1
|
Zukas K, Cayford J, Serneo F, Atteberry B, Retter A, Eccleston M, Kelly TK. Rapid high-throughput method for investigating physiological regulation of neutrophil extracellular trap formation. J Thromb Haemost 2024; 22:2543-2554. [PMID: 38866247 DOI: 10.1016/j.jtha.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Neutrophils, the most abundant white blood cells in humans, play pivotal roles in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose, neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation is increasingly recognized as an essential rapid innate immune response, but when dysregulated, it contributes to pathogenesis of sepsis and immunothrombotic disease. OBJECTIVES Current NETosis models are limited, routinely employing nonphysiological triggers that can bypass natural NET regulatory pathways. Models utilizing isolated neutrophils and immortalized cell lines do not reflect the complex biology underlying neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we report the first human ex vivo model utilizing naturally occurring molecules to induce NETosis in whole blood. This approach could be used for drug screening and, importantly, inadvertent activators of NETosis. METHODS Here we describe a novel, high-throughput ex vivo whole blood-induced NETosis model using combinatorial pooling of native NETosis-inducing factors in a more biologically relevant Synthetic-Sepsis model. RESULTS We found different combinations of factors evoked distinct neutrophil responses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor variability, similar sets of proinflammatory molecules induced consistent responses across donors. We found that at least 3 biological triggers were necessary to induce NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α. CONCLUSION These findings emphasize the importance of investigating neutrophil physiology in a biologically relevant context to enable a better understanding of disease pathology, risk factors, and therapeutic targets, potentially providing novel strategies for disease intervention and treatment.
Collapse
Affiliation(s)
- Kieran Zukas
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Justin Cayford
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Finley Serneo
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | | - Andrew Retter
- Department of Critical Care, Guy's & St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Mark Eccleston
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | |
Collapse
|
2
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Patra T, Ray R. Bystander effect of SARS-CoV-2 spike protein on human monocytic THP-1 cell activation and initiation of prothrombogenic stimulus representing severe COVID-19. J Inflamm (Lond) 2022; 19:28. [PMID: 36585712 PMCID: PMC9801152 DOI: 10.1186/s12950-022-00325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hypercoagulable state and thromboembolic complications are potential life-threatening events in COVID-19 patients. Our previous studies demonstrated that SARS-CoV-2 infection as well as viral spike protein expressed epithelial cells exhibit senescence with the release of inflammatory molecules, including alarmins. FINDINGS We observed extracellular alarmins present in the culture media of SARS-CoV-2 spike expressing cells activate human THP-1 monocytes to secrete pro-inflammatory cytokines to a significant level. The release of THP-1 derived pro-inflammatory cytokine signature correlated with the serum of acute COVID-19 patient, but not in post-COVID-19 state. Our study suggested that the alarmins secreted by spike expressing cells, initiated phagocytosis property of THP-1 cells. The phagocytic monocytes secreted complement component C5a and generated an autocrine signal via C5aR1 receptor. The C5a-C5aR1 signal induced formation of monocyte mediated extracellular trap resulted in the generation of a prothrombogenic stimulus with activating platelets and increased tissue factor activity. We also observed an enhanced C5a level, platelet activating factor, and high tissue factor activity in the serum of acute COVID-19 patients, but not in recovered patients. CONCLUSION Our present study demonstrated that SARS-CoV-2 spike protein modulates monocyte responses in a paracrine manner for prothrombogenic stimulus by the generation of C5a complement component.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA ,grid.262962.b0000 0004 1936 9342Molecular Microbiology & Immunology, Saint Louis University, 63104 Saint Louis, Missouri, MO USA
| |
Collapse
|
4
|
Pisareva E, Mihalovičová L, Pastor B, Kudriavtsev A, Mirandola A, Mazard T, Badiou S, Maus U, Ostermann L, Weinmann-Menke J, Neuberger EWI, Simon P, Thierry AR. Neutrophil extracellular traps have auto-catabolic activity and produce mononucleosome-associated circulating DNA. Genome Med 2022; 14:135. [PMID: 36443816 PMCID: PMC9702877 DOI: 10.1186/s13073-022-01125-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As circulating DNA (cirDNA) is mainly detected as mononucleosome-associated circulating DNA (mono-N cirDNA) in blood, apoptosis has until now been considered as the main source of cirDNA. The mechanism of cirDNA release into the circulation, however, is still not fully understood. This work addresses that knowledge gap, working from the postulate that neutrophil extracellular traps (NET) may be a source of cirDNA, and by investigating whether NET may directly produce mono-N cirDNA. METHODS We studied (1) the in vitro kinetics of cell derived genomic high molecular weight (gHMW) DNA degradation in serum; (2) the production of extracellular DNA and NET markers such as neutrophil elastase (NE) and myeloperoxidase (MPO) by ex vivo activated neutrophils; and (3) the in vitro NET degradation in serum; for this, we exploited the synergistic analytical information provided by specifically quantifying DNA by qPCR, and used shallow WGS and capillary electrophoresis to perform fragment size analysis. We also performed an in vivo study in knockout mice, and an in vitro study of gHMW DNA degradation, to elucidate the role of NE and MPO in effecting DNA degradation and fragmentation. We then compared the NET-associated markers and fragmentation size profiles of cirDNA in plasma obtained from patients with inflammatory diseases found to be associated with NET formation and high levels of cirDNA (COVID-19, N = 28; systemic lupus erythematosus, N = 10; metastatic colorectal cancer, N = 10; and from healthy individuals, N = 114). RESULTS Our studies reveal that gHMW DNA degradation in serum results in the accumulation of mono-N DNA (81.3% of the remaining DNA following 24 h incubation in serum corresponded to mono-N DNA); "ex vivo" NET formation, as demonstrated by a concurrent 5-, 5-, and 35-fold increase of NE, MPO, and cell-free DNA (cfDNA) concentration in PMA-activated neutrophil culture supernatant, leads to the release of high molecular weight DNA that degrades down to mono-N in serum; NET mainly in the form of gHMW DNA generate mono-N cirDNA (2 and 41% of the remaining DNA after 2 h in serum corresponded to 1-10 kbp fragments and mono-N, respectively) independent of any cellular process when degraded in serum; NE and MPO may contribute synergistically to NET autocatabolism, resulting in a 25-fold decrease in total DNA concentration and a DNA fragment size profile similar to that observed from cirDNA following 8 h incubation with both NE and MPO; the cirDNA size profile of NE KO mice significantly differed from that of the WT, suggesting NE involvement in DNA degradation; and a significant increase in the levels of NE, MPO, and cirDNA was detected in plasma samples from lupus, COVID-19, and mCRC, showing a high correlation with these inflammatory diseases, while no correlation of NE and MPO with cirDNA was found in HI. CONCLUSIONS Our work describes the mechanisms by which NET and cirDNA are linked. In doing so, we demonstrate that NET are a major source of mono-N cirDNA independent of apoptosis and establish a new paradigm of the mechanisms of cirDNA release in normal and pathological conditions. We also demonstrate a link between immune response and cirDNA.
Collapse
Affiliation(s)
- Ekaterina Pisareva
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Lucia Mihalovičová
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Andrei Kudriavtsev
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Alexia Mirandola
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Thibault Mazard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France
| | - Stephanie Badiou
- Laboratoire de Biochimie Et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, France
| | - Ulrich Maus
- Division of Experimental Pneumology, Hannover Medical School, and German Center for Lung Research, Partner Site BREATH (Biomedical Research in Endstage and Obstructive Lung Disease), 30625, Hannover, Germany
| | - Lena Ostermann
- Division of Experimental Pneumology, Hannover Medical School, and German Center for Lung Research, Partner Site BREATH (Biomedical Research in Endstage and Obstructive Lung Disease), 30625, Hannover, Germany
| | - Julia Weinmann-Menke
- Department of Rheumatology and Nephrology, University Medical Center Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Elmo W I Neuberger
- Department of Sports Medicine, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Alain R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France.
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France.
- Montpellier Cancer Institute (ICM), Montpellier, France.
| |
Collapse
|
5
|
Verdon R, Gillies SL, Brown DM, Henry T, Tran L, Tyler CR, Rossi AG, Stone V, Johnston HJ. Neutrophil activation by nanomaterials in vitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology 2020; 15:1-20. [PMID: 33272088 DOI: 10.1080/17435390.2020.1834635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - David M Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Theodore Henry
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK
| | - Charles R Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
6
|
Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J Transl Med 2019; 17:90. [PMID: 30885207 PMCID: PMC6423780 DOI: 10.1186/s12967-019-1838-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypercoagulation and neutrophilia are described in several cancers, however, whether they are involved in lung carcinogenesis is currently unknown. Emodin is the main bioactive component from Rheum palmatum and has many medicinal values, such as anti-inflammation and anticancer. This study is to investigate the contributions of neutrophils to the effects of emodin on hypercoagulation and carcinogenesis. METHODS The effects of emodin on neutrophil phenotypes were assessed by cell proliferation, morphological changes, phagocytosis and autophagy in vitro. The anti-coagulation and cancer-preventing actions of emodin were evaluated in the urethane-induced lung carcinogenic model. The expressions of Cit-H3 and PAD4 in lung sections were assessed by immunohistochemistry, CD66b+ neutrophils were distinguished by immunofluorescence, and cytokines and ROS were examined with ELISA. The neutrophils-regulating and hypercoagulation-improving efficacies of emodin were confirmed in a Lewis lung cancer allograft model. The related targets and pathways of emodin were predicted by network pharmacology. RESULTS In vitro, emodin at the dose of 20 µM had no effect on cell viability in HL-60N1 but increased ROS and decreased autophagy and thus induced apoptosis in HL-60N2 with the morphological changes. In the urethane-induced lung carcinogenic model, before lung carcinogenesis, urethane induced obvious hypercoagulation which was positively correlated with lung N2 neutrophils. There were the aggravated hypercoagulation and lung N2 neutrophils after lung carcinoma lesions. Emodin treatment resulted in the ameliorated hypercoagulation and lung carcinogenesis accompanied by the decreased N2 neutrophils (CD66b+) in the alveolar cavity. ELISA showed that there were more IFN-γ, IL-12 and ROS and less IL-6, TNF-α and TGF-β1 in the alveolar cavity in the emodin group than those in the control group. Immunohistochemical analysis showed that emodin treatment decreased Cit-H3 and PAD4 in lung sections. In the Lewis lung cancer allograft model, emodin inhibits tumor growth accompanied by the attenuated coagulation and intratumor N2 neutrophils. Network pharmacology indicated the multi-target roles of emodin in N2 neutrophil activation. CONCLUSIONS This study suggests a novel function of emodin, whereby it selectively suppresses N2 neutrophils to prevent hypercoagulation and lung carcinogenesis.
Collapse
|
7
|
Abstract
Leukemic cells release their nuclear contents into the extracellular space upon activation. The released nuclear contents, called extracellular traps, can activate the contact system of coagulation. This study accessed the extent of contact system activation, the levels of extracellular traps, and coagulation activation in hematologic malignancies including acute leukemia. In 154 patients with hematologic malignancies (acute leukemia, n = 29; myelodysplastic syndrome, n = 20; myeloproliferative neoplasms, n = 69; plasma cell myeloma, n = 36) and 48 normal controls, the levels of coagulation factors (fibrinogen and factor VII, VIII, IX, and XII), D-dimer, thrombin generation, extracellular trap markers (histone-DNA complex, cell-free dsDNA, leukocyte elastase), and contact system markers (activated factor XII [XIIa], high-molecular-weight kininogen, prekallikrein, bradykinin) were measured. Patients with acute leukemia showed the highest levels of peak thrombin, extracellular trap markers, and factor XIIa. Factor XIIa level was significantly associated with the presence of acute leukemia. The histone-DNA complex and cell-free dsDNA were revealed as significant associated factors with the factor XIIa level. Three markers of extracellular traps and two markers of thrombin generation significantly contributed to the hemostatic abnormalities in hematologic malignancies. Contact system was activated in acute leukemia and its activation was significantly associated with the extent of extracellular trap formation. This finding suggests that extracellular traps might be a major source of contact system activation and therapeutic strategies targeting extracellular trap formation or contact system activation may be beneficial in acute leukemia.
Collapse
|
8
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
9
|
Manda-Handzlik A, Bystrzycka W, Wachowska M, Sieczkowska S, Stelmaszczyk-Emmel A, Demkow U, Ciepiela O. The influence of agents differentiating HL-60 cells toward granulocyte-like cells on their ability to release neutrophil extracellular traps. Immunol Cell Biol 2018; 96:413-425. [PMID: 29380901 DOI: 10.1111/imcb.12015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
Studies on neutrophil extracellular traps (NETs) are challenging as neutrophils live shortly and easily become activated. Thus, availability of a cell line model closely resembling the functions of peripheral blood neutrophils would be advantageous. Our purpose was to find a compound that most effectively differentiates human promyelocytic leukemia (HL-60) cells toward granulocyte-like cells able to release NETs. HL-60 cells were differentiated with all-trans retinoic acid (ATRA), dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) and stimulated with phorbol 12-myristate 13-acetate (PMA) or calcium ionophore A23187 (CI). Cell differentiation, phagocytosis and calcium influx were analyzed by flow cytometry. Reactive oxygen species production and NETs release were measured fluorometrically and analyzed microscopically. LC3-II accumulation and histone 3 citrullination were analyzed by western blot. ATRA most effectively differentiated HL-60 cells toward granulocyte-like cells. ATRA-dHL-60 cells released NETs only upon PMA stimulation, DMSO-dHL-60 cells only post CI stimulation, while DMF-dHL-60 cells formed NETs in response to both stimuli. Oxidative burst was induced in ATRA-, DMSO- and DMF-dHL-60 cells post PMA stimulation and only in DMF-dHL-60 cells post CI stimulation. Increased histone 3 citrullination was observed in stimulated DMSO- and DMF-, but not in ATRA-dHL-60 cells. The calcium influx was diminished in ATRA-dHL-60 cells. Significant increase in autophagosomes formation was observed only in PMA-stimulated DMF-dHL-60 cells. Phagocytic index was higher in ATRA-dHL-60 cells than in control, DMSO- and DMF-dHL-60 cells. We conclude that ATRA, DMSO and DMF differentiate HL-60 in different mechanisms. DMF is the best stimulus for HL-60 cell differentiation for NETs studies.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Bystrzycka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Sandra Sieczkowska
- Student Scientific Group at the Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Yoo HJ, Lee JS, Kim JE, Gu J, Koh Y, Kim I, Kim HK. Extracellular Histone Released from Leukemic Cells Increases Their Adhesion to Endothelium and Protects them from Spontaneous and Chemotherapy-Induced Leukemic Cell Death. PLoS One 2016; 11:e0163982. [PMID: 27706246 PMCID: PMC5051947 DOI: 10.1371/journal.pone.0163982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction When leukocytes are stimulated by reactive oxygen species (ROS), they release nuclear contents into the extracellular milieu, called by extracellular traps (ET). The nuclear contents are mainly composed of the histone–DNA complex and neutrophil elastase. This study investigated whether leukemic cells could release ET and the released histone could induce endothelial activation, eventually resulting in leukemic progression. Methods The circulating ET were measured in 80 patients with hematologic diseases and 40 healthy controls. ET formation and ROS levels were investigated during leukemic cell proliferation in vitro. Histone-induced endothelial adhesion molecules expression and cell survival were measured by flow cytometry. Results Acute leukemia patients had high levels of ET, which correlated with peripheral blast count. Leukemic cells produced high ROS levels and released extracellular histone, which was significantly blocked by antioxidants. Histone significantly induced 3 endothelial adhesion molecules expression, and promoted leukemic cell adhesion to endothelial cells, which was inhibited by histone inhibitors (heparin, polysialic acid, and activated protein C), neutralizing antibodies against these adhesion molecules, and a Toll like receptor(TLR)9 antagonist. When leukemic cells were co-cultured with endothelial cells, adherent leukemic cells showed better survival than the non-adherent ones, demonstrating that histone-treated endothelial cells protected leukemic cells from both spontaneous and chemotherapy-induced death. Conclusion Our data demonstrate for the first time that extracellular histone can be released from leukemic cells through a ROS-dependent mechanism. The released histone promotes leukemic cell adhesion by inducting the surface expression of endothelial adhesion molecules and eventually protects leukemic cells from cell death.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - JaYoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Koyama R, Arai T, Kijima M, Sato S, Miura S, Yuasa M, Kitamura D, Mizuta R. DNase γ, DNase I and caspase-activated DNase cooperate to degrade dead cells. Genes Cells 2016; 21:1150-1163. [DOI: 10.1111/gtc.12433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Ryo Koyama
- Research Institute for Biomedical Sciences; Tokyo University of Science; 2669 Yamazaki Noda Chiba 278-0022 Japan
| | - Tomoya Arai
- Research Institute for Biomedical Sciences; Tokyo University of Science; 2669 Yamazaki Noda Chiba 278-0022 Japan
| | - Marie Kijima
- Research Institute for Biomedical Sciences; Tokyo University of Science; 2669 Yamazaki Noda Chiba 278-0022 Japan
| | - Shoko Sato
- Department of Biological Science and Technology; Faculty of Industrial Science and Technology; Tokyo University of Science; 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Shigetoshi Miura
- Department of Biological Science and Technology; Faculty of Industrial Science and Technology; Tokyo University of Science; 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences; Tokyo University of Science; 2669 Yamazaki Noda Chiba 278-0022 Japan
| | - Ryushin Mizuta
- Research Institute for Biomedical Sciences; Tokyo University of Science; 2669 Yamazaki Noda Chiba 278-0022 Japan
| |
Collapse
|
12
|
Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis 2016; 7:e2283. [PMID: 27362801 PMCID: PMC5108337 DOI: 10.1038/cddis.2016.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL.
Collapse
Affiliation(s)
- R Ma
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - T Li
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - M Cao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Y Si
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - X Wu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - L Zhao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Z Yao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Y Zhang
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - S Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - R Deng
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - V A Novakovic
- Department of Research, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| | - Y Bi
- Department of Cardiology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, Harbin, China
| | - B Yu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - S Yang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - J Wang
- Department of Hematology of the Second Hospital, Harbin Medical University, Harbin, China
| | - J Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Shi
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- Department of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Nakayama T, Saitoh N, Morotomi-Yano K, Yano KI, Nakao M, Saitoh H. Nuclear extrusion precedes discharge of genomic DNA fibers during tunicamycin-induced neutrophil extracellular trap-osis (NETosis)-like cell death in cultured human leukemia cells. Cell Biol Int 2016; 40:597-602. [PMID: 26888435 DOI: 10.1002/cbin.10594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023]
Abstract
We previously reported that the nucleoside antibiotic tunicamycin (TN), a protein glycosylation inhibitor triggering unfolded protein response (UPR), induced neutrophil extracellular trap-osis (NETosis)-like cellular suicide and, thus, discharged genomic DNA fibers to extracellular spaces in a range of human myeloid cell lines under serum-free conditions. In this study, we further evaluated the effect of TN on human promyelocytic leukemia HL-60 cells using time-lapse microscopy. Our assay revealed a previously unappreciated early event induced by TN-exposure, in which, at 30-60 min after TN addition, the cells extruded their nuclei into the extracellular space, followed by discharge of DNA fibers to form NET-like structures. Intriguingly, neither nuclear extrusion nor DNA discharge was observed when cells were exposed to inducers of UPR, such as brefeldin A, thapsigargin, or dithiothreitol. Our findings revealed novel nuclear dynamics during TN-induced NETosis-like cellular suicide in HL-60 cells and suggested that the toxicological effect of TN on nuclear extrusion and DNA discharge was not a simple UPR.
Collapse
Affiliation(s)
- Tomofumi Nakayama
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto , University, Kumamoto, Japan
| | | | - Ken-Ichi Yano
- Institute of Pulsed Power Science, Kumamoto , University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto , University, Kumamoto, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|