1
|
Niu D, Wu X, Zhang Y, Wang X, Shiu-Hin Chan D, Jing S, Wong CY, Wang W, Leung CH. Tailoring obeticholic acid activity by iridium(III) complex conjugation to develop a farnesoid X receptor probe. J Adv Res 2024:S2090-1232(24)00483-1. [PMID: 39490736 DOI: 10.1016/j.jare.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is a crucial regulator in the intestine, maintaining bile acid homeostasis. Inhibiting intestinal FXR shows promise in managing inflammatory bowel and liver diseases by reducing bile acid accumulation. Additionally, changes in FXR expression could serve as a potential biomarker for intestinal diseases. Therefore, developing an imaging probe for FXR holds significant potential for the early detection, simultaneous treatment, and monitoring of FXR-related diseases. OBJECTIVES The study aimed to develop a bioimaging probe for FXR by conjugating obeticholic acid (OCA), an FXR agonist, to an iridium(III) complex, and to investigate its application for targeting FXR in intestinal cells. METHODS OCA was conjugated to an iridium(III) complex to generate the novel complex 1. The effect of complex 1 on FXR activity, nuclear translocation, and downstream targets was investigated in intestinal epithelial cells using various biochemical and cellular assays. Additionally, the photophysical properties of complex 1 were assessed for FXR imaging. RESULTS Complex 1 retained the desirable photophysical properties for monitoring FXR in intestinal cells while reversing OCA's activity from agonistic to antagonistic. It disrupted FXR-RXR heterodimerization, inhibited FXR nuclear translocation, and downregulated downstream targets responsible for bile acid absorption, transport, and metabolism in intestinal epithelial cells. CONCLUSION The study successfully developed an imaging probe and modulator of FXR by conjugating OCA to an iridium(III) complex. Complex 1 retained the favorable photophysical properties of the iridium(III) complex, while reversing OCA's activity from agonistic to antagonistic. The findings highlight the exciting application of using metals to tailor the activity of nuclear receptor modulators in living systems.
Collapse
Affiliation(s)
- Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China; Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiaolei Wu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yuxin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China; Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | | | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China; Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
2
|
Sanz-Villafruela J, Bermejo-Casadesús C, Riesco-Llach G, Iglesias M, Martínez-Alonso M, Planas M, Feliu L, Espino G, Massaguer A. Bombesin-Targeted Delivery of β-Carboline-Based Ir(III) and Ru(II) Photosensitizers for a Selective Photodynamic Therapy of Prostate Cancer. Inorg Chem 2024; 63:19140-19155. [PMID: 39361042 PMCID: PMC11483813 DOI: 10.1021/acs.inorgchem.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Despite advances in Ir(III) and Ru(II) photosensitizers (PSs), their lack of selectivity for cancer cells has hindered their use in photodynamic therapy (PDT). We disclose the synthesis and characterization of two pairs of Ir(III) and Ru(II) polypyridyl complexes bearing two β-carboline ligands (N^N') functionalized with -COOMe (L1) or -COOH (L2), resulting in PSs of formulas [Ir(C^N)2(N^N')]Cl (Ir-Me: C^N = ppy, N^N' = L1; Ir-H: C^N = ppy, N^N' = L2) and [Ru(N^N)2(N^N')](Cl)2 (Ru-Me: N^N = bpy, N^N' = L1; Ru-H: N^N = bpy, N^N' = L2). To enhance their selectivity toward cancer cells, Ir-H and Ru-H were coupled to a bombesin derivative (BN3), resulting in the metallopeptides Ir-BN and Ru-BN. Ir(III) complexes showed higher anticancer activity than their Ru(II) counterparts, particularly upon blue light irradiation, but lacked cancer cell selectivity. In contrast, Ir-BN and Ru-BN exhibited selective photocytoxicity against prostate cancer cells, with a lower effect against nonmalignant fibroblasts. All compounds generated ROS and induced severe mitochondrial toxicity upon photoactivation, leading to apoptosis. Additionally, the ability of Ir-Me to oxidize NADH was demonstrated, suggesting a mechanism for mitochondrial damage. Our findings indicated that the conjugation of metal PSs with BN3 creates efficient PDT agents, achieving selectivity through targeting bombesin receptors and local photoactivation.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Cristina Bermejo-Casadesús
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| | - Gerard Riesco-Llach
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Mònica Iglesias
- Universitat
de Girona, Departament de Química,
Facultat de Ciències, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Marta Martínez-Alonso
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Marta Planas
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Lidia Feliu
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Gustavo Espino
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Anna Massaguer
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| |
Collapse
|
3
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
4
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
5
|
Labra-Vázquez P, Rocha E, Xiao Y, Tassé M, Duhayon C, Farfán N, Santillan R, Gibot L, Lacroix PG, Malfant I. A Trojan horse approach for enhancing the cellular uptake of a ruthenium nitrosyl complex. Dalton Trans 2023; 52:18177-18193. [PMID: 37997689 DOI: 10.1039/d3dt03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (EE), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing EE (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Erika Rocha
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Yue Xiao
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Ciudad de México, Mexico
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse, III - Paul Sabatier, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| |
Collapse
|
6
|
Wang Y, Mesdom P, Purkait K, Saubaméa B, Burckel P, Arnoux P, Frochot C, Cariou K, Rossel T, Gasser G. Ru(ii)/Os(ii)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours. Chem Sci 2023; 14:11749-11760. [PMID: 37920359 PMCID: PMC10619633 DOI: 10.1039/d3sc03932c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Kallol Purkait
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité F-75006 Paris France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à; l'Anthropocène des Eléments et Contaminants Emergents 75005 Paris France
| | | | | | - Kevin Cariou
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Thibaud Rossel
- Institute of Chemistry, University of Neuchâtel Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| |
Collapse
|
7
|
Wang Y, Felder PS, Mesdom P, Blacque O, Mindt TL, Cariou K, Gasser G. Towards Ruthenium(II)-Rhenium(I) Binuclear Complexes as Photosensitizers for Photodynamic Therapy. Chembiochem 2023; 24:e202300467. [PMID: 37526951 DOI: 10.1002/cbic.202300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Patrick S Felder
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Olivier Blacque
- University of Zurich, Department of Chemistry, CH-8057, Zurich, Switzerland
| | - Thomas L Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
- Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
8
|
Vinck R, Dömötör O, Karges J, Jakubaszek M, Seguin J, Tharaud M, Guérineau V, Cariou K, Mignet N, Enyedy ÉA, Gasser G. In Situ Bioconjugation of a Maleimide-Functionalized Ruthenium-Based Photosensitizer to Albumin for Photodynamic Therapy. Inorg Chem 2023; 62:15510-15526. [PMID: 37708255 DOI: 10.1021/acs.inorgchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Johanne Seguin
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Mickaël Tharaud
- Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, Institut de Physique du Globe de Paris, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| |
Collapse
|
9
|
Kumar S, Riisom M, Jamieson SMF, Kavianinia I, Harris PWR, Metzler-Nolte N, Brimble MA, Hartinger CG. On-Resin Conjugation of the Ruthenium Anticancer Agent Plecstatin-1 to Peptide Vectors. Inorg Chem 2023; 62:14310-14317. [PMID: 37611203 DOI: 10.1021/acs.inorgchem.3c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ruthenium piano-stool complexes have been explored for their anticancer activity and some promising compounds have been reported. Herein, we conjugated a derivative of plecstatin-1 to peptides in order to increase their cancer cell targeting ability. For this purpose, plecstatin-1 was modified at the arene ligand to introduce a functional amine handle (3), which resulted in a compound that showed similar activity in an in vitro anticancer activity assay. The cell-penetrating peptide TAT48-60, tumor-targeting neurotensin8-13, and plectin-targeting peptide were functionalized with succinyl or β-Ala-succinyl linkers under standard solid-phase peptide synthesis (SPPS) conditions to spatially separate the peptide backbones from the bioactive metal complexes. These modifications allowed for conjugating precursor 3 to the peptides on resin yielding the desired metal-peptide conjugates (MPCs), as confirmed by high-performance liquid chromatography (HPLC), NMR spectroscopy, and mass spectrometry (MS). The MPCs were studied for their behavior in aqueous solution and under acidic conditions and resembled that of the parent compound plecstatin-1. In in vitro anticancer activity studies in a small panel of cancer cell lines, the TAT-based MPCs showed the highest activity, while the other MPCs were virtually inactive. However, the MPCs were significantly less active than the small molecules plecstatin-1 and 3, which can be explained by the reduced cell uptake as determined by inductively coupled plasma MS (ICP-MS). Although the MPCs did not display potent anticancer activities, the developed conjugation strategy can be extended toward other metal complexes, which may be able to utilize the targeting properties of peptides.
Collapse
Affiliation(s)
- Saawan Kumar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Karges J. Encapsulation of Ru(II) Polypyridine Complexes for Tumor-Targeted Anticancer Therapy. BME FRONTIERS 2023; 4:0024. [PMID: 37849670 PMCID: PMC10392611 DOI: 10.34133/bmef.0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023] Open
Abstract
Ru(II) polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical, photochemical, and biological properties. Despite their promising therapeutic profile, the vast majority of compounds are associated with poor water solubility and poor cancer selectivity. Among the different strategies employed to overcome these pharmacological limitations, many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II) polypyridine complexes into nanoparticles. This article highlights recent developments in the design, preparation, and physicochemical properties of Ru(II) polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
11
|
Wang N, Ali A, Liu Z, Chi H, Lv Z, Zhao X, Zhang Z, Hao H, Zhang Y, Rahman FU. Monofunctional dimetallic Ru(η6-arene) complexes inhibit NOTCH1 signaling pathway and synergistically enhance anticancer effect in combination with cisplatin or vitamin C. Eur J Med Chem 2023; 258:115536. [PMID: 37295260 DOI: 10.1016/j.ejmech.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 μM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.
Collapse
Affiliation(s)
- Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huiqin Chi
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|