1
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
2
|
Rasool HMH, Chen Q, Gong X, Zhou J. CRISPR/Cas system and its application in the diagnosis of animal infectious diseases. FASEB J 2024; 38:e70252. [PMID: 39726403 PMCID: PMC11671863 DOI: 10.1096/fj.202401569r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Infectious diseases are a serious threat to the existence of animals and humans' life. In the 21st century, the emergence and re-emergence of several zoonotic and non-zoonotic global pandemic diseases of socio-economic importance has affected billions of humans and animals. The need for expensive equipment and laboratories, non-availability of on-site testing abilities, with time-consuming and low sensitivity and specificity issues of currently available diagnostic techniques to identify these pathogenic micro-organisms on a large scale highlighted the need for developing cheap, portable environment friendly diagnostic methods. In recent years, these issues have been addressed by clustered regularly interspaced palindromic repeats (CRISPR)-based diagnostic platforms that have transformed the molecular diagnostic field due to their outstanding ultra-sensitive nucleic acid detecting capabilities. In this study, we highlight the types, potential of different Cas proteins, and amplification systems. We also illuminate the application of currently available CRISPR integrated setups on the diagnosis of infectious diseases, majorly in food-producing animals (pigs, ruminants, poultry, and aquaculture), domestic pets (dogs and cats), and diseases of zoonotic importance. We conclude the challenges and future perspectives of using these systems to rapidly diagnose and treat other infectious diseases and also develop control strategies to prevent the spread of pathogenic organisms.
Collapse
Affiliation(s)
- Hafiz Muhammad Hamza Rasool
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| |
Collapse
|
3
|
Chen W, Liu L, Cheng L. Conditionally Activated Cross-Linked crRNAs for CRISPR/Cas12a Based Nucleic Acid Detection. ACS Synth Biol 2024. [PMID: 39670632 DOI: 10.1021/acssynbio.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
CRISPR/Cas systems, particularly CRISPR/Cas12a, have revolutionized nucleic acid detection due to their exceptional specificity and sensitivity. However, CRISPR/Cas12a's cleavage activity can interfere with amplification processes, such as reverse transcription (RT) and isothermal amplification (e.g., RPA), potentially compromising detection sensitivity and accuracy. While modified CRISPR/Cas12a systems employing caging and decaging strategies have been developed to address this, these approaches typically require extensive optimization of photolabile groups and complex assay configurations. Here, we present a universal, photochemically controlled strategy for CRISPR/Cas12a-based detection that overcomes these challenges. Our approach involves cross-linking a polymeric crRNA with a photoresponsive cross-linker, effectively inactivating it during amplification and enabling rapid activation through brief light exposure to cleave the cross-linker and release active crRNA. This method obviates the need for labor-intensive optimizations and modifications, making it highly versatile and suitable for rapid, on-site detection applications. Our strategy demonstrates enhanced versatility and applicability, particularly for the immediate detection of newly emerging or unexpected nucleic acid sequences, supporting applications in pathogen detection, genetic screening, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Sakovina L, Vokhtantsev I, Akhmetova E, Vorobyeva M, Vorobjev P, Zharkov DO, Novopashina D. Photocleavable Guide crRNAs for a Light-Controllable CRISPR/Cas9 System. Int J Mol Sci 2024; 25:12392. [PMID: 39596457 PMCID: PMC11594570 DOI: 10.3390/ijms252212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The design of controllable and precise RNA-targeted CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) systems is an important problem of modern molecular biology and genetic technology. Herein, we have designed a series of photocleavable guide CRISPR RNAs (crRNA) and their 2'-modified (2'-fluoro and locked nucleic acid) analogs containing one or two 1-(2-nitrophenyl)-1,2-ethanediol photolabile linkers (PL). We have demonstrated that these crRNAs can be destroyed by relatively mild UVA irradiation with the rate constants 0.24-0.77 min-1 and that the photocleavage markedly slows down the action of Cas9 nuclease in the model in vitro system. Two PLs provide more rapid crRNA destruction than a single linker. PLs in the crRNA structure improve the specificity of DNA cleavage by Cas9 nuclease for the fully complementary target. The application of photocleavable crRNA in CRISPR/Cas9 genome editing permits the system to be switched off in a spatiotemporally controlled manner, thus alleviating its off-target effects.
Collapse
Affiliation(s)
- Lubov Sakovina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan Vokhtantsev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta Akhmetova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Darya Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Kim J, Seo M, Lim Y, Kim J. START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402029. [PMID: 39075726 PMCID: PMC11423158 DOI: 10.1002/advs.202402029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Indexed: 07/31/2024]
Abstract
Recognition of signaling molecules for coordinated regulation of target genes is a fundamental process for biological systems. Cells often rely on transcription factors to accomplish these intricate tasks, yet the subtle conformational changes of protein structures, coupled with the complexity of intertwined protein interaction networks, pose challenges for repurposing these for bioengineering applications. This study introduces a novel platform for ligand-responsive gene regulation, termed START (Synthetic Trans-Acting Riboswitch with Triggering RNA). Inspired by the bacterial ligand sensing system, riboswitch, and the synthetic gene regulator, toehold switch, the START platform enables the implementation of synthetic biosensors for various ligands. Rational sequence design with targeted domain optimization yields high-performance STARTs with a dynamic range up to 67.29-fold and a tunable ligand sensitivity, providing a simple and intuitive strategy for sensor engineering. The START platform also exhibits modularity and composability to allow flexible genetic circuit construction, enabling seamless implementation of OR, AND, and NOT Boolean logic gates for multiple ligand inputs. The START design principle is capable of broadening the suite of synthetic biosensors for diverse chemical and protein ligands, providing a novel riboregulator chassis for synthetic biology and bioengineering applications.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Minchae Seo
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Yelin Lim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Jongmin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| |
Collapse
|
6
|
Lin CL, Chen WD, Liu L, Cheng L. Chemical control of CRISPR/Cpf1 editing via orthogonal activation and deactivation of crosslinked crRNA. Chem Commun (Camb) 2024; 60:5197-5200. [PMID: 38651297 DOI: 10.1039/d4cc01106f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Through the integration of CRISPR/Cpf1 with optogenetics and a reduction-responsive motif, we have developed a photoactivatable cross-linked crRNA that enables precise genome editing upon light exposure. This system also allows for termination of editing activity through external application of reducing agent. The dual-stimuli-responsive CRISPR/Cpf1 editing process operates in a unique OFF → ON → OFF sequence, making it a valuable tool for investigating time-sensitive biological events.
Collapse
Affiliation(s)
- Cui-Lian Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A. Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. Angew Chem Int Ed Engl 2024; 63:e202318773. [PMID: 38411401 DOI: 10.1002/anie.202318773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Tsang
- Department of Cell Biology, Center for Integrative Organ Systems., University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Lance A Davidson
- Department of Bioengineering, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
8
|
Jung WJ, Park SJ, Cha S, Kim K. Factors affecting the cleavage efficiency of the CRISPR-Cas9 system. Anim Cells Syst (Seoul) 2024; 28:75-83. [PMID: 38440123 PMCID: PMC10911232 DOI: 10.1080/19768354.2024.2322054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.
Collapse
Affiliation(s)
- Won Jun Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo-Ji Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yun D, Jung C. MiRNA-Responsive CRISPR-Cas System via a DNA Regulator. BIOSENSORS 2023; 13:975. [PMID: 37998150 PMCID: PMC10669420 DOI: 10.3390/bios13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR-associated protein 9 (Cas9) genome editing technology is widely used for gene editing because it provides versatility in genetic manipulation. Several methods for regulating CRISPR activity already exist for accurate editing, but these require complex engineering. Thus, a simple and convenient regulatory system is required. In this study, we devised a CRISPR activation system using a DNA regulator that can be activated by miRNAs. The designed regulator was divided into two parts. The inhibition component consisted of the protospacer-adjacent motif (PAM) and seed sequence, which are important for Cas9 target recognition and bind to the ribonucleoprotein (RNP) complex for inhibition. The miRNA recognition component has a single-stranded toehold DNA for target miRNA binding and a partial double-stranded DNA complementary to the remaining miRNA sequence. In the presence of target miRNAs, the structure of the regulator is disrupted by the miRNAs, leading to its dissociation from the RNP complex and subsequent restoration of CRISPR activity. This method is easy to design and can be applied to various miRNAs via simple sequence manipulation. Therefore, this strategy provides a general platform for controlled genome editing.
Collapse
Affiliation(s)
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
10
|
An Y, Talwar CS, Park KH, Ahn WC, Lee SJ, Go SR, Cho JH, Kim DY, Kim YS, Cho S, Kim JH, Kim TJ, Woo EJ. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci Rep 2023; 13:16763. [PMID: 37798384 PMCID: PMC10556097 DOI: 10.1038/s41598-023-43711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change. We conjugated the oxygen-sensing transcription activation domain (TAD) of hypoxia-inducing factor (HIF-1α) with the Cas9/dCas9 protein. The Cas9-TAD conjugate significantly increased endogenous target gene cleavage under hypoxic conditions compared with that under normoxic conditions, whereas the dCas9-TAD conjugate upregulated endogenous gene transcription. Furthermore, the conjugate system effectively downregulated the expression of SNAIL, an essential gene in cancer metastasis, and upregulated the expression of the tumour-related genes HNF4 and NEUROD1 under hypoxic conditions. Since hypoxia is closely associated with cancer, the hypoxia-dependent Cas9/dCas9 system is a novel addition to the molecular tool kit that functions in response to cellular signals and has potential application for gene therapeutics.
Collapse
Affiliation(s)
- Yan An
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chandana S Talwar
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Kwang-Hyun Park
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Woo-Chan Ahn
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Su-Jin Lee
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Seong-Ryeong Go
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Jin Hwa Cho
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Do Yon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Yong-Sam Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong-Hoon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Eui-Jeon Woo
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
11
|
Volke DC, Orsi E, Nikel PI. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria. Curr Opin Microbiol 2023; 75:102353. [PMID: 37413959 DOI: 10.1016/j.mib.2023.102353] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) technologies brought a transformative change in the way bacterial genomes are edited, and a plethora of studies contributed to developing multiple tools based on these approaches. Prokaryotic biotechnology benefited from the implementation of such genome engineering strategies, with an increasing number of non-model bacterial species becoming genetically tractable. In this review, we summarize the recent trends in engineering non-model microbes using CRISPR-Cas technologies, discussing their potential in supporting cell factory design towards biotechnological applications. These efforts include, among other examples, genome modifications as well as tunable transcriptional regulation (both positive and negative). Moreover, we examine how CRISPR-Cas toolkits for engineering non-model organisms enabled the exploitation of emergent biotechnological processes (e.g. native and synthetic assimilation of one-carbon substrates). Finally, we discuss our slant on the future of bacterial genome engineering for domesticating non-model organisms in light of the most recent advances in the ever-expanding CRISPR-Cas field.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Zhao J, Hu H, Zhou H, Zhang J, Wang L, Wang R. Reactive oxygen signaling molecule inducible regulation of CRISPR-Cas9 gene editing. Cell Biol Toxicol 2023; 39:2421-2429. [PMID: 35644856 DOI: 10.1007/s10565-022-09723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
We report development of a controllable gene editing tool that boronated gRNA, simply generated in situ, could regulate binding of gRNA molecules with either Cas9 endonuclease or target genes, thus serving as a modulator that can control CRISPR-Cas9 gene editing. Subsequent treatment with H2O2 facilitates the restoration of gene editing ability of the boronated gRNA to the level of using untreated gRNA. This is one of the few cases using small molecule to regulate CRISPR-Cas9 gene editing, which is a complement to the light approach, displaying great application potential. We develop a controllable gene editing tools based on the CRISPR-Cas9 gene editing system. This tool can be regulated by oxidative small molecule, i.e., H2O2. Compared with the light method, the application scope of our CRISPR-Cas9 systems have been widened with the small-molecule-triggered approaches, preventing the potential damage of cells or organism caused by UV light. In addition, the gain-of-function tools are expanding the gene code expansion for mechanistic studies of target enzymes since it provides a positive route to evaluate the activity of a given enzyme in dynamic and inversible regulation of targeting cellular processes.
Collapse
Affiliation(s)
- Jizhong Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongmei Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wang
- Wuhan No.1 Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
13
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Sun YJ, Chen WD, Liu J, Li JJ, Zhang Y, Cai WQ, Liu L, Tang XJ, Hou J, Wang M, Cheng L. A Conformational Restriction Strategy for the Control of CRISPR/Cas Gene Editing with Photoactivatable Guide RNAs. Angew Chem Int Ed Engl 2023; 62:e202212413. [PMID: 36453982 DOI: 10.1002/anie.202212413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9- and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.
Collapse
Affiliation(s)
- Ying-Jie Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Liu
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun-Jin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei-Qi Cai
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Jing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ming Wang
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Brown W, Albright S, Tsang M, Deiters A. Optogenetic Protein Cleavage in Zebrafish Embryos. Chembiochem 2022; 23:e202200297. [PMID: 36196665 DOI: 10.1002/cbic.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Indexed: 01/25/2023]
Abstract
A wide array of optogenetic tools are available that allow for precise spatiotemporal control over cellular processes. These tools are particularly important to zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and light-triggered apoptosis.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Chen H, Durinck S, Patel H, Foreman O, Mesh K, Eastham J, Caothien R, Newman RJ, Roose-Girma M, Darmanis S, Warming S, Lattanzi A, Liang Y, Haley B. Population-wide gene disruption in the murine lung epithelium via AAV-mediated delivery of CRISPR-Cas9 components. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 27:431-449. [DOI: 10.1016/j.omtm.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
|
17
|
Affiliation(s)
- Sean A Dilliard
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Photoactivatable nanoCRISPR/Cas9 System Based on crRNA Reversibly Immobilized on Carbon Nanoparticles. Int J Mol Sci 2021; 22:ijms222010919. [PMID: 34681578 PMCID: PMC8539621 DOI: 10.3390/ijms222010919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Here, we proposed a new approach to engineering a photoactivatable CRISPR/Cas9 gene-editing system. The novel nanoCRISPR/Cas9 system is based on the use of auxiliary photocleavable oligodeoxyribonucleotides (PC-DNAs) complementary to crRNA. PC-DNAs contained up to three UV-sensitive linkers made of 1-(2-nitrophenyl)-1,2-ethanediol inside the oligonucleotide chain. Immobilizing PC-DNAs on the surface of carbon nanoparticles through 3′-terminal pyrene residue provided sufficient blocking of crRNA (and corresponding Cas9 activity) before UV irradiation and allows for crRNA release after UV irradiation at 365 nm, which restores Cas9 activity. We optimized the length of blocking photocleavable oligonucleotide, number of linkers, time of irradiation, and the type of carbon nanoparticles. Based on the results, we consider the nanoCRISPR/Cas9 system involving carbon-encapsulated iron nanoparticles the most promising. It provides the greatest difference of functional activity before/after irradiation and can be used in prospective for magnetic field-controlled delivery of CRISPR system into the target cells or tissues and spatiotemporal gene editing induced by UV irradiation.
Collapse
|
19
|
Zhou W, Brown W, Bardhan A, Tsang M, Deiters A. Optical Control of Base Editing and Transcription through Light‐Activated Guide RNA. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Wes Brown
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Anirban Bardhan
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Michael Tsang
- Department of Developmental Biology University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
20
|
Yang S, Ngai WSC, Chen PR. Chemical engineering of bacterial effectors for regulating cell signaling and responses. Curr Opin Chem Biol 2021; 64:48-56. [PMID: 33993047 DOI: 10.1016/j.cbpa.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 01/24/2023]
Abstract
Bacteria have evolved a variety of effector proteins to facilitate their survival and proliferation within the host environment. Continuous competition at the host-pathogen interface has empowered these effectors with unique mechanism and high specificity toward their host targets. The rich repertoire of bacterial effectors has thus provided us an attractive toolkit for investigating various cellular processes, such as signal transductions. With recent advances in protein chemistry and engineering, we now have the capability for on-demand control of protein activity with high precision. Herein, we review the development of chemically engineered bacterial effectors to control kinase-mediated signal transductions, inhibit protein translation, and direct genetic editing within host cells. We also highlight future opportunities for harnessing diverse prokaryotic effectors as powerful tools for mechanistic investigation and therapeutic intervention of eukaryotic systems.
Collapse
Affiliation(s)
- Shaojun Yang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - William Shu Ching Ngai
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|