1
|
Xu L, Wang C, Xu W, Xing L, Zhou J, Pu J, Fu M, Lu L, Jiang S, Wang Q. A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies. Int J Mol Sci 2023; 24:ijms24119779. [PMID: 37298729 DOI: 10.3390/ijms24119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Leppkes J, Dimos N, Loll B, Hohmann T, Dyrks M, Wieseke A, Keller BG, Koksch B. Fluorine-induced polarity increases inhibitory activity of BPTI towards chymotrypsin. RSC Chem Biol 2022; 3:773-782. [PMID: 35755190 PMCID: PMC9175108 DOI: 10.1039/d2cb00018k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Substituting the P1 position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to alter numerous properties of peptides and proteins and thus are of interest in the context of BPTI. In our study, we systematically investigated the site-specific incorporation of non-canonical amino acids into BPTI by microwave-assisted solid-phase peptide synthesis (SPPS). Inhibitor activity of the variants was tested towards the serine protease α-chymotrypsin. We observed enhanced inhibition of two fluorinated BPTIs compared to wild type and hydrocarbon variants. To further investigate the complexes, we performed X-ray structure analysis. Our findings underline the power fluorine offers as a tool in protein engineering to beneficially alter the effects on phenomena as protein-protein interactions.
Collapse
Affiliation(s)
- Jakob Leppkes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Nicole Dimos
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Structural Biochemistry, Freie Universität Berlin Takustr. 6 14195 Berlin Germany
| | - Bernhard Loll
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Structural Biochemistry, Freie Universität Berlin Takustr. 6 14195 Berlin Germany
| | - Thomas Hohmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Michael Dyrks
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Ariane Wieseke
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Bettina G Keller
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| |
Collapse
|
3
|
Gawor A, Gajewski Z, Paczek L, Czarkowska-Paczek B, Konopka A, Wryk G, Bulska E. Fluorine-Containing Drug Administration in Rats Results in Fluorination of Selected Proteins in Liver and Brain Tissue. Int J Mol Sci 2022; 23:ijms23084202. [PMID: 35457021 PMCID: PMC9028303 DOI: 10.3390/ijms23084202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022] Open
Abstract
In many pharmaceuticals, a hydrogen atom or hydroxyl group is replaced by a fluorine to increase bioavailability and biostability. The fate of fluorine released from fluorine-containing drugs is not well investigated. The aim of this study was to examine possible fluorination of proteins in rat liver and brain after administration of the fluorinated drug cinacalcet. We assigned 18 Wistar rats to a control group (n = 6) and a group treated with cinacalcet (2 mg kg−1/body weight, 5 days/week), divided into 7 day (n = 6) and 21 day (n = 6) treatment subgroups. Fluorinated proteins were identified using a free proteomics approach; chromatographic separation and analysis by high-resolution mass spectrometry; peptide/protein identification using the Mascot search algorithm; manual verification of an experimentally generated MS/MS spectrum with the theoretical MS/MS spectrum of identified fluorinated peptides. Three fluorinated proteins (spectrin beta chain; carbamoyl-phosphate synthase [ammonia], mitochondrial; 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 1) were identified in the liver and four (spectrin beta chain, dihydropyrimidinase-related protein 4, prominin-2, dihydropyrimidinase-related protein 4) in the brain tissue after 21 days of cinacalcet treatment, but not in the control group. Introduction of fluorine into an organism by administration of fluorinated drugs results in tissue-specific fluorination of proteins.
Collapse
Affiliation(s)
- Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.K.); (G.W.); (E.B.)
| | - Zdzislaw Gajewski
- Center for Translational Medicine, Warsaw University of Life Science, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bozena Czarkowska-Paczek
- Department of Clinical Nursing, Medical University of Warsaw, Ciolka Street 27, 01-445 Warsaw, Poland
- Correspondence: ; Tel./Fax: +48-22-836-0972
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.K.); (G.W.); (E.B.)
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.K.); (G.W.); (E.B.)
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.K.); (G.W.); (E.B.)
| |
Collapse
|