1
|
Abu-El-Rub E, Khaswaneh RR, Almahasneh FA, Almazari R, Alzu’bi A. Adipose Tissue and Bone Marrow-Derived Mesenchymal Stem Cells are not Really the Same: Investigating the Differences in Their Immunomodulatory, Migratory, and Adhesive Profile. Biochem Genet 2024. [DOI: 10.1007/s10528-024-10724-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 09/03/2024]
|
2
|
Danev N, Li G, Duan J(E, Van de Walle GR. Comparative transcriptomic analysis of bovine mesenchymal stromal cells reveals tissue-source and species-specific differences. iScience 2024; 27:108886. [PMID: 38318381 PMCID: PMC10838956 DOI: 10.1016/j.isci.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as therapeutics, but their efficacy varies due to cellular heterogeneity, which is not fully understood. After characterizing donor-matched bovine MSC from adipose tissue (AT), bone marrow (BM), and peripheral blood (PB), we performed single-cell RNA sequencing (scRNA-seq) to evaluate overarching similarities and differences across these three tissue-derived MSCs. Next, the transcriptomic profiles of the bovine MSCs were compared to those of equine MSCs, derived from the same tissue sources and previously published by our group, and revealed species-specific differences. Finally, the transcriptomic profile from bovine BM-MSCs was compared to mouse and human BM-MSCs and demonstrated that bovine BM-MSCs share more common functionally relevant gene expression profiles with human BM-MSCs than compared to murine BM-MSCs. Collectively, this study presents the cow as a potential non-traditional animal model for translational MSC studies based on transcriptomic profiles similar to human MSCs.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jingyue (Ellie) Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
[Biological characteristics of sheep peripheral blood mesenchymal stem cell]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 36533347 PMCID: PMC9761825 DOI: 10.19723/j.issn.1671-167x.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To obtain eripheral blood mesenchymal stem cells (PBMSCs) from sheep and rabbits by continuous mobilization of granulocyte colony-stimulating factor (G-CSF), and by comparing the success rates, cell yields and biological characteristics of the two sources of PBMSCs, and to provide the experimental basis for the preclinical study of PBMSCs transplantation to repair articular cartilage injury and cartilage tissue engineering. METHODS Through morphological characteristics, flow cytometry analysis of its surface markers, and induction of trilineage differentiation of the two cells in vitro (ie: adipogenic differentiation, osteogenic differentiation, chondrogenic differentiation), the obtained cells were finally confirmed to be PBMSCs. The colony-forming units (CFUs) and the acquisition success rates of the two PBMSCs were counted and compared, and the production of the second generation of the two PBMSCs was counted and compared by hemocytometer, and the cell counting kit-8 was used to detect the doubling time of the two PBMSCs, and the results of trilineage differentiation were quantitatively analyzed by image processing. RESULTS Microscopically, the PBMSCs of fusiform sheep and rabbits were arranged in fish group, and the second generation of sheep and rabbit PBMSCs expressed CD44 and CD90, but not CD34 and CD45. The induction of trilineage differentiation of the two cells in vitro were successful. The CFUs of primary sheep and rabbits PBMSCs were: 7.27±1.56, 5.73±1.62, and the success rate of acquisition of sheep and rabbits PBMSCs were 78.57% and 36.67%. The number of the second-generation sheep and rabbits PBMSCs that obtained per milliliter of peripheral blood were: 29 582±2 138, 26 732±2 286, and the cell doubling times (h) of the third-generation sheep and rabbits PBMSCs were: 22.32±0.28, 33.21±0.64, the cell doubling time (h) of the fourth generation sheep and rabbits PBMSCs were: 23.62±0.56, 35.30±0.38, and the quantitative lipid ratio of sheep and rabbit PBMSCs were: 7.77%±3.81%, 17.05%±1.52%, sheep and rabbit PBMSCs chondroglobus acid mucopolysaccharide positive ratios were: 11.67%±0.53%, 8.14%±0.57%. There were statistical differences among the above groups (P < 0.05). CONCLUSION The continuous mobilization of G-CSF to obtain sheep PBMSCs is more efficient. Sheep PBMSCs have more abundant yield and stronger proliferation ability.Sheep PBMSCs can produce more acidic mucopolysaccharides and have lower adipogenic abi-lity under appropriate conditions. Sheep PBMSCs have good research prospects in repair of articular cartilage injury with autologous stem cell transplantation and preclinical animal in vivo experiment of cartilage tissue engineering.This experiment provides further experimental basis for this kind of research.
Collapse
|
5
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
6
|
Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. NPJ Regen Med 2022; 7:61. [PMID: 36261464 PMCID: PMC9582223 DOI: 10.1038/s41536-022-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL− MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.
Collapse
|
7
|
El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors? Front Immunol 2021; 12:643170. [PMID: 33732263 PMCID: PMC7959804 DOI: 10.3389/fimmu.2021.643170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of the autoimmune rheumatological diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is complex with the involvement of several immune cell populations spanning both innate and adaptive immunity including different T-lymphocyte subsets and monocyte/macrophage lineage cells. Despite therapeutic advances in RA and SLE, some patients have persistent and stubbornly refractory disease. Herein, we discuss stromal cells' dual role, including multipotent mesenchymal stromal cells (MSCs) also used to be known as mesenchymal stem cells as potential protagonists in RA and SLE pathology and as potential therapeutic vehicles. Joint MSCs from different niches may exhibit prominent pro-inflammatory effects in experimental RA models directly contributing to cartilage damage. These stromal cells may also be key regulators of the immune system in SLE. Despite these pro-inflammatory roles, MSCs may be immunomodulatory and have potential therapeutic value to modulate immune responses favorably in these autoimmune conditions. In this review, the complex role and interactions between MSCs and the haematopoietically derived immune cells in RA and SLE are discussed. The harnessing of MSC immunomodulatory effects by contact-dependent and independent mechanisms, including MSC secretome and extracellular vesicles, is discussed in relation to RA and SLE considering the stromal immune microenvironment in the diseased joints. Data from translational studies employing MSC infusion therapy against inflammation in other settings are contextualized relative to the rheumatological setting. Although safety and proof of concept studies exist in RA and SLE supporting experimental and laboratory data, robust phase 3 clinical trial data in therapy-resistant RA and SLE is still lacking.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dennis McGonagle
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Elena Jones
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
8
|
Torres Crigna A, Uhlig S, Elvers-Hornung S, Klüter H, Bieback K. Human Adipose Tissue-Derived Stromal Cells Suppress Human, but Not Murine Lymphocyte Proliferation, via Indoleamine 2,3-Dioxygenase Activity. Cells 2020; 9:E2419. [PMID: 33167329 PMCID: PMC7694333 DOI: 10.3390/cells9112419] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over recent years, mesenchymal stromal cells (MSC) have gained immense attraction in immunotherapy, regenerative medicine and tissue engineering. MSC microenvironment modulation occurs through synergy of direct cell-cell contact, and secreted soluble factors and extracellular vesicles (EV). MSC-derived EV have been suggested as cell-free immunomodulatory alternative to MSC; however, previous findings have challenged this. Furthermore, recent data suggest that evaluating the mechanism of action of human MSC (hMSC) in animal models might promote adverse immune reactions or lack of functionality due to xeno-incompatibilities. In this study, we first assessed the immunomodulatory strength of different human MSC sources on in vitro stimulated T cells and compared this to interferon-gamma (IFNγ) primed MSC conditioned medium (CM) and EV. Second, we addressed the main molecular mechanisms, and third, we assessed the MSC in vitro immunosuppressive effect across interspecies barriers. We identified human adipose tissue-derived stromal cells (ASC) with strongest immunomodulatory strength, followed by bone marrow (BM) and cord blood-derived MSC (CB). Whilst CM from primed ASC managed to exert analogous effects as their cellular counterpart, EV derived thereof did not, reproducing previous findings. IFNγ-induced indoleamine 2,3-dioxygenase (IDO) activity was identified as key mechanism to suppress human lymphocyte proliferation, as in the presence of the IDO inhibitor epacadostat (Epac) a stimulation of proliferation was seen. In addition, we revealed MSC immunosuppressive effects to be species-specific, because human cells failed to suppress murine lymphocyte proliferation. In summary, ASC were the strongest immunomodulators with the IDO-kynurenine pathway being key within the human system. Importantly, the in vitro lack of interspecies immunomodulatory strength suggests that preclinical data need to be carefully interpreted especially when considering a possible translation to clinical field.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (A.T.C.); (S.E.-H.); (H.K.)
| | - Stefanie Uhlig
- FlowCore Mannheim Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Susanne Elvers-Hornung
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (A.T.C.); (S.E.-H.); (H.K.)
| | - Harald Klüter
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (A.T.C.); (S.E.-H.); (H.K.)
- Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (A.T.C.); (S.E.-H.); (H.K.)
- FlowCore Mannheim Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
9
|
The protective effect of human adiposederived mesenchymal stem cells on cisplatin-induced nephrotoxicity is dependent on their level of expression of heme oxygenase-1. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The therapeutic efficacy of adipose mesenchymal stem cells (Ad-MSCs) for acute kidney injury (AKI) has been investigated extensively, and the anti-apoptotic, anti-inflammatory, and proangiogenic effects of heme oxygenase-1 (HO-1) reportedly ameliorate AKI. We hypothesized that the therapeutic efficacy of Ad-MSCs is dependent on their expression level of HO-1. The viability and migration ability of cisplatin-treated human renal proximal tubular epithelial cells were assessed. Sprague–Dawley rats were divided into control, cisplatin (10 mg/kg), and cisplatin plus Ad MSCs (with high and low HO-1 expression) groups. The HO-1 expression level in hAd-MSCs increased with increasing passage number, peaking at passage 4 and decreasing thereafter. The viability and migratory ability of hAd-MSCs with high HO-1 expression were greater than those of hAd-MSCs with low HO-1 expression. Renal tubular toxicity in cisplatin-treated rats was ameliorated by administration of hAd-MSCs with high HO-1 expression, although the levels of blood urea nitrogen and serum creatinine did not differ according to the level of HO-1 expression. The magnitude of reactive oxygen species induced DNA damage was lower in hAd-MSCs with high HO-1 expression than in those with low HO-1 expression. Administration of hAd-MSCs significantly suppressed cisplatin induced apoptosis. Also, hAd-MSCs with high HO-1 expression were more resistant to cisplatin-induced apoptosis than were those with low HO-1 expression. hAd MSCs with high HO-1 expression have therapeutic potential for cisplatin induced nephrotoxicity, based on our in vitro and in vivo results. These findings will facilitate the development of novel therapeutic strategies for cisplatin-induced AKI.
Collapse
|
10
|
Bertheuil N, Chaput B, Ménard C, Varin A, Laloze J, Watier E, Tarte K. Adipose mesenchymal stromal cells: Definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery. ANN CHIR PLAST ESTH 2019; 64:1-10. [DOI: 10.1016/j.anplas.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
11
|
Ng J, Hynes K, White G, Sivanathan KN, Vandyke K, Bartold PM, Gronthos S. Immunomodulatory Properties of Induced Pluripotent Stem Cell-Derived Mesenchymal Cells. J Cell Biochem 2016; 117:2844-2853. [DOI: 10.1002/jcb.25596] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Ng
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Kim Hynes
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Gregory White
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Kisha Nandini Sivanathan
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- Centre for Clinical and Experimental Transplantation; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Kate Vandyke
- Myeloma Research Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- South Australian Health and Medical Research Institute; Adelaide South Australia Australia
- SA Pathology; Adelaide; South Australia Australia
| | - Peter Mark Bartold
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide South Australia Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory; School of Medicine; Faculty of Health Sciences; University of Adelaide; Adelaide South Australia Australia
- South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| |
Collapse
|
12
|
Mattar P, Bieback K. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Front Immunol 2015; 6:560. [PMID: 26579133 PMCID: PMC4630659 DOI: 10.3389/fimmu.2015.00560] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Philipp Mattar
- Stem Cell Laboratory, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University , Heidelberg , Germany ; German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| | - Karen Bieback
- Stem Cell Laboratory, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University , Heidelberg , Germany ; German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| |
Collapse
|
13
|
Enhanced renoprotective effect of HIF-1α modified human adipose-derived stem cells on cisplatin-induced acute kidney injury in vivo. Sci Rep 2015; 5:10851. [PMID: 26044673 PMCID: PMC4456661 DOI: 10.1038/srep10851] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/23/2015] [Indexed: 12/26/2022] Open
Abstract
Current therapeutic options for acute kidney injury (AKI) are limited to the use of supportive measures and dialysis. A recent approach that has sparked great interest and gained enormous popularity is the implantation of stem cells to repair acutely damaged kidney organ. Hypoxia inducible factor-1α (HIF-1α) is effective in protecting the kidney from ischemia and nephrotoxicity. In this study, we investigated whether HIF-1α-modified adipose-derived stem cells (ASCs) had an enhanced protective effect on cisplatin-induced kidney injury in vivo. Cisplatin-induced AKI was established in nude mice. Our study demonstrated that HIF-1α-modified ASCs obviously promoted the recovery of renal function, ameliorated the extent of histologic injury and reduced renal apoptosis and inflammation, but HIF-1α-modified ASCs homed to kidney tissues at very low levels after transplantation. In addition, we also found that HIF-1α-modified ASCs significantly increased HO-1 expression in cisplatin-induced AKI in vivo. Thus, our study indicated HIF-1α-modified ASCs implantation could provide advanced benefits in the protection again AKI, which will contribute to developing a new therapeutic strategy for the treatment of AKI.
Collapse
|
14
|
Human adipose-derived stem cells modified by HIF-1α accelerate the recovery of cisplatin-induced acute renal injury in vitro. Biotechnol Lett 2013; 36:667-76. [DOI: 10.1007/s10529-013-1389-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
|
15
|
Szepes M, Benkő Z, Cselenyák A, Kompisch KM, Schumacher U, Lacza Z, Kiss L. Comparison of the direct effects of human adipose- and bone-marrow-derived stem cells on postischemic cardiomyoblasts in an in vitro simulated ischemia-reperfusion model. Stem Cells Int 2013; 2013:178346. [PMID: 23853609 PMCID: PMC3703900 DOI: 10.1155/2013/178346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
Regenerative therapies hold a promising and exciting future for the cure of yet untreatable diseases, and mesenchymal stem cells are in the forefront of this approach. However, the relative efficacy and the mechanism of action of different types of mesenchymal stem cells are still incompletely understood. We aimed to evaluate the effects of human adipose- (hASC) and bone-marrow-derived stem cells (hBMSCs) and adipose-derived stem cell conditioned media (ACM) on the viability of cardiomyoblasts in an in vitro ischemia-reperfusion (I-R) model. Flow cytometric viability analysis revealed that both cell treatments led to similarly increased percentages of living cells, while treatment with ACM did not (I-R model: 12.13 ± 0.75%; hASC: 24.66 ± 2.49%; hBMSC: 25.41 ± 1.99%; ACM: 13.94 ± 1.44%). Metabolic activity measurement (I-R model: 0.065 ± 0.033; hASC: 0.652 ± 0.089; hBMSC: 0.607 ± 0.059; ACM: 0.225 ± 0.013; arbitrary units) and lactate dehydrogenase assay (I-R model: 0.225 ± 0.006; hASC: 0.148 ± 0.005; hBMSC: 0.146 ± 0.004; ACM: 0.208 ± 0.009; arbitrary units) confirmed the flow cytometric results while also indicated a slight beneficial effect of ACM. Our results highlight that mesenchymal stem cells have the same efficacy when used directly on postischemic cells, and differences found between them in preclinical and clinical investigations are rather related to other possible causes such as their immunomodulatory or angiogenic properties.
Collapse
Affiliation(s)
- Mónika Szepes
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Zsolt Benkő
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Attila Cselenyák
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Kai Michael Kompisch
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Levente Kiss
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| |
Collapse
|