1
|
Shepperson OA, Harris PWR, Brimble MA, Cameron AJ. Thanatin and vinyl sulfide analogues as narrow spectrum antimicrobial peptides that synergise with polymyxin B. Front Pharmacol 2024; 15:1487338. [PMID: 39564120 PMCID: PMC11573584 DOI: 10.3389/fphar.2024.1487338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Thanatin is a β-hairpin antimicrobial peptide cyclised by a single disulfide bond that has shown potent broad-spectrum activity towards bacterial and fungal pathogens. Towards Gram-negative species, thanatin acts both by forming trans-membranal pores and inhibiting outer membrane biogenesis by binding to LptA and blocking lipopolysaccharide (LPS) transport. Inspired by previous modifications of thanatin, an analogue was prepared which demonstrated potent but selective activity towards E. coli. Furthermore, this compound was shown to act in synergy with the highly potent FDA-approved lipopeptide antibiotic polymyxin B, which engages LPS at the cytoplasmic membrane. Four analogues of thanatin in which the disulfide was substituted for vinyl sulfide bridge mimetics were prepared, all of which retained similar secondary structures. Two of these retained substantial potency and selectivity towards E. coli. Importantly, synergy with polymyxin B was also maintained for the lead analogue. The vinyl sulfide potentially offers a facile replacement strategy for labile disulfide bonds and the selective activity and drug synergy of the reported thanatin analogues is promising for the development of narrow spectrum antimicrobials with reduced likelihood of resistance emerging in clinical settings.
Collapse
Affiliation(s)
- Oscar A Shepperson
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, Auckland, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Pacini L, Muthyala M, Aguiar L, Zitterbart R, Rovero P, Papini AM. Optimization of peptide synthesis time and sustainability using novel eco-friendly binary solvent systems with induction heating on an automated peptide synthesizer. J Pept Sci 2024; 30:e3605. [PMID: 38660732 DOI: 10.1002/psc.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and β-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.
Collapse
Affiliation(s)
- Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | | | - Luisa Aguiar
- Gyros Protein Technologies Inc., Tucson, Arizona, USA
| | | | - Paolo Rovero
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Kokollari A, Werner M, Lindner C, Pham TL, Thomas F. Rapid On-Resin N-Formylation of Peptides as One-Pot Reaction. Chembiochem 2023; 24:e202300571. [PMID: 37695727 DOI: 10.1002/cbic.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
N-formylation is a common pre- and post-translational modification of the N-terminus or the lysine side chain of peptides and proteins that plays a role in the initiation of immune responses, gene expression, or epigenetics. Despite its high biological relevance, protocols for the chemical N-formylation of synthetic peptides are scarce. The few available methods are elaborate in their execution and the yields are highly sequence-dependent. We present a rapid, easy-to-use one-pot procedure that runs at room temperature and can be used to formylate protected peptides at both the N-terminus and the lysine side chain on the resin in near-quantitative yields. Only insensitive, storage-stable standard chemicals - formic acid, acetic anhydride, pyridine and DMF - are used. Formylation works for both short and long peptides of up to 34 amino acids and over the spectrum of canonical amino acids.
Collapse
Affiliation(s)
- Agon Kokollari
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marius Werner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christina Lindner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Pham TL, Zilke J, Müller CC, Thomas F. The CSY-protecting group in the microwave-assisted synthesis of aggregation-prone peptides. RSC Chem Biol 2022; 3:426-430. [PMID: 35441139 PMCID: PMC8985196 DOI: 10.1039/d1cb00252j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
This report describes the application of cyanosulfurylide (CSY)-protected aspartatic acid building blocks in microwave-assisted synthesis of aggregation-prone protein domains. We present a synthesis of Fmoc-Asp(CSY)-OH on a multigram scale, as...
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Jennifer Zilke
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | | | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
6
|
Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals. CHEMSUSCHEM 2021; 14:5417-5423. [PMID: 34644441 PMCID: PMC9298775 DOI: 10.1002/cssc.202102011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven "mini-plant" centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals.
Collapse
Affiliation(s)
- Tom M. Masson
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Stefan D. A. Zondag
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Koen P. L. Kuijpers
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Technology & EngineeringJanssen R&DTurnhoutseweg 302340BeerseBelgium
| | - Dario Cambié
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryStimuli-responsive Functional Materials & DevicesEindhoven University of TechnologyGroene Loper 3, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Timothy Noël
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| |
Collapse
|
7
|
Reusche V, Thomas F. Effect of Methionine Sulfoxide on the Synthesis and Purification of Aggregation-Prone Peptides. Chembiochem 2021; 22:1779-1783. [PMID: 33493390 PMCID: PMC8252385 DOI: 10.1002/cbic.202000865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Indexed: 12/14/2022]
Abstract
A two-step synthesis for methionine-containing hydrophobic and/or aggregation-prone peptides is presented that takes advantage of the reversibility of methionine oxidation. The use of polar methionine sulfoxide as a building block in solid-phase peptide synthesis improves the synthesis quality and yields the crude peptide, with significantly improved solubility compared to the reduced species. This facilitates the otherwise often laborious peptide purification by high-performance liquid chromatography. The subsequent reduction proceeds quantitatively. This approach has been optimised with the methionine-rich Tar-DNA-binding protein 43 (307-347), but is also more generally applicable, as demonstrated by the syntheses of human calcitonin and two aggregation-prone peptides from the human prion protein.
Collapse
Affiliation(s)
- Vanessa Reusche
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsIm Neuenheimer Feld 22569120HeidelbergGermany
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstrasse 237077GöttingenGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsIm Neuenheimer Feld 22569120HeidelbergGermany
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|