M, Fu R, Zhang P, Lou S, Yang X, Chen Y, Ma T, Zhang Y, Xi Z, Liu J. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nat Commun 2021; 12:3531. [PMID: 34112794 PMCID: PMC8192753 DOI: 10.1038/s41467-021-23872-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Camptothecin and its derivatives are widely used for treating malignant tumors. Previous studies revealed only a limited number of candidate genes for camptothecin biosynthesis in Camptotheca acuminata, and it is still poorly understood how its biosynthesis of camptothecin has evolved. Here, we report a high-quality, chromosome-level C. acuminata genome assembly. We find that C. acuminata experiences an independent whole-genome duplication and numerous genes derive from it are related to camptothecin biosynthesis. Comparing with Catharanthus roseus, the loganic acid O-methyltransferase (LAMT) in C. acuminata fails to convert loganic acid into loganin. Instead, two secologanic acid synthases (SLASs) convert loganic acid to secologanic acid. The functional divergence of the LAMT gene and positive evolution of two SLAS genes, therefore, both contribute greatly to the camptothecin biosynthesis in C. acuminata. Our results emphasize the importance of high-quality genome assembly in identifying genetic changes in the evolutionary origin of a secondary metabolite.
Collapse
Affiliation(s)
- Minghui Kang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pingyu Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shangling Lou
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuchen Yang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ward LC, McCue HV, Carnell AJ. Carboxyl Methyltransferases: Natural Functions and Potential Applications in Industrial Biotechnology. ChemCatChem 2020. [DOI: 10.1002/cctc.202001316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lucy C. Ward
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Hannah V. McCue
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB United Kingdom
| | - Andrew J. Carnell
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| |
Collapse
|