1
|
Rago AJ, Zoi I, Gartman JA, McDaniel KA, Jana N, Liu D, Bai WJ. Mining Medicinally Relevant Bioreduction Substrates Inspired by Ligand-Based Drug Design. J Med Chem 2024. [PMID: 39051635 DOI: 10.1021/acs.jmedchem.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Exploring the scope of biocatalytic transformations in the absence of enzyme structures without extensive experimentation is a challenging task. To expand the limited substrate capacity of carrot-mediated bioreduction and hunt for new medicinally relevant ketones with minimum cost of labor and time, we deployed a practical method inspired by ligand-based drug design. Through analyzing collected literature data and building pharmacophore and reactivity prediction models, we screened a self-built virtual library of >8000 ketones bearing the most frequently used N,O,S-heterocycles and functional groups in drug discovery. Representative examples were validated, expanding the bioreduction substrate scope. The public availability of our models alongside the straightforward screening workflow makes it time-, labor-, and cost-saving to evaluate unknown bioreduction substrates for medicinal chemistry applications, especially for a large set of structurally differentiated ketones. Our studies also showcase the novelty of utilizing medicinal chemistry principles to solve a general biocatalysis problem.
Collapse
Affiliation(s)
| | - Ioanna Zoi
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | | | | | - Navendu Jana
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Dachun Liu
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Wen-Ju Bai
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Halogenation of Peptides and Proteins Using Engineered Tryptophan Halogenase Enzymes. Biomolecules 2022; 12:biom12121841. [PMID: 36551269 PMCID: PMC9775415 DOI: 10.3390/biom12121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Halogenation of bioactive peptides via incorporation of non-natural amino acid derivatives during chemical synthesis is a common strategy to enhance functionality. Bacterial tyrptophan halogenases efficiently catalyze regiospecific halogenation of the free amino acid tryptophan, both in vitro and in vivo. Expansion of their substrate scope to peptides and proteins would facilitate highly-regulated post-synthesis/expression halogenation. Here, we demonstrate novel in vitro halogenation (chlorination and bromination) of peptides by select halogenase enzymes and identify the C-terminal (G/S)GW motif as a preferred substrate. In a first proof-of-principle experiment, we also demonstrate chemo-catalyzed derivatization of an enzymatically chlorinated peptide, albeit with low efficiency. We further rationally derive PyrH halogenase mutants showing improved halogenation of the (G/S)GW motif, both as a free peptide and when genetically fused to model proteins with efficiencies up to 90%.
Collapse
|
4
|
Li EHY, Sana B, Ho T, Ke D, Ghadessy FJ, Duong HA, Seayad J. Indole and azaindole halogenation catalyzed by the RebH enzyme variant 3-LSR utilizing co-purified E. coli reductase. Front Bioeng Biotechnol 2022; 10:1032707. [PMID: 36588932 PMCID: PMC9801302 DOI: 10.3389/fbioe.2022.1032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Biocatalytic C-H halogenation is becoming increasingly attractive due to excellent catalyst-controlled selectivity and environmentally benign reaction conditions. Significant efforts have been made on enzymatic halogenation of industrial arenes in a cost-effective manner. Here we report an unprecedented enzymatic halogenation of a panel of industrially important indole, azaindole and anthranilamide derivatives using a thermostable RebH variant without addition of any external flavin reductase enzyme. The reactions were catalyzed by the RebH variant 3-LSR enzyme with the help of a co-purified E. coli reductase identified as alkyl hydroperoxide reductase F (AhpF).
Collapse
Affiliation(s)
- Eunice Hui Yen Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Barindra Sana
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore
| | - Timothy Ho
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Ding Ke
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| | - Hung A. Duong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| | - Jayasree Seayad
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| |
Collapse
|
5
|
Kelly SP, Shende VV, Flynn AR, Dan Q, Ye Y, Smith JL, Tsukamoto S, Sigman MS, Sherman DH. Data Science-Driven Analysis of Substrate-Permissive Diketopiperazine Reverse Prenyltransferase NotF: Applications in Protein Engineering and Cascade Biocatalytic Synthesis of (-)-Eurotiumin A. J Am Chem Soc 2022; 144:19326-19336. [PMID: 36223664 PMCID: PMC9831672 DOI: 10.1021/jacs.2c06631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenyltransfer is an early-stage carbon-hydrogen bond (C-H) functionalization prevalent in the biosynthesis of a diverse array of biologically active bacterial, fungal, plant, and metazoan diketopiperazine (DKP) alkaloids. Toward the development of a unified strategy for biocatalytic construction of prenylated DKP indole alkaloids, we sought to identify and characterize a substrate-permissive C2 reverse prenyltransferase (PT). As the first tailoring event within the biosynthesis of cytotoxic notoamide metabolites, PT NotF catalyzes C2 reverse prenyltransfer of brevianamide F. Solving a crystal structure of NotF (in complex with native substrate and prenyl donor mimic dimethylallyl S-thiolodiphosphate (DMSPP)) revealed a large, solvent-exposed active site, intimating NotF may possess a significantly broad substrate scope. To assess the substrate selectivity of NotF, we synthesized a panel of 30 sterically and electronically differentiated tryptophanyl DKPs, the majority of which were selectively prenylated by NotF in synthetically useful conversions (2 to >99%). Quantitative representation of this substrate library and development of a descriptive statistical model provided insight into the molecular origins of NotF's substrate promiscuity. This approach enabled the identification of key substrate descriptors (electrophilicity, size, and flexibility) that govern the rate of NotF-catalyzed prenyltransfer, and the development of an "induced fit docking (IFD)-guided" engineering strategy for improved turnover of our largest substrates. We further demonstrated the utility of NotF in tandem with oxidative cyclization using flavin monooxygenase, BvnB. This one-pot, in vitro biocatalytic cascade enabled the first chemoenzymatic synthesis of the marine fungal natural product, (-)-eurotiumin A, in three steps and 60% overall yield.
Collapse
Affiliation(s)
- Samantha P. Kelly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.,These authors contributed equally: Samantha P. Kelly, Vikram V. Shende
| | - Vikram V. Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.,These authors contributed equally: Samantha P. Kelly, Vikram V. Shende
| | - Autumn R. Flynn
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Qingyun Dan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Paik A, Paul S, Bhowmik S, Das R, Naveen T, Rana S. Recent Advances in First Row Transition Metal Mediated C‐H Halogenation of (Hetero)arenes and Alkanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aniruddha Paik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabarni Paul
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabyasachi Bhowmik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Rahul Das
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Togati Naveen
- Sardar Vallabhbhai National Institute of Technology Department of Chemistry 395007 Surat INDIA
| | - Sujoy Rana
- University of North Bengal Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India, 734013 734013 Siliguri INDIA
| |
Collapse
|
7
|
Sana B, Ho T, Kannan S, Ke D, Li EHY, Seayad J, Verma CS, Duong HA, Ghadessy FJ. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds. Chembiochem 2021; 22:2791-2798. [PMID: 34240527 PMCID: PMC8518859 DOI: 10.1002/cbic.202100210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.
Collapse
Affiliation(s)
- Barindra Sana
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Timothy Ho
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
| | - Ding Ke
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Eunice H. Y. Li
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Chandra S. Verma
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang DriveSingapore637551Singapore
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Hung A. Duong
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| |
Collapse
|
8
|
Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes. mSystems 2021; 6:e0005321. [PMID: 34042468 PMCID: PMC8269204 DOI: 10.1128/msystems.00053-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Halogenases create diverse natural products by utilizing halide ions and are of great interest in the synthesis of potential pharmaceuticals and agrochemicals. An increasing number of halogenases discovered in microorganisms are annotated as flavin-dependent halogenases (FDHs), but their chemical reactivities are markedly different and the genomic contents associated with such functional distinction have not been revealed yet. Even though the reactivity and regioselectivity of FDHs are essential in the halogenation activity, these FDHs are annotated inaccurately in the protein sequence repositories without characterizing their functional activities. We carried out a comprehensive sequence analysis and biochemical characterization of FDHs. Using a probabilistic model that we built in this study, FDHs were discovered from 2,787 bacterial genomes and 17 sediment metagenomes. We analyzed the essential genomic determinants that are responsible for substrate binding and subsequent reactions: four flavin adenine dinucleotide-binding, one halide-binding, and four tryptophan-binding sites. Compared with previous studies, our study utilizes large-scale genomic information to propose a comprehensive set of sequence motifs that are related to the active sites and regioselectivity. We reveal that the genomic patterns and phylogenetic locations of the FDHs determine the enzymatic reactivities, which was experimentally validated in terms of the substrate scope and regioselectivity. A large portion of publicly available FDHs needs to be reevaluated to designate their correct functions. Our genomic models establish comprehensive links among genotypic information, reactivity, and regioselectivity of FDHs, thereby laying an important foundation for future discovery and classification of novel FDHs. IMPORTANCE Halogenases are playing an important role as tailoring enzymes in biosynthetic pathways. Flavin-dependent tryptophan halogenases (Trp-FDHs) are among the enzymes that have broad substrate scope and high selectivity. From bacterial genomes and metagenomes, we found highly diverse halogenase sequences by using a well-trained profile hidden Markov model built from the experimentally validated halogenases. The characterization of genotype, steady-state activity, substrate scope, and regioselectivity has established comprehensive links between the information encoded in the genomic sequence and reactivity of FDHs reported here. By constructing models for accurate and detailed sequence markers, our work should guide future discovery and classification of novel FDHs.
Collapse
|
9
|
Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination. Catalysts 2021. [DOI: 10.3390/catal11040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Halogen substituents often lead to a profound effect on the biological activity of organic compounds. Flavin-dependent halogenases offer the possibility of regioselective halogenation at non-activated carbon atoms, while employing only halide salts and molecular oxygen. However, low enzyme activity, instability, and narrow substrate scope compromise the use of enzymatic halogenation as an economical and environmentally friendly process. To overcome these drawbacks, it is of tremendous interest to identify novel halogenases with high enzymatic activity and novel substrate scopes. Previously, Neubauer et al. developed a new hidden Markov model (pHMM) based on the PFAM tryptophan halogenase model, and identified 254 complete and partial putative flavin-dependent halogenase genes in eleven metagenomic data sets. In the present study, the pHMM was used to screen the bacterial associates of the Botryococcus braunii consortia (PRJEB21978), leading to the identification of several putative, flavin-dependent halogenase genes. Two of these new halogenase genes were found in one gene cluster of the Botryococcus braunii symbiont Sphingomonas sp. In vitro activity tests revealed that both heterologously expressed enzymes are active flavin-dependent halogenases able to halogenate indole and indole derivatives, as well as phenol derivatives, while preferring bromination over chlorination. Interestingly, SpH1 catalyses only monohalogenation, while SpH2 can catalyse both mono- and dihalogenation for some substrates.
Collapse
|
10
|
Neubauer PR, Pienkny S, Wessjohann L, Brandt W, Sewald N. Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. Chembiochem 2020; 21:3282-3288. [PMID: 32645255 PMCID: PMC7754283 DOI: 10.1002/cbic.202000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/16/2023]
Abstract
The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown. A predictive model with the data available for BrvH was analysed. A training set of compounds tested in vitro was docked into the active site of a complete protein model based on the X-ray structure of BrvH. The atoms not resolved experimentally were modelled by using molecular mechanics force fields to obtain this protein model. Furthermore, docking poses for the substrates and known non-substrates have been calculated. Parameters like distance, partial charge and hybridization state were analysed to derive rules for predicting activity. With this model for activity of the BrvH, a virtual screening suggested several structures for potential substrates. Some of the compounds preselected in this way were tested in vitro, and several could be verified as convertible substrates. Based on information on halogenated natural products, a new dataset was created to specifically search for natural products as substrates/products, and virtual screening in this database yielded further hits.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| | - Silke Pienkny
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Ludger Wessjohann
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Wolfgang Brandt
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| |
Collapse
|
11
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|