1
|
Kragelj J, Ghosh R, Xiao Y, Dumarieh R, Lagasca D, Krishna S, Frederick KK. Spatially resolved DNP-assisted NMR illuminates the conformational ensemble of α-synuclein in intact viable cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.24.563877. [PMID: 37961511 PMCID: PMC10634803 DOI: 10.1101/2023.10.24.563877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form is adopted inside cells has been indirect. DNP-assisted solid state NMR on frozen cellular samples can report on protein conformations inside cells. Moreover, by controlling the distribution of the DNP polarization agent throughout the cellular biomass, such experiments can provide quantitative information upon the entire structural ensemble or provide information about spatially resolved sub-populations. Using DNP-assisted magic angle spinning (MAS) NMR we establish that purified α-syn in the membrane-associated and intrinsically disordered forms have distinguishable spectra. We then introduced isotopically labeled monomeric α-syn into cells. When the DNP polarization agent is dispersed homogenously throughout the cell, we found that a minority of the α-syn inside cells adopted a highly α-helical rich conformation. When the DNP polarization agent is peripherally localized, we found that the α-helical rich conformation predominates. Thus, we provide direct evidence that α-helix rich conformations of α-syn are adopted near the cellular periphery inside cells under physiological conditions. Moreover, we demonstrate how selectively altering the spatial distribution of the DNP polarization agent can be a powerful tool to observe spatially distinct structural ensembles. This approach paves the way for more nuanced investigations into the conformations that proteins adopt in different areas of the cell.
Collapse
Affiliation(s)
- Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
2
|
Šoltésová M, Pinon AC, Aussenac F, Schlagnitweit J, Reiter C, Purea A, Melzi R, Engelke F, Martin D, Krambeck S, Biscans A, Kay E, Emsley L, Schantz S. 1H- 19F cross-polarization magic angle spinning dynamic nuclear polarization NMR investigation of advanced pharmaceutical formulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 371:107827. [PMID: 39793183 DOI: 10.1016/j.jmr.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
A new 3.2 mm 1H-19F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for 1H excitation and 13C or 19F detection to enable acquisition of 1H-19F cross-polarization (CP) MAS experiments, direct-detected 19F spectra with proton decoupling, and acquisition on 13C with simultaneous double decoupling on the 1H and 19F channels as well as 1H-19F-13C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs). Included in this study are also small interfering RNAs (siRNAs) for therapeutic targeting of peptidyl-prolyl cis-trans isomerase B (Ppib) mRNA. We demonstrate that 1H-19F CP MAS experiments performed on the new HFX probe represent a notable advantage over usually acquired direct-detected 19F experiments. The indirect 19F DNP enhancement εon/off(19F) = 26 was obtained via 1H-19F CP for the pure API impregnated with DNP solution, with an overall 30-fold sensitivity gain compared to the direct-detected 19F experiment under similar conditions. DNP enhancement value of εon/off(19F) = 42 was obtained via 1H-19F CP for the polymeric nanoparticle suspension and εon/off(19F) ≈ 150 were obtained for two different siRNAs in frozen DNP solution.
Collapse
Affiliation(s)
- Mária Šoltésová
- Swedish NMR Centre, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Arthur C Pinon
- Swedish NMR Centre, University of Gothenburg, 413 90 Gothenburg, Sweden.
| | | | - Judith Schlagnitweit
- Centre de RMN à Très Hauts Champs de Lyon, UMR5082 CNRS/ENS-Lyon/Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | - Dave Martin
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Stefanie Krambeck
- Cell, Gene and RNA Therapy, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Annabelle Biscans
- Cell, Gene and RNA Therapy, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Emma Kay
- Assays, Profiling and Cell Sciences, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Rao Y, Berruyer P, Bertarello A, Venkatesh A, Mazzanti M, Emsley L. An Efficient and Stable Polarizing Agent for In-Cell Magic-Angle Spinning Dynamic Nuclear Polarization NMR Spectroscopy. J Phys Chem Lett 2024; 15:11601-11607. [PMID: 39528911 PMCID: PMC11587084 DOI: 10.1021/acs.jpclett.4c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy would be a method of choice to follow biochemical events in cells because it can analyze molecules in complex environments. However, the intrinsically low sensitivity of NMR makes in-cell measurements challenging. Dynamic Nuclear Polarization (DNP) has emerged as a method to circumvent this limitation, but most polarizing agents developed for DNP are unstable in reducing cellular environments. Here, we introduce the use of Gd(III)-based DNP polarizing agents for in-cell NMR spectroscopy. Specifically, we show their persistent stability in cellular formulations, and we investigate the DNP performance of the Gd(III)-based complex [Gd(tpatcn)] in human embryonic kidney cell lysates and intact cells. For cell lysates, DNP enhancements up to -27 are obtained on the cellular signals, reproducible even after storage at room temperature for days. Mixing the [Gd(tpatcn)] solution with intact cells enables the observation of cellular signals with DNP, and DNP enhancement factors of about -40 are achieved.
Collapse
Affiliation(s)
- Yu Rao
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Bertarello
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
5
|
Venkatesh A, Casano G, Wei R, Rao Y, Lingua H, Karoui H, Yulikov M, Ouari O, Emsley L. Rational Design of Dinitroxide Polarizing Agents for Dynamic Nuclear Polarization to Enhance Overall NMR Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202317337. [PMID: 38193258 DOI: 10.1002/anie.202317337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Current address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Ran Wei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Kent JE, Ackermann BE, Debelouchina GT, Marassi FM. Dynamic Nuclear Polarization Illuminates Key Protein-Lipid Interactions in the Native Bacterial Cell Envelope. Biochemistry 2023; 62:2252-2256. [PMID: 37459255 PMCID: PMC11019665 DOI: 10.1021/acs.biochem.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Elucidating the structure and interactions of proteins in native environments is a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of Yersinia pestis. We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.
Collapse
Affiliation(s)
- James E Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bryce E Ackermann
- Department Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Galia T Debelouchina
- Department Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548, United States
| |
Collapse
|
7
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
8
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Complex Formation of an RNA Aptamer with a Part of HIV-1 Tat through Induction of Base Triples in Living Human Cells Proven by In-Cell NMR. Int J Mol Sci 2023; 24:ijms24109069. [PMID: 37240414 DOI: 10.3390/ijms24109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
An RNA aptamer that strongly binds to a target molecule has the potential to be a nucleic acid drug inside living human cells. To investigate and improve this potential, it is critical to elucidate the structure and interaction of RNA aptamers inside living cells. We examined an RNA aptamer for HIV-1 Tat (TA), which had been found to trap Tat and repress its function in living human cells. We first used in vitro NMR to examine the interaction between TA and a part of Tat containing the binding site for trans-activation response element (TAR). It was revealed that two U-A∗U base triples are formed in TA upon binding of Tat. This was assumed to be critical for strong binding. Then, TA in complex with a part of Tat was incorporated into living human cells. The presence of two U-A∗U base triples was also revealed for the complex in living human cells by in-cell NMR. Thus, the activity of TA in living human cells was rationally elucidated by in-cell NMR.
Collapse
Grants
- 20H03192, 20K21477, 21H05519, and 22H05596 to M. K., 17H05878 and 20K06524 to T. N., and 19K16054 and 22K05314 to Y. Y.) Japan Society for the Promotion of Science
- (20fk0410027 and 23fk0410048 to M. K., and 22ak0101097 to T. N.) Japan Agency for Medical Research and Development
- NMRCR-22-05 to T. N. The Collaborative Research Program of the Institute for Protein Research, Osaka University
- to Y.Y The Collaboration Program of the Laboratory for Complex Energy Processes, Institute of Ad-vanced Energy, Kyoto University
- 235181 to O.E Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Omar Eladl
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Keiko Kondo
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Masato Katahira
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Kent JE, Ackermann BE, Debelouchina GT, Marassi FM. Dynamic nuclear polarization illuminates key protein-lipid interactions in the native bacterial cell envelope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541325. [PMID: 37292594 PMCID: PMC10245764 DOI: 10.1101/2023.05.18.541325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elucidating the structure and interactions of proteins in native environments has become a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of Yersinia pestis . We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.
Collapse
|
10
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Detection of interaction between an RNA aptamer and its target compound in living human cells using 2D in-cell NMR. Chem Commun (Camb) 2022; 59:102-105. [PMID: 36475447 DOI: 10.1039/d2cc05576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduced an isotopically labeled RNA aptamer for HIV-1 Tat prepared by E. coli transcription into HeLa cells. We successfully recorded the first heteronuclear 2D in-cell NMR spectra, which makes it possible to study the interaction of the RNA aptamer with argininamide in living human cells with higher resolution.
Collapse
Affiliation(s)
- Omar Eladl
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan.,Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Ackermann BE, Lim BJ, Elathram N, Narayanan S, Debelouchina GT. A Comparative Study of Nitroxide-Based Biradicals for Dynamic Nuclear Polarization in Cellular Environments. Chembiochem 2022; 23:e202200577. [PMID: 36250276 PMCID: PMC9856215 DOI: 10.1002/cbic.202200577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/15/2022] [Indexed: 01/25/2023]
Abstract
Dynamic nuclear polarization (DNP) is a powerful tool to enhance the NMR signals of molecules by transferring polarization from unpaired electron spins to nuclei through microwave irradiation. The resulting signal enhancements can enable the analysis of samples that have previously been intractable by NMR spectroscopy, including proteins, nucleic acids, and metabolites in cells. To carry out DNP, the sample is doped with a polarization agent, a biradical containing two nitroxide moieties. DNP applications in cells, however, present significant challenges as nitroxides are often susceptible to the reducing cellular environment. Here, we introduce a novel polarization agent, POPAPOL, that exhibits increased lifetimes under reducing conditions. We also compare its bioresistance and DNP performance with three popular, commercially available polarization agents. Our work indicates that pyrrolidine-based nitroxides can outperform piperidine-based nitroxides in cellular environments, and that future polarization agent designs must carefully balance DNP performance and stability for cellular applications.
Collapse
Affiliation(s)
- Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Joon Lim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sirish Narayanan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,Corresponding author: , http://debelouchinalab.ucsd.edu/
| |
Collapse
|
12
|
Shedding light on the base-pair opening dynamics of nucleic acids in living human cells. Nat Commun 2022; 13:7143. [PMID: 36446768 PMCID: PMC9708698 DOI: 10.1038/s41467-022-34822-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
Base-pair opening is a fundamental property of nucleic acids that plays important roles in biological functions. However, studying the base-pair opening dynamics inside living cells has remained challenging. Here, to determine the base-pair opening kinetics inside living human cells, the exchange rate constant ([Formula: see text]) of the imino proton with the proton of solvent water involved in hairpin and G-quadruplex (GQ) structures is determined by the in-cell NMR technique. It is deduced on determination of [Formula: see text] values that at least some G-C base pairs of the hairpin structure and all G-G base-pairs of the GQ structure open more frequently in living human cells than in vitro. It is suggested that interactions with endogenous proteins could be responsible for the increase in frequency of base-pair opening. Our studies demonstrate a difference in dynamics of nucleic acids between in-cell and in vitro conditions.
Collapse
|
13
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
In-cell NMR: From target structure and dynamics to drug screening. Curr Opin Struct Biol 2022; 74:102374. [DOI: 10.1016/j.sbi.2022.102374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
15
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
17
|
Bertarello A, Berruyer P, Artelsmair M, Elmore CS, Heydarkhan-Hagvall S, Schade M, Chiarparin E, Schantz S, Emsley L. In-Cell Quantification of Drugs by Magic-Angle Spinning Dynamic Nuclear Polarization NMR. J Am Chem Soc 2022; 144:6734-6741. [PMID: 35385274 PMCID: PMC9026252 DOI: 10.1021/jacs.1c12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The determination of intracellular drug concentrations can provide a better understanding of the drug function and efficacy. Ideally, this should be performed nondestructively, with no modification of either the drug or the target, and with the capability to detect low amounts of the molecule of interest, in many cases in the μM to nM range (pmol to fmol per million cells). Unfortunately, it is currently challenging to have an experimental technique that provides direct quantitative measurements of intracellular drug concentrations that simultaneously satisfies these requirements. Here, we show that magic-angle spinning dynamic nuclear polarization (MAS DNP) can be used to fulfill these requirements. We apply a quantitative 15N MAS DNP approach in combination with 15N labeling to quantify the intracellular amount of the drug [15N]CHIR-98014, an activator of the Wingless and Int-1 signaling pathway, determining intracellular drug amounts in the range of tens to hundreds of picomoles per million cells. This is, to our knowledge, the first time that MAS DNP has been used to successfully estimate intracellular drug amounts.
Collapse
Affiliation(s)
- Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Markus Artelsmair
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Markus Schade
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Ghosh R, Dumarieh R, Xiao Y, Frederick KK. Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107150. [PMID: 35151975 PMCID: PMC8961433 DOI: 10.1016/j.jmr.2022.107150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Dynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells. We find that nitroxide radicals are reduced with first order reduction kinetics by cell lysates at a rate of ∼ 12% of the added nitroxide radical concentration per hour. We also found that electroporation delivered a consistent amount of AMUPol to intact cells and that nitroxide radicals are reduced just slightly more rapidly (∼15% per hour) by intact cells than by cell lysates. The two nitroxide radicals of AMUPol are reduced independently and this leads to considerable accumulation of the DNP-silent monoradical form of AMUPol, particularly in preparations of intact cells where nearly half of the AMUPol is already reduced to the DNP silent monoradical form at the earliest experimental time points. This confirms that the loss of the DNP-active biradical form of AMUPol is faster than the nitroxide reduction rate. Finally, we investigate the effect of adding N-ethyl maleimide, a well-known inhibitor of thiol (-SH) group-based reduction of nitroxide biradicals in cells, on AMUPol reduction, cellular viability, and DNP performance. Although pre-treatment of cells with NEM effectively inhibited the reduction of AMUPol, exposure to NEM compromised cellular viability and, surprisingly, did not improve DNP performance. Collectively, these results indicate that, currently, the most effective strategy to obtain high DNP enhancements for DNP-assisted in-cell NMR is to minimize room temperature contact times with cellular constituents and suggest that the development of bio-resistant polarization agents for DNP could considerably increase the sensitivity of DNP-assisted in-cell NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States; Center for Neurodegenerative and Alzheimer's Disease, UT Southwestern Medical Center, Dallas 75390, United States.
| |
Collapse
|
20
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
21
|
Xiao Y, Ghosh R, Frederick KK. In-Cell NMR of Intact Mammalian Cells Preserved with the Cryoprotectants DMSO and Glycerol Have Similar DNP Performance. Front Mol Biosci 2022; 8:789478. [PMID: 35145995 PMCID: PMC8824258 DOI: 10.3389/fmolb.2021.789478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
NMR has the resolution and specificity to determine atomic-level protein structures of isotopically-labeled proteins in complex environments and, with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. Prior work established that DNP MAS NMR is compatible with cellular viability. However, in that work, 15% glycerol, rather than the more commonly used 10% DMSO, was used as the cellular cryoprotectant. Moreover, incubation of cells cryoprotected 15% glycerol with the polarization agent, AMUPol, resulted in an inhomogeneous distribution of AMUPol through the cellular biomass, which resulted in a spatial bias of the NMR peak intensities. Because 10% DMSO is not only the most used cryoprotectant for mammalian cells, but also because DMSO is often used to improve delivery of molecules to cells, we sought to characterize the DNP performance of cells that were incubated with AMUPol and cryoprotected with 10% DMSO. We found that, like cells preserved with 15% glycerol, cells preserved with 10% DMSO retain high viability during DNP MAS NMR experiments if they are frozen at a controlled rate. However, DMSO did not improve the dispersion of AMUPol throughout the cellular biomass. Cells preserved with 15% glycerol and with 10% DMSO had similar DNP performance for both the maximal DNP enhancements as well as the inhomogeneous dispersion of AMUPol throughout the cellular biomass. Therefore, 10% DMSO and 15% glycerol are both appropriate cryoprotectant systems for DNP-assisted MAS NMR of intact viable mammalian cells.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Kendra K. Frederick,
| |
Collapse
|
22
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
23
|
Overall SA, Barnes AB. Biomolecular Perturbations in In-Cell Dynamic Nuclear Polarization Experiments. Front Mol Biosci 2021; 8:743829. [PMID: 34751246 PMCID: PMC8572051 DOI: 10.3389/fmolb.2021.743829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
In-cell DNP is a growing application of NMR to the study of biomolecular structure and function within intact cells. An important unresolved question for in-cell DNP spectroscopy is the integrity of cellular samples under the cryogenic conditions of DNP. Despite the rich literature around cryopreservation of cells in the fields of stem cell/embryonic cell therapeutics, cell line preservation and in cryo-EM applications, the effect of cryopreservation procedures on DNP parameters is unclear. In this report we investigate cell survival and apoptosis in the presence of cryopreserving agents and DNP radicals. We also assess the effects of these reagents on cellular enhancements. We show that the DNP radical AMUPol has no effect on membrane permeability and does not induce apoptosis. Furthermore, the standard aqueous glass forming reagent, comprised of 60/30/10 d8-glycerol/D2O/H2O (DNP juice), rapidly dehydrates cells and induces apoptosis prior to freezing, reducing structural integrity of the sample prior to DNP analysis. Preservation with d6-DMSO at 10% v/v provided similar DNP enhancements per √unit time compared to glycerol preservation with superior maintenance of cell size and membrane integrity prior to freezing. DMSO preservation also greatly enhanced post-thaw survival of cells slow-frozen at 1°C/min. We therefore demonstrate that in-cell DNP-NMR studies should be done with d6-DMSO as cryoprotectant and raise important considerations for the progression of in-cell DNP-NMR towards the goal of high quality structural studies.
Collapse
Affiliation(s)
- Sarah A Overall
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
24
|
Ghosh R, Xiao Y, Kragelj J, Frederick KK. In-Cell Sensitivity-Enhanced NMR of Intact Viable Mammalian Cells. J Am Chem Soc 2021; 143:18454-18466. [PMID: 34724614 DOI: 10.1021/jacs.1c06680] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NMR has the resolution and specificity to determine atomic-level protein structures of isotopically labeled proteins in complex environments, and with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. However, DNP sensitivity enhancements are critically dependent on experimental conditions and sample composition. While some of these conditions are theoretically compatible with cellular viability, the effects of others on cellular sample integrity are unknown. Uncertainty about the integrity of cellular samples limits the utility of experimental outputs of in-cell experiments. Using several measures, we establish conditions that support DNP enhancements that can enable detection of micromolar concentrations of proteins in experimentally tractable times that are compatible with cellular viability. Taken together, we establish DNP-assisted MAS NMR as a technique for structural investigations of biomolecules in intact viable cells that can be phenotyped both before and after NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States.,Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
25
|
Sakamoto T, Yamaoki Y, Nagata T, Katahira M. Detection of parallel and antiparallel DNA triplex structures in living human cells using in-cell NMR. Chem Commun (Camb) 2021; 57:6364-6367. [PMID: 34137388 DOI: 10.1039/d1cc01761f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We introduced oligodeoxynucleotides (ODNs) that form parallel and antiparallel triplex structures in vitro into living human cells and recorded their in-cell NMR spectra. Observation of landmark signals for triplex structures proved for the first time that parallel and antiparallel triplex structures are formed in living human cells.
Collapse
Affiliation(s)
- Tomoki Sakamoto
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Karlsson H, Feyrer H, Baronti L, Petzold K. Production of Structured RNA Fragments by In Vitro Transcription and HPLC Purification. Curr Protoc 2021; 1:e159. [PMID: 34138527 DOI: 10.1002/cpz1.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The understanding of the functional importance of RNA has increased enormously in the last decades. This has required research on the RNA molecules themselves, with the concomitant need for obtaining purified RNA samples, such as for structural studies by NMR or other methods. The main method to create labeled and unlabeled RNA, T7 in vitro transcription, suffers from sequence-dependent yield and often low homogeneity for short constructs (<100 nt) and requires laborious purification. Additionally, the design of structured RNA fragments mimicking the structure of a larger biological RNA is often not straightforward. Secondary structure simulations can be used to make reliable predictions about the folding of a particular RNA fragment. In this article, we describe how to design an RNA construct of interest from a larger sequence, and we combine several previously published improvements of the in vitro transcription method, such as the use of 2'-methoxy modifications and dimethyl sulfoxide or the use of tandem repeats, to increase yield and purity of in vitro-transcribed RNA. Together with a high-performance liquid chromatography (HPLC) purification procedure using both reversed-phase ion-pairing and ion-exchange HPLC, we provide a robust protocol to obtain highly pure RNA of short to intermediate length in large quantities. The protocol optimizes yield, especially for RNA starting with nucleotides other than G. At the same time, it is simplified, and the required time is reduced. The protocols described here constitute a versatile pipeline for the production of purified RNA samples and are suitable for users with little experience in liquid chromatography. © 2021 The Authors. Basic Protocol 1: RNA construct design Basic Protocol 2: DNA template production and in vitro transcription Alternate Protocol: Tandem transcription and RNase H cleavage Basic Protocol 3: Reversed-phase ion-pairing HPLC purification Basic Protocol 4: Ion-exchange HPLC purification.
Collapse
Affiliation(s)
- Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Current address: Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
28
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
29
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
30
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic
19
F–
13
C TROSY—[
19
F,
13
C]‐Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
31
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic 19 F- 13 C TROSY-[ 19 F, 13 C]-Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020; 59:17062-17069. [PMID: 32558232 PMCID: PMC7540360 DOI: 10.1002/anie.202006577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/22/2022]
Abstract
We present the access to [5-19 F, 5-13 C]-uridine and -cytidine phosphoramidites for the production of site-specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5-19 F, 5-13 C]-pyrimidine labels into five RNAs-the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ϵ (hHBV ϵ) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre-microRNA (miRNA) 21 and the 59 nt full length pre-miRNA 21. The main stimulus to introduce the aromatic 19 F-13 C-spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole-dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13 C-19 F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5-19 F, 5-13 C]/[5-19 F] pyrimidine labeling. For the 61 nt hHBV ϵ we find a beneficial 19 F-13 C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19 F, 13 C]-labeling of the SAM VI aptamer domain and the pre-miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.
Collapse
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
32
|
Ghosh R, Kragelj J, Xiao Y, Frederick KK. Cryogenic Sample Loading into a Magic Angle Spinning Nuclear Magnetic Resonance Spectrometer that Preserves Cellular Viability. J Vis Exp 2020:10.3791/61733. [PMID: 32955491 PMCID: PMC7797162 DOI: 10.3791/61733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dynamic nuclear polarization (DNP) can dramatically increase the sensitivity of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. These sensitivity gains increase as temperatures decrease and are large enough to enable the study of molecules at very low concentrations at the operating temperatures (~100 K) of most commercial DNP-equipped NMR spectrometers. This leads to the possibility of in-cell structural biology on cryopreserved cells for macromolecules at their endogenous levels in their native environments. However, the freezing rates required for cellular cryopreservation are exceeded during typical sample handling for DNP MAS NMR and this results in loss of cellular integrity and viability. This article describes a detailed protocol for the preparation and cryogenic transfer of a frozen sample of mammalian cells into a MAS NMR spectrometer.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Jaka Kragelj
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Yiling Xiao
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Kendra K Frederick
- Department of Biophysics, University of Texas Southwestern Medical Center; Center for Alzheimer's and Neurodegenerative Disease and Center for Systems Biology, University of Texas Southwestern Medical Center;
| |
Collapse
|
33
|
Karlsson H, Baronti L, Petzold K. A robust and versatile method for production and purification of large-scale RNA samples for structural biology. RNA (NEW YORK, N.Y.) 2020; 26:1023-1037. [PMID: 32354720 PMCID: PMC7373988 DOI: 10.1261/rna.075697.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/16/2023]
Abstract
Recent findings in genome-wide transcriptomics revealed that RNAs are involved in almost every biological process, across all domains of life. The characterization of native RNAs of unknown function and structure is particularly challenging due to their typical low abundance in the cell and the inherent sensitivity toward ubiquitous RNA degrading enzymes. Therefore, robust in vitro synthesis and extensive work-up methods are often needed to obtain samples amenable for biochemical, biophysical, and structural studies. Here, we present a protocol that combines the most recent advances in T7 in vitro transcription methodology with reverse phase ion pairing and ion exchange HPLC purification of RNAs for the production of yield-optimized large-scale samples. The method is easy to follow, robust and suitable for users with little or no experience within the field of biochemistry or chromatography. The complete execution of this method, for example, for production of isotopically labeled NMR samples, can be performed in less than a week.
Collapse
Affiliation(s)
- Hampus Karlsson
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| |
Collapse
|
34
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
35
|
In Situ Detection of Endogenous HIV Activation by Dynamic Nuclear Polarization NMR and Flow Cytometry. Int J Mol Sci 2020; 21:ijms21134649. [PMID: 32629894 PMCID: PMC7369949 DOI: 10.3390/ijms21134649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022] Open
Abstract
We demonstrate for the first time in-cell dynamic nuclear polarization (DNP) in conjunction with flow cytometry sorting to address the cellular heterogeneity of in-cell samples. Utilizing a green fluorescent protein (GFP) reporter of HIV reactivation, we correlate increased 15N resonance intensity with cytokine-driven HIV reactivation in a human cell line model of HIV latency. As few as 10% GFP+ cells could be detected by DNP nuclear magnetic resonance (NMR). The inclusion of flow cytometric sorting of GFP+ cells prior to analysis by DNP-NMR further boosted signal detection through increased cellular homogeneity with respect to GFP expression. As few as 3.6 million 15N-labeled GFP+ cells could be readily detected with DNP-NMR. Importantly, cell sorting allowed for the comparison of cytokine-treated GFP+ and GFP- cells in a batch-consistent way. This provides an avenue for normalizing NMR spectral contributions from background cellular processes following treatment with cellular modulators. We also demonstrate the remarkable stability of AMUPol (a nitroxide biradical) in Jurkat T cells and achieved in-cell enhancements of 46 with 10 mM AMUPol, providing an excellent model system for further in-cell DNP-NMR studies. This represents an important contribution to improving in-cell methods for the study of endogenously expressed proteins by DNP-NMR.
Collapse
|
36
|
Yamaoki Y, Nagata T, Sakamoto T, Katahira M. Observation of nucleic acids inside living human cells by in-cell NMR spectroscopy. Biophys Physicobiol 2020; 17:36-41. [PMID: 33110737 PMCID: PMC7550250 DOI: 10.2142/biophysico.bsj-2020006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The intracellular environment is highly crowded with biomacromolecules such as proteins and nucleic acids. Under such conditions, the structural and biophysical features of nucleic acids have been thought to be different from those in vitro. To obtain high-resolution structural information on nucleic acids in living cells, the in-cell NMR method is a unique tool. Following the first in-cell NMR measurement of nucleic acids in 2009, several interesting insights were obtained using Xenopus laevis oocytes. However, the in-cell NMR spectrum of nucleic acids in living human cells was not reported until two years ago due to the technical challenges of delivering exogenous nucleic acids. We reported the first in-cell NMR spectra of nucleic acids in living human cells in 2018, where we applied a pore-forming toxic protein, streptolysin O. The in-cell NMR measurements demonstrated that the hairpin structures of nucleic acids can be detected in living human cells. In this review article, we summarize our recent work and discuss the future prospects of the in-cell NMR technique for nucleic acids.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Sakamoto
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
37
|
Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys Rev 2020; 12:411-417. [PMID: 32144741 DOI: 10.1007/s12551-020-00664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The inside of living cells is highly crowded with biological macromolecules. It has long been considered that the properties of nucleic acids and proteins, such as their structures, dynamics, interactions, and enzymatic activities, in intracellular environments are different from those under in vitro dilute conditions. In-cell NMR is a robust and powerful method used in the direct measurement of those properties in living cells. However, until 2 years ago, in-cell NMR was limited to Xenopus laevis oocytes due to technical challenges of incorporating exogenous nucleic acids. In the last 2 years, in-cell NMR spectra of nucleic acid introduced into living human cells have been reported. By use of the in-cell NMR spectra of nucleic acids in living human cells, the formation of hairpin structures with Watson-Crick base pairs, and i-motif and G-quadruplex structures with non-Watson-Crick base pairs was demonstrated. Others investigated the mRNA-antisense drug interactions and DNA-small compound interactions. In this article, we review these studies to underscore the potential of in-cell NMR for addressing the structures, dynamics, and interactions of nucleic acids in living human cells.
Collapse
|
38
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|