1
|
Fan M, Mehra M, Yang K, Chadha RS, Anber S, Kovarik ML. Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity. ACS MEASUREMENT SCIENCE AU 2024; 4:546-555. [PMID: 39430960 PMCID: PMC11487760 DOI: 10.1021/acsmeasuresciau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored. In this study, we evaluated three peptide substrate reporters for protein kinase B (PKB) in two eukaryotic microbes, Dictyostelium discoideum and Tetrahymena thermophila, which are evolutionarily distant from mammals and from each other yet express PKB homologues. All three peptide substrate reporters were phosphorylated in lysates from both organisms but with varying phosphorylation kinetics and stability. To demonstrate reporter utility, we used one to screen for and identify the previously unknown stimulus needed to activate PHK5, the PKB homologue in T. thermophila. In D. discoideum, we employed the highly quantitative nature of these assays using CE-LIF to make precise measurements of PKB activity in response to transient stimulation, drug treatment, and genetic mutation. These results underscore the broad applicability of peptide substrate reporters across diverse species while highlighting the need for further research to determine effective peptide stabilization strategies across different biological contexts.
Collapse
Affiliation(s)
| | | | | | | | - Sababa Anber
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| | - Michelle L. Kovarik
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| |
Collapse
|
2
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
3
|
Wang Q, Fu L, Zhong Y, Xu L, Yi L, He C, Kuang Y, Huang Q, Yang M. Research progress of organic fluorescent probes for lung cancer related biomarker detection and bioimaging application. Talanta 2024; 272:125766. [PMID: 38340392 DOI: 10.1016/j.talanta.2024.125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
As one of the major public health problems, cancers seriously threaten the human health. Among them, lung cancer is considered to be one of the most life-threatening malignancies. Therefore, developing early diagnosis technology and timely treatment for lung cancer is urgent. Recent research has witnessed that measuring changes of biomarkers expressed in lung cancer has practical significance. Meanwhile, we note that bioimaging with organic fluorescent probes plays an important role for its high sensitivity, real-time analysis and simplicity of operation. In the past years, kinds of organic fluorescent probes targeting lung cancer related biomarker have been developed. Herein, we summarize the research progress of organic fluorescent probes for the detection of lung cancer related biomarkers in this review, along with their design principle, luminescence mechanism and bioimaging application. Additionally, we put forward some challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Li Fu
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yingfang Zhong
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Lijing Xu
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Lin Yi
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Chen He
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Ying Kuang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Qitong Huang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
5
|
Gangemi CG, Sabapathy RT, Janovjak H. CDK6 activity in a recurring convergent kinase network motif. FASEB J 2023; 37:e22845. [PMID: 36884374 PMCID: PMC11977600 DOI: 10.1096/fj.202201344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
In humans, more than 500 kinases phosphorylate ~15% of all proteins in an emerging phosphorylation network. Convergent local interaction motifs, in which ≥two kinases phosphorylate the same substrate, underlie feedback loops and signal amplification events but have not been systematically analyzed. Here, we first report a network-wide computational analysis of convergent kinase-substrate relationships (cKSRs). In experimentally validated phosphorylation sites, we find that cKSRs are common and involve >80% of all human kinases and >24% of all substrates. We show that cKSRs occur over a wide range of stoichiometries, in many instances harnessing co-expressed kinases from family subgroups. We then experimentally demonstrate for the prototypical convergent CDK4/6 kinase pair how multiple inputs phosphorylate the tumor suppressor retinoblastoma protein (RB) and thereby hamper in situ analysis of the individual kinases. We hypothesize that overexpression of one kinase combined with a CDK4/6 inhibitor can dissect convergence. In breast cancer cells expressing high levels of CDK4, we confirm this hypothesis and develop a high-throughput compatible assay that quantifies genetically modified CDK6 variants and inhibitors. Collectively, our work reveals the occurrence, topology, and experimental dissection of convergent interactions toward a deeper understanding of kinase networks and functions.
Collapse
Affiliation(s)
- Christina G Gangemi
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health SciencesMonash UniversityVictoriaClayton/MelbourneAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia)Monash UniversityVictoriaClayton/MelbourneAustralia
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| | - Rahkesh T. Sabapathy
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health SciencesMonash UniversityVictoriaClayton/MelbourneAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia)Monash UniversityVictoriaClayton/MelbourneAustralia
- Flinders Health and Medical Research InstituteCollege of Medicine and Public Health, Flinders UniversitySouth AustraliaBedford Park/AdelaideAustralia
| |
Collapse
|
6
|
Harris R, Yang M, Schmidt C, Royet C, Singh S, Natarajan A, Morris M, Frezza C, Laman H. Fbxo7 promotes Cdk6 activity to inhibit PFKP and glycolysis in T cells. J Cell Biol 2022; 221:e202203095. [PMID: 35670764 PMCID: PMC9178409 DOI: 10.1083/jcb.202203095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Fbxo7 is associated with cancer and Parkinson's disease. Although Fbxo7 recruits substrates for SCF-type ubiquitin ligases, it also promotes Cdk6 activation in a ligase-independent fashion. We discovered PFKP, the gatekeeper of glycolysis, in a screen for Fbxo7 substrates. PFKP is an essential Cdk6 substrate in some T-ALL cells. We investigated the molecular relationship between Fbxo7, Cdk6, and PFKP, and the effect of Fbxo7 on T cell metabolism, viability, and activation. Fbxo7 promotes Cdk6-independent ubiquitination and Cdk6-dependent phosphorylation of PFKP. Importantly, Fbxo7-deficient cells have reduced Cdk6 activity, and hematopoietic and lymphocytic cells show high expression and significant dependency on Fbxo7. CD4+ T cells with reduced Fbxo7 show increased glycolysis, despite lower cell viability and activation levels. Metabolomic studies of activated CD4+ T cells confirm increased glycolytic flux in Fbxo7-deficient cells, alongside altered nucleotide biosynthesis and arginine metabolism. We show Fbxo7 expression is glucose-responsive at the mRNA and protein level and propose Fbxo7 inhibits PFKP and glycolysis via its activation of Cdk6.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Chloe Royet
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron-UMR5247, Montpellier, France
| | - Sarbjit Singh
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - May Morris
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron-UMR5247, Montpellier, France
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Heike Laman
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
8
|
Morris MC. A Toolbox of Fluorescent Peptide Biosensors to Highlight Protein Kinases in Complex Samples : focus on cyclin‐dependent kinases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- May Catherine Morris
- IBMM-UMR5247 Peptide & Proteins Faculté de Pharmacie,15 Av. Charles Flahault 34093 Montpellier FRANCE
| |
Collapse
|
9
|
Mastouri M, Baachaoui S, Mosbah A, Raouafi N. In silico screening for oligopeptides useful as capture and reporting probes for interleukin-6 biosensing. RSC Adv 2022; 12:13003-13013. [PMID: 35497015 PMCID: PMC9049833 DOI: 10.1039/d2ra01496c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
IL-6 is an important interleukin associated with inflammation and several diseases such as cancer. Evaluation of its levels in human blood sera is a critical step for an accurate diagnosis of the diseases. Our goal is to design peptides that can selectively bind in different poses with good affinities to IL-6. For this purpose, we started from the crystal structures of different IL-6/protein complexes available in the Protein Data Bank (PDB) to select short peptides in the interaction zones, in which we intentionally introduced point mutations to increase their stability and affinity. To examine their usefulness as capture and reporting probes for the IL-6 biosensing, the five peptides and their interaction with IL-6 were studied in saline aqueous solution. Molecular docking, MD, and MM-PBSA were used to investigate the affinity and stability of these complexes. The conformational changes, the distance between the mass centers, the gyration radii, and the numbers of hydrogen bonds were analyzed to select the most suitable candidates. Three peptides, namely CTE17, CAY15 and CSE25, have the highest affinities presenting significant numbers of residues that have contact frequencies greater than 50% of simulation run time and are the most promising candidates. CTE17 and CSE25 showed they can form a stable sandwich with the target protein. For sake of comparison, we examined the previously known peptides (FND20, INL19 and CEK17) having affinity to IL-6 and the affinity of the lead i.e. CSE25 to two other interleukin family members (IL-4 and to IL-10).
Collapse
Affiliation(s)
- Mohamed Mastouri
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Amor Mosbah
- BVBGR Laboratory (LR11ES31), ISBST, Biotechnopole Sidi Thabet, University of Manouba Ariana 2020 Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| |
Collapse
|
10
|
Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life (Basel) 2022; 12:life12040516. [PMID: 35455007 PMCID: PMC9026840 DOI: 10.3390/life12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) are established gameplayers in biological signalling pathways, and a large body of evidence points to their dysregulation in diseases, in particular cancer, where rewiring of PK networks occurs frequently. Fluorescent biosensors constitute attractive tools for probing biomolecules and monitoring dynamic processes in complex samples. A wide variety of genetically encoded and synthetic biosensors have been tailored to report on PK activities over the last decade, enabling interrogation of their function and insight into their behaviour in physiopathological settings. These optical tools can further be used to highlight enzymatic alterations associated with the disease, thereby providing precious functional information which cannot be obtained through conventional genetic, transcriptomic or proteomic approaches. This review focuses on fluorescent peptide biosensors, recent developments and strategies that make them attractive tools to profile PK activities for biomedical and diagnostic purposes, as well as insights into the challenges and opportunities brought by this unique toolbox of chemical probes.
Collapse
|
11
|
Sardarabadi P, Kojabad AA, Jafari D, Liu CH. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). BIOSENSORS 2021; 11:394. [PMID: 34677350 PMCID: PMC8533977 DOI: 10.3390/bios11100394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. Despite advancements in chemotherapy and targeted therapies, the 5-year survival rate has remained at 16% for the past forty years. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assess earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally, biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, extracellular vesicles (EVs) and whole cells. Here, we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Davod Jafari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
12
|
Pellerano M, Morris MC. Fluorescent Peptide Biosensors for Probing CDK Kinase Activity in Cell Extracts. Methods Mol Biol 2021; 2329:39-50. [PMID: 34085214 DOI: 10.1007/978-1-0716-1538-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Fluorescent biosensors can report on the relative abundance, activity, or conformation of biomolecules and analytes through changes in fluorescence emission. A wide variety of genetically-encoded and synthetic biosensors have been developed to monitor protein kinase activity. We have focused on the design, engineering and characterization of fluorescent peptide biosensors of cyclin-dependent kinases (CDKs) that constitute attractive cancer biomarkers and pharmacological targets. In this chapter, we describe the CDKACT fluorescent peptide biosensor technology and its application to assess the relative kinase activity of CDKs in vitro, either using recombinant proteins or cell extracts as a more complex source of kinase. This technology offers a straightforward means of comparing CDK activity in different cell lines and evaluating the specific impact of treatments intended to target kinase activity in a physiologically relevant environment.
Collapse
Affiliation(s)
- Morgan Pellerano
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Faculté de Pharmacie, Université de Montpellier, Montpellier, France.
| |
Collapse
|