1
|
Johnson J, Mohsin S, Houser SR. Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. Int J Mol Sci 2021; 22:ijms22157764. [PMID: 34360531 PMCID: PMC8345975 DOI: 10.3390/ijms22157764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac diseases such as myocardial infarction (MI) can lead to adverse remodeling and impaired contractility of the heart due to widespread cardiomyocyte death in the damaged area. Current therapies focus on improving heart contractility and minimizing fibrosis with modest cardiac regeneration, but MI patients can still progress to heart failure (HF). There is a dire need for clinical therapies that can replace the lost myocardium, specifically by the induction of new myocyte formation from pre-existing cardiomyocytes. Many studies have shown terminally differentiated myocytes can re-enter the cell cycle and divide through manipulations of the cardiomyocyte cell cycle, signaling pathways, endogenous genes, and environmental factors. However, these approaches result in minimal myocyte renewal or cardiomegaly due to hyperactivation of cardiomyocyte proliferation. Finding the optimal treatment that will replenish cardiomyocyte numbers without causing tumorigenesis is a major challenge in the field. Another controversy is the inability to clearly define cardiomyocyte division versus myocyte DNA synthesis due to limited methods. In this review, we discuss several studies that induced cardiomyocyte cell cycle re-entry after cardiac injury, highlight whether cardiomyocytes completed cytokinesis, and address both limitations and methodological advances made to identify new myocyte formation.
Collapse
|
2
|
Schuler M, Tomlinson L, Homiski M, Cheung J, Zhan Y, Coffing S, Engel M, Rubitski E, Seitis G, Hales K, Robertson A, Vispute S, Cook J, Radi Z, Hollingshead B. Experiments in the EpiDerm 3D Skin In Vitro Model and Minipigs In Vivo Indicate Comparatively Lower In Vivo Skin Sensitivity of Topically Applied Aneugenic Compounds. Toxicol Sci 2021; 180:103-121. [PMID: 33481035 DOI: 10.1093/toxsci/kfaa189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Risk management of in vitro aneugens for topically applied compounds is not clearly defined because there is no validated methodology to accurately measure compound concentration in proliferating stratum basale keratinocytes of the skin. Here, we experimentally tested several known aneugens in the EpiDerm reconstructed human skin in vitro micronucleus assay and compared the results to flow cytometric mechanistic biomarkers (phospho-H3; MPM2, DNA content). We then evaluated similar biomarkers (Ki-67, nuclear area) using immunohistochemistry in skin sections of minipigs following topical exposure the potent aneugens, colchicine, and hesperadin. Data from the EpiDerm model showed positive micronucleus responses for all aneugens tested following topical or direct media dosing with similar sensitivity when adjusted for applied dose. Quantitative benchmark dose-response analysis exhibited increases in the mitotic index biomarkers phospho-H3 and MPM2 for tubulin binders and polyploidy for aurora kinase inhibitors are at least as sensitive as the micronucleus endpoint. By comparison, the aneugens tested did not induce histopathological changes, increases in Ki-67 immunolabeling or nuclear area in skin sections from the in vivo minipig study at doses in significant excess of those eliciting a response in vitro. Results indicate the EpiDerm in vitro micronucleus assay is suitable for the hazard identification of aneugens. The lack of response in the minipig studies indicates that the barrier function of the minipig skin, which is comparable to human skin, protects from the effects of aneugens in vivo. These results provide a basis for conducting additional studies in the future to further refine this understanding.
Collapse
Affiliation(s)
- Maik Schuler
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Lindsay Tomlinson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Michael Homiski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jennifer Cheung
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Yutian Zhan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Stephanie Coffing
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Maria Engel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Elizabeth Rubitski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Gary Seitis
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Katherine Hales
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Andrew Robertson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Saurabh Vispute
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jon Cook
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Zaher Radi
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Brett Hollingshead
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
4
|
Lynch AM, Eastmond D, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M, Tweats D. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403025. [PMID: 31699346 DOI: 10.1016/j.mrgentox.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.
Collapse
Affiliation(s)
| | | | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
5
|
Katagi A, Sui L, Kamitori K, Suzuki T, Katayama T, Dong Y, Nakagawa T, Yube K, Hossain A, Yamaguchi F, Tokuda M. Monopolar Spindle Induced by Isoamericanol A Suppresses
Human Breast Cancer Cell (MCF-7) Growth. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ajcb.2019.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, De La Torre A, Avitabile D, Ormachea L, McGregor MJ, Tsai EJ, Sussman MA. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 2015; 65:133-47. [PMID: 25593054 DOI: 10.1016/j.jacc.2014.09.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Pearl Quijada
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Sadia Mohsin
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Anya Joyo
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Kaitlen Samse
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Megan Monsanto
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Andrea De La Torre
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Daniele Avitabile
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California; Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Ormachea
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Michael J McGregor
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Emily J Tsai
- Section in Cardiology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California.
| |
Collapse
|