1
|
Roth S, Niese R, Müller M, Hall M. Redox Out of the Box: Catalytic Versatility Across NAD(P)H-Dependent Oxidoreductases. Angew Chem Int Ed Engl 2024; 63:e202314740. [PMID: 37924279 DOI: 10.1002/anie.202314740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
The asymmetric reduction of double bonds using NAD(P)H-dependent oxidoreductases has proven to be an efficient tool for the synthesis of important chiral molecules in research and on industrial scale. These enzymes are commercially available in screening kits for the reduction of C=O (ketones), C=C (activated alkenes), or C=N bonds (imines). Recent reports, however, indicate that the ability to accommodate multiple reductase activities on distinct C=X bonds occurs in different enzyme classes, either natively or after mutagenesis. This challenges the common perception of highly selective oxidoreductases for one type of electrophilic substrate. Consideration of this underexplored potential in enzyme screenings and protein engineering campaigns may contribute to the identification of complementary biocatalytic processes for the synthesis of chiral compounds. This review will contribute to a global understanding of the promiscuous behavior of NAD(P)H-dependent oxidoreductases on C=X bond reduction and inspire future discoveries with respect to unconventional biocatalytic routes in asymmetric synthesis.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Richard Niese
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- BioHealth, Field of Excellence, University of Graz, 8010, Graz, Austria
| |
Collapse
|
2
|
Wu K, Yan J, Liu Q, Wang X, Wu P, Cao Y, Lu X, Xu Y, Huang J, Shao L. Computational design of an imine reductase: mechanism-guided stereoselectivity reversion and interface stabilization. Chem Sci 2024; 15:1431-1440. [PMID: 38274081 PMCID: PMC10806680 DOI: 10.1039/d3sc04636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Imine reductases (IREDs) are important biocatalysts in the asymmetric synthesis of chiral amines. However, a detailed understanding of the stereocontrol mechanism of IRED remains incomplete, making the design of IRED for producing the desired amine enantiomers challenging. In this study, we investigated the stereoselective catalytic mechanism and designed an (R)-stereoselective IRED from Paenibacillus mucilaginosus (PmIR) using pharmaceutically relevant 2-aryl-substituted pyrrolines as substrates. A putative mechanism for controlling stereoselectivity was proposed based on the crucial role of electrostatic interactions in controlling iminium cation orientation and employed to achieve complete inversion of stereoselectivity in PmIR using computational design. The variant PmIR-Re (Q138M/P140M/Y187E/Q190A/D250M/R251N) exhibited opposite (S)-stereoselectivity, with >96% enantiomeric excess (ee) towards tested 2-aryl-substituted pyrrolines. Computational tools were employed to identify stabilizing mutations at the interface between the two subunits. The variant PmIR-6P (P140A/Q190S/R251N/Q217E/A257R/T277M) showed a nearly 5-fold increase in activity and a 12 °C increase in melting temperature. The PmIR-6P successfully produced (R)-2-(2,5-difluorophenyl)-pyrrolidine, a key chiral pharmaceutical intermediate, at a concentration of 400 mM with an ee exceeding 99%. This study provides insight into the stereocontrol elements of IREDs and demonstrates the potential of computational design for tailored stereoselectivity and thermal stability.
Collapse
Affiliation(s)
- Kai Wu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Jinrong Yan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| | - Qinde Liu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
- Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Piaoru Wu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Yiyang Cao
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Xiuhong Lu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine & Health Sciences 279 Zhouzhu Highway, Pudong New Area Shanghai 201318 China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry 285 Gebaini Rd. Shanghai 200040 China
| |
Collapse
|
3
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
4
|
Yu Y, Rué Casamajo A, Finnigan W, Schnepel C, Barker R, Morrill C, Heath RS, De Maria L, Turner NJ, Scrutton NS. Structure-Based Design of Small Imine Reductase Panels for Target Substrates. ACS Catal 2023; 13:12310-12321. [PMID: 37736118 PMCID: PMC10510103 DOI: 10.1021/acscatal.3c02278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Biocatalysis is important in the discovery, development, and manufacture of pharmaceuticals. However, the identification of enzymes for target transformations of interest requires major screening efforts. Here, we report a structure-based computational workflow to prioritize protein sequences by a score based on predicted activities on substrates, thereby reducing a resource-intensive laboratory-based biocatalyst screening. We selected imine reductases (IREDs) as a class of biocatalysts to illustrate the application of the computational workflow termed IREDFisher. Validation by using published data showed that IREDFisher can retrieve the best enzymes and increase the hit rate by identifying the top 20 ranked sequences. The power of IREDFisher is confirmed by computationally screening 1400 sequences for chosen reductive amination reactions with different levels of complexity. Highly active IREDs were identified by only testing 20 samples in vitro. Our speed test shows that it only takes 90 min to rank 85 sequences from user input and 30 min for the established IREDFisher database containing 591 IRED sequences. IREDFisher is available as a user-friendly web interface (https://enzymeevolver.com/IREDFisher). IREDFisher enables the rapid discovery of IREDs for applications in synthesis and directed evolution studies, with minimal time and resource expenditure. Future use of the workflow with other enzyme families could be implemented following the modification of the workflow scoring function.
Collapse
Affiliation(s)
- Yuqi Yu
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
- Augmented
Biologics Discovery & Design, Department of Biologics Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Arnau Rué Casamajo
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - William Finnigan
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christian Schnepel
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rhys Barker
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Charlotte Morrill
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(RI), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Nicholas J. Turner
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
5
|
Langley C, Tatsis E, Hong B, Nakamura Y, Paetz C, Stevenson CEM, Basquin J, Lawson DM, Caputi L, O'Connor SE. Expansion of the Catalytic Repertoire of Alcohol Dehydrogenases in Plant Metabolism. Angew Chem Int Ed Engl 2022; 61:e202210934. [PMID: 36198083 PMCID: PMC9828224 DOI: 10.1002/anie.202210934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Medium-chain alcohol dehydrogenases (ADHs) comprise a highly conserved enzyme family that catalyse the reversible reduction of aldehydes. However, recent discoveries in plant natural product biosynthesis suggest that the catalytic repertoire of ADHs has been expanded. Here we report the crystal structure of dihydroprecondylocarpine acetate synthase (DPAS), an ADH that catalyses the non-canonical 1,4-reduction of an α,β-unsaturated iminium moiety. Comparison with structures of plant-derived ADHs suggest the 1,4-iminium reduction does not require a proton relay or the presence of a catalytic zinc ion in contrast to canonical 1,2-aldehyde reducing ADHs that require the catalytic zinc and a proton relay. Furthermore, ADHs that catalysed 1,2-iminium reduction required the presence of the catalytic zinc and the loss of the proton relay. This suggests how the ADH active site can be modified to perform atypical carbonyl reductions, providing insight into how chemical reactions are diversified in plant metabolism.
Collapse
Affiliation(s)
- Chloe Langley
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| | - Evangelos Tatsis
- Chinese Academy of Sciences Centre for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology300 Feng Lin RoadShanghai200032China
| | - Benke Hong
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| | - Yoko Nakamura
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany,Research Group Biosynthesis and NMRMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| | - Christian Paetz
- Research Group Biosynthesis and NMRMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| | - Clare E. M. Stevenson
- Department of Biochemistry and MetabolismJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jerome Basquin
- Department of Structural Cell BiologyMax-Planck Institute for BiochemistryAm Klopferspitz 18, Martinsried82152PlaneggGermany
| | - David M. Lawson
- Department of Biochemistry and MetabolismJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Lorenzo Caputi
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyHans-Knöll Straße 8Jena07745Germany
| |
Collapse
|
6
|
Stockinger P, Borlinghaus N, Sharma M, Aberle B, Grogan G, Pleiss J, Nestl BM. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant. ChemCatChem 2021; 13:5210-5215. [PMID: 35873105 PMCID: PMC9297850 DOI: 10.1002/cctc.202101057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Indexed: 12/31/2022]
Abstract
Imine reductases (IREDs) offer biocatalytic routes to chiral amines and have a natural preference for the NADPH cofactor. In previous work, we reported enzyme engineering of the (R)-selective IRED from Myxococcus stipitatus (NADH-IRED-Ms) yielding a NADH-dependent variant with high catalytic efficiency. However, no IRED with NADH specificity and (S)-selectivity in asymmetric reductions has yet been reported. Herein, we applied semi-rational enzyme engineering to switch the selectivity of NADH-IRED-Ms. The quintuple variant A241V/H242Y/N243D/V244Y/A245L showed reverse stereopreference in the reduction of the cyclic imine 2-methylpyrroline compared to the wild-type and afforded the (S)-amine product with >99 % conversion and 91 % enantiomeric excess. We also report the crystal-structures of the NADPH-dependent (R)-IRED-Ms wild-type enzyme and the NADH-dependent NADH-IRED-Ms variant and molecular dynamics (MD) simulations to rationalize the inverted stereoselectivity of the quintuple variant.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Niels Borlinghaus
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Mahima Sharma
- York Structural Biology Laboratory Department of Chemistry University of York YO10 5DD York UK
| | - Benjamin Aberle
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York YO10 5DD York UK
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Bettina M Nestl
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
7
|
Tseliou V, Schilder D, Masman MF, Knaus T, Mutti FG. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry 2021; 27:3315-3325. [PMID: 33073866 PMCID: PMC7898336 DOI: 10.1002/chem.202003140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Indexed: 11/12/2022]
Abstract
The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Don Schilder
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
8
|
Stockinger P, Schelle L, Schober B, Buchholz PCF, Pleiss J, Nestl BM. Engineering of Thermostable β-Hydroxyacid Dehydrogenase for the Asymmetric Reduction of Imines. Chembiochem 2020; 21:3511-3514. [PMID: 32939899 PMCID: PMC7756219 DOI: 10.1002/cbic.202000526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 01/08/2023]
Abstract
The β-hydroxyacid dehydrogenase from Thermocrinus albus (Ta-βHAD), which catalyzes the NADP+ -dependent oxidation of β-hydroxyacids, was engineered to accept imines as substrates. The catalytic activity of the proton-donor variant K189D was further increased by the introduction of two nonpolar flanking residues (N192 L, N193 L). Engineering the putative alternative proton donor (D258S) and the gate-keeping residue (F250 A) led to a switched substrate specificity as compared to the single and triple variants. The two most active Ta-βHAD variants were applied to biocatalytic asymmetric reductions of imines at elevated temperatures and enabled enhanced product formation at a reaction temperature of 50 °C.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Luca Schelle
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Benedikt Schober
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
9
|
Stockinger P, Roth S, Müller M, Pleiss J. Systematic Evaluation of Imine-Reducing Enzymes: Common Principles in Imine Reductases, β-Hydroxy Acid Dehydrogenases, and Short-Chain Dehydrogenases/ Reductases. Chembiochem 2020; 21:2689-2695. [PMID: 32311225 PMCID: PMC7540600 DOI: 10.1002/cbic.202000213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
The enzymatic, asymmetric reduction of imines is catalyzed by imine reductases (IREDs), members of the short-chain dehydrogenase/reductase (SDR) family, and β-hydroxy acid dehydrogenase (βHAD) variants. Systematic evaluation of the structures and substrate-binding sites of the three enzyme families has revealed four common principles for imine reduction: structurally conserved cofactor-binding domains; tyrosine, aspartate, or glutamate as proton donor; at least four characteristic flanking residues that adapt the donor's pKa and polarize the substrate; and a negative electrostatic potential in the substrate-binding site to stabilize the transition state. As additional catalytically relevant positions, we propose alternative proton donors in IREDs and βHADs as well as proton relays in IREDs, βHADs, and SDRs. The functional role of flanking residues was experimentally confirmed by alanine scanning of the imine-reducing SDR from Zephyranthes treatiae. Mutating the "gatekeeping" phenylalanine at standard position 200 resulted in a tenfold increase in imine-reducing activity.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Sebastian Roth
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|